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Abstract
We develop a new approach, named Greedy when
Sure and Conservative when Uncertain (GSCU),
to competing online against unknown and non-
stationary opponents. GSCU improves in four
aspects: 1) introduces a novel way of learning op-
ponent policy embeddings offline; 2) trains offline
a single best response (conditional additionally
on our opponent policy embedding) instead of a
finite set of separate best responses against any
opponent; 3) computes online a posterior of the
current opponent policy embedding, without mak-
ing the discrete and ineffective decision which
type the current opponent belongs to; and 4) se-
lects online between a real-time greedy policy
and a fixed conservative policy via an adversar-
ial bandit algorithm, gaining a theoretically bet-
ter regret than adhering to either. Experimen-
tal studies on popular benchmarks demonstrate
GSCU’s superiority over the state-of-the-art meth-
ods. The code is available online at https:
//github.com/YeTianJHU/GSCU.

1. Introduction
Developing agents that play competitively against other op-
ponents is challenging in multiagent scenarios, especially
when the opponents are nonstationary. One approach is
computing a strong yet fixed policy, which has been the
goal in many human-played games, such as Go (Silver et al.,
2016), StarCraft II (Vinyals et al., 2019), poker (Moravčı́k
et al., 2017; Brown & Sandholm, 2018; 2019), Mahjong (Fu
et al., 2021), etc. In two-player zero-sum games, the target
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of such a policy is often a Nash Equilibrium (NE) policy,
which is guaranteed to not lose in expectation to any oppo-
nent. Yet, playing a fixed policy may be too conservative
if the opponent has some exploitable weakness, since the
weakness can be otherwise modelled and exploited.

Alternatively, opponent modelling methods (Hernandez-
Leal et al., 2017; Albrecht & Stone, 2018) condition an
agent policy on not only its environmental observation but
also predictions about relevant properties (such as policies
and goals) of the opponents. Yet, making accurate such pre-
dictions is not easy (Hernandez-Leal et al., 2017; Albrecht
& Stone, 2018), and training a policy dependent additionally
on the predictions is often more difficult than solely on the
observation. As a result, knowing when opponent modelling
is effective is as important as opponent modelling itself.

In this paper, we investigate the problem of competing on-
line against unknown opponents, which can be either station-
ary or nonstationary. We consider a competitive multiagent
setting, where we control only one agent (the main agent)
and all other agents are opponents. We contribute by answer-
ing two questions: (1) What can be done offline to prepare
the main agent for competing online against unknown oppo-
nents? (2) During online execution, what policy should the
main agent use against the current opponents?

• Answering question (1): We propose a novel training pro-
cedure based on Variational Autoencoder (VAE) (Kingma
& Welling, 2014) for learning opponent policy embed-
dings offline. In comparison with previous policy embed-
ding learning methods using VAEs, we decouple the learn-
ing of policy embedding from the representation learning
of other information by conditioning the encoder solely on
an opponent index. For the decoder, a sampled embedding
together with an opponent observation produces the prob-
ability of an opponent action. The decoupling facilitates
effective policy embedding learning in terms of both dis-
crimination and generalization. Afterwards, a conditional
Reinforcement Learning (RL) is invoked to train a single
best response against potential opponents. Compared to
a finite set of separate best responses targeting specific
opponent policies, our single best response, which takes
additionally our opponent policy embedding as input, is
better at generalizing to infinite opponent policies.

https://github.com/YeTianJHU/GSCU
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• Answering question (2): We offer a new perspective on
competing online against unknown opponents, where we
convert the problem to a two-armed adversarial bandit
problem. One arm follows a fixed conservative policy,
which hopefully has the best worst-case performance. The
other arm exploits the current opponent by playing a real-
time greedy policy, which is obtained by combing the on-
line inferred opponent embedding with our offline trained
best response. The real-time greedy policy generalizes
to unknown opponents via the single best response and
the continuous opponent policy embedding, without de-
ciding which category the current opponent belongs to or
conducting any form of change detection. Moreover, we
benefit from selecting between the real-time greedy policy
and the conservative policy using an adversarial bandit al-
gorithm, in contrast to previous methods that either play a
fixed policy or keep trying to exploit the current opponent.

• We further prove that the performance of the real-time
greedy policy is lower bounded by a ground truth best
response’s performance minus two positive terms. One
term is the performance gap between a ground truth best
response and our approximate best response. The other
term is a function of the KL divergence between the esti-
mated and the ground truth opponent policy. In addition,
we prove that selecting between the real-time greedy pol-
icy and the fixed conservative policy using an adversarial
bandit algorithm is at least as good as, in terms of the
regret (defined later), adhering to either.

The overall approach is named Greedy when Sure and Con-
servative when Uncertain (GSCU). We evaluate GSCU on
a two-player zero-sum imperfect information game and a
four-player general-sum imperfect information game. In
comparison with prior methods, GSCU demonstrates more
robust performance against a wide range of unknown and
nonstationary opponents. In particular, GSCU performs the
best in terms of the average and worst-case performance.

2. Notations and Preliminaries
2.1. Problem Definition and Assumptions

Stochastic games. We employ stochastic games (Shapley,
1953) to discuss the problem of competing online against
unknown opponents. A stochastic game has n agents and
a state space S. Each agent i has an action space Ai and
an observation space Oi. At each time step t, an agent i
receives an observation oi,t ∈ Oi and executes an action
ai,t ∈ Ai according to its policy πi : Oi × Ai −→ [0, 1].
Afterwards, the game outputs a reward ri,t ∈ R for each
agent i and proceeds to the next state according to some
environmental transition function. Define an episode of the
game as an instantiation of the game that starts at some
state s0 ∈ S and proceeds according to each agent policy

πi till a terminal state. We denote the main agent policy by
π1 and the policy of an opponent by πi, 2 ≤ i ≤ n. The
expected returns of the main agent when playing π1 against
{πi}ni=2 is denoted by u1(π1, π2..n), where u1(π1, π2..n) =

E[
∑H

t=0 γ
tr1,t], with γ ∈ [0, 1.0]. Let uπ1,π2..n

1 (o, a) =

E[
∑H

t=0 γ
tr1,t|o1,0 = o, a1,0 = a], and the observation

value is uπ1,π2..n

1 (o) =
∑

a π1(a|o)uπ1,π2..n

1 (o, a). Assume
|uπ1,π2..n

1 (o, a)| ≤ ∆ and H is finite.

The objective. In our setting of competing online against
unknown opponents for T episodes, the goal is to sequen-
tially decide a policy π1,j for the main agent at each episode
j, 1 ≤ j ≤ T , such that the regret RT is minimized:

RT = max
π1∈Σ1

T∑
j=1

[u1(π1, π2..n,j)− u1(π1,j , π2..n,j)]. (1)

Note that we do not have control over opponent policies
π2..n,j at each episode j. Intuitively, the regret RT of a
sequence of main agent policies {π1,j}Tj=1 measures the
expected returns lost when compared with a best fixed main
agent policy in its policy space Σ1 in hindsight.

Our assumptions. To enable effective opponent modelling,
we assume full access to opponent history trajectories (se-
quence of observation-action pairs) in previous episodes but
not the current episode. This is common in human-played
games, where we can look back into replays that have full
visibility of opponents. It is worth noting that during online
test opponent policies are unknown to the main agent and
allowed to change arbitrarily over time.

As our problem is competing online against unknown op-
ponents, we assume a strong and fixed main agent policy
π∗
1 is available offline. We further assume that for each

opponent we have K different precomputed policies, which
we denote by ΠTrain = {π(k)

i |2 ≤ i ≤ n, 1 ≤ k ≤ K}.
The policy π∗

1 can be obtained by running, e.g., regret mini-
mization algorithms (Zinkevich et al., 2007; Fu et al., 2021)
or competitive multiagent RL algorithms (Hernandez-Leal
et al., 2019b; Zhang et al., 2021). The policy set ΠTrain

can be obtained by collecting intermediate versions of π∗
1

during training, if all agents are homogeneous. For rea-
sons explained later, a more appropriate way of producing
ΠTrain may be running some multiagent RL algorithm that
emphasizes policy diversity (Parker-Holder et al., 2020).

2.2. Variational Autoencoder

Considering some data set {x(i)}Ni=1 with N i.i.d. samples,
VAE (Kingma & Welling, 2014) applies an unobserved con-
tinuous latent variable z to each data point x. The objective
of VAE is to learn a model of the data generating process,
by simultaneously training a probabilistic encoder qϕe(z|x)
and a probabilistic decoder pϕd(x|z). The log likelihood
of a data point x is log p(x) = DKL(qϕe(z|x)||p(z|x)) +
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Figure 1. GSCU consists of two offline training components ((a) and (b)) and an online adaptation process ((c)).

L(ϕe,ϕd; x). DKL(qϕe(z|x)||p(z|x)) denotes the KL di-
vergence of the approximate qϕe(z|x) from the true pos-
terior p(z|x). As the KL-divergence is non-negative,
L(ϕe,ϕd; x) is called the Evidence Lower Bound (ELBO),
which can be further written as: L(ϕe,ϕd; x) =
−DKL(qϕe(z|x)||p(z))+Eqϕe (z|x)[log pϕd(x|z)]. The repa-
rameterization trick (Kingma & Welling, 2014) can be
applied to optimize the ELBO. β-VAE (Higgins et al.,
2014) introduces a parameter β ≥ 0 to trade-off be-
tween the reconstruction loss and the KL-divergence loss in
the ELBO: Lβ(ϕ

e,ϕd; x) = −βDKL(qϕe(z|x)||p(z)) +
Eqϕe (z|x)[log pϕd(x|z)]. The Conditional VAE (CVAE)
(Walker et al., 2016) makes the probabilistic decoder depen-
dent on some additional variable c: pϕd(x|z, c).

2.3. Single Agent RL

Traditional RL has been widely studied in the single agent
environment, where a policy is optimized to maximize the
expected discounted returns starting from any state. Ei-
ther value based methods, such as Deep Q Network (DQN)
(Mnih et al., 2015), or policy gradient methods, such as Prox-
imal Policy Optimization (PPO) (Schulman et al., 2017),
can be employed.

When opponent policies are stationary, our multiagent en-
vironment is essentially a single agent environment from
the perspective of the main agent. As a result, we can use
single agent RL methods to approximate a best response
BR(π2..n) for the main agent against any π2..n in offline
training, where BR(π2..n) = argmaxπ1∈Σ1 u1(π1, π2..n).

2.4. Multi-armed Bandit

The multi-armed bandit (Lattimore & Szepesvári, 2020) is
concerned with how to optimally select among a fixed num-
ber of actions (arms) in an online manner. The optimality is

determined by the cumulative rewards, where the reward of
an action follows some unknown probabilistic distribution.
In stochastic bandits where the reward distribution stays
stationary, classical algorithms include Upper Confidence
Bound (UCB) (Lai & Robbins, 1985; Auer et al., 2002a) and
Thompson Sampling (Thompson, 1933). In adversarial ban-
dits where no assumption is made about the reward distribu-
tion, a widely studied algorithm is EXP3 (Auer et al., 2002b).
In a K-armed bandit, EXP3 chooses an action a at iteration
j with probability pj(a) = (1 − η)

exp (ηωj(a))∑
a′ exp (ηωj(a′)) +

η
K ,

where ωj(a) is a variable tracking the cumulative rewards
of action a and η is a hyperparameter.

3. GSCU
We develop a new approach, i.e., GSCU for competing
online against unknown opponents in this section. For the
ease of discussion, we assume there is only one opponent,
the index of which is denoted by −1. Extension to multiple
opponents is straightforward, and we leave the case where
the number of opponents can not be predetermined as future
work. The general idea in GSCU is: exploiting the opponent
when this is preferable and otherwise playing conservatively
by following a fixed worst-case optimal policy π∗

1 .

At the beginning of each episode j during online test,
GSCU selects between two arms using EXP3. One arm
follows the policy π∗

1 . The other arm plays an approxi-
mate best response π1(o, b(π−1,j);θ), which conditions on
a belief b(π−1,j) about the opponent policy π−1,j for the
jth episode. The belief b(π−1,j) is about an opponent pol-
icy embedding zj , whose posterior distribution p(zj |Dj) is
updated online via Bayesian inference. The data set Dj

refers to observation-action pairs of the opponent in previ-
ous episodes: {(o−1, a−1) ∈ τ−1,i}j−1

i=1 , where D1 = ∅ and
τ−1,i denotes the opponent trajectory in the ith episode.
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In offline training, GSCU employs a novel CVAE archi-
tecture to learn a probabilistic encoder and a probabilis-
tic decoder for the opponent policy embedding z. After-
wards, the parameters θ of the approximate best response
π1(o, z;θ) are trained by sampling z and using the corre-
sponding opponent policy within a single agent RL proce-
dure. An overview of GSCU is illustrated in Figure 1, and
we elaborate each component of GSCU in the following.

3.1. Offline Policy Embedding Learning

We assume the existence of some latent embedding z ∈ Z ,
which combined with an environmental observation o pro-
duces an action distribution: O × Z × A −→ [0, 1]. We
prefer the space Z to be regularized in the sense that a
sample from Z generates a meaningful policy and that adja-
cent embeddings produce similar policies. To this end, we
employ a CVAE architecture (illustrated in Figure 1(a)) to
simultaneously learn a probabilistic encoder qϕe(z|w) and
a probabilistic decoder pϕd(a|o, z).

Let the prior p(z) be the standard multivariate Gaussian
N (z; 0, I). Assume the variational approximate posterior
qϕe(z|w) be a multivariate Gaussian with a diagonal co-
variance N (z;µ,σ2I), where the mean µ and the standard
deviation σ are outputs of a nonlinear function parameter-
ized by ϕe with input w. The K dimensional one-hot vector
w = [w1, w2, .., wK ] is a policy label to an observation-
action pair (o, a), such that (o, a,w) with wk = 1.0 is
produced by the kth opponent policy from ΠTrain. The de-
coder pϕd(a|o, z) outputs the probability of taking action a,
conditional on an observation o and a sample from the pos-
terior qϕe(z|w). Similar to the Word2Vec method (Mikolov
et al., 2013) where a word is input as a one-hot vector, our
encoder qϕe(z|w) takes the one-hot vector w, which indexes
a policy from ΠTrain, as input. Accordingly, we name our
policy embedding learning method as Policy2Emb.

Following the ELBO definition and using the reparameteri-
zation trick (Kingma & Welling, 2014), the training objec-
tive Lβ(ϕ

e,ϕd; (o, a,w)) in Policy2Emb for a data point
(o, a,w) can be estimated as:

β

2

J∑
i=1

[1 + log(σ2
i )− µ2

i − σ2
i ] +

1

L

L∑
l=1

log pϕd(a|o, z(l)),

where z(l) = µ + σ ⊙ ϵ(l) and ϵ(l) ∼ N (0, I). J is the
embedding dimension, and L is the number of samples used.

Policy or skill embeddings have been extensively studied in
previous literature. To name a few, Hausman et al. (2018)
use variational inference for offline training of an embed-
ding space of skills. Some methods (Grover et al., 2018;
Rabinowitz et al., 2018; Xie et al., 2020; Raileanu et al.,
2020; Papoudakis et al., 2021) learn only discriminative
policy embeddings using some autoencoder architectures.

Arnekvist et al. (2019) learn variational embeddings of opti-
mal Q values for different tasks. A variational recurrent lad-
der encoder is developed towards applications in sports (Liu
et al., 2020). The encoders of the VAEs in Papoudakis &
Albrecht (2020) and Zintgraf et al. (2021a) depend on previ-
ous actions/states/rewards, which introduce unnecessary and
interfering signals to encode a policy. Policy2Emb differs
from previous policy embedding learning methods mainly
in what our embedding represents (i.e., different opponent
policies) and how it is trained: Policy2Emb employs a novel
CVAE architecture to decouple the policy embedding learn-
ing from the representation learning of other unnecessary
(for encoding a policy) information, which greatly improves
both the discrimination and generalization of the learned
policy embedding in the context of opponent modelling.

3.2. Offline Conditional RL

The purpose of our offline conditional RL in GSCU is to
obtain a single best response against any opponent policy.
Some previous methods (Johanson et al., 2007; Zheng et al.,
2018) compute a separate best response against each op-
ponent policy in ΠTrain, which is not efficiently scalable
with the size of ΠTrain and may not generalize well outside
ΠTrain. In contrast, we leverage the policy embedding z
learned by Policy2Emb to represent an opponent policy. We
treat z as a new type of observation and train a single policy
π1(o, z;θ), where each assignment of z produces an approx-
imate best response against the corresponding opponent.

We expect good generalization of π1(o, z;θ) across the pol-
icy embedding space Z because of the regularization and
discrimination training objectives in Policy2Emb. It is also
worth noting that the training data for Policy2Emb is pro-
duced using opponent policies from ΠTrain. Hence, the
extent to which ΠTrain is representative of the whole oppo-
nent policy space has a large influence on the generalization
performance of π1(o, z;θ) outside ΠTrain. For this reason,
we prefer ΠTrain to be a diverse set of opponent policies,
and we leave the generation of diverse opponent policies as
future work.

In practice, we employ a single agent RL method to train
π1(o, z;θ). At each training episode, we randomly sample
an opponent, represented by w, from ΠTrain and create the
corresponding single agent adversary environment, where
the input z is sampled according to the probabilistic encoder
pϕe(z|w). The pseudocode of the offline conditional RL in
GSCU is given in Appendix A.

3.3. Online Bayesian Belief Update and Policy Selection

During online test, at the beginning of episode j, we com-
pute a posterior distribution p(zj |Dj) of the current oppo-
nent policy embedding zj given the historic data set Dj .
We fit an approximate distribution q(zj) to the intractable
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posterior p(zj |Dj) using variational inference (Kingma &
Welling, 2014). Let q(zj) takes the form of a multivariate
Gaussian with a diagonal covarianceN (z;µj ,σ

2
j I), the KL

divergence DKL(q(zj)||p(zj |Dj)) can be minimized via
maximizing the corresponding ELBO: L(µj ,σj ;Dj) =
−DKL(q(zj)||p(z)) + Eq(zj)[log p(Dj |zj)]. Treating in-
stances (o−1, a−1) in Dj as i.i.d samples and p(o−1|z) as a
constant, L(µj ,σj ;Dj) with constant terms eliminated is:

−DKL(N (z;µj ,σ
2
j I)||p(z))+

Ez∼N (z;µj ,σ
2
j I)[

∑
(o−1,a−1)∈Dj

log pϕd(a−1|o−1, z)], (2)

where the parameters ϕd are pretrained offline in Pol-
icy2Emb. In practice, we compute q(zj), i.e., µj and σj

every MV I episodes, where the posterior from the last step
serves as the prior p(z) for the current step, using only newly
collected data.

For the main agent, denote the regret of always using policy
π1,j = π∗

1 by RT (π
∗
1) and the regret of always using policy

π1,j = πRL
1,j by RT (π

RL
1 ), where πRL

1,j = π1(o,µj ;θ) at each
episode j. Intuitively, πRL

1,j is an approximate best response
to the opponent policy π−1,j , which is unknown to the main
agent. More precisely, we can lower bound the expected
returns of playing πRL

1,j against π−1,j by proving:

u1(π
RL
1,j , π−1,j) ≥u1(BR(π̂−1,j), π̂−1,j)

−RRL(π̂−1,j)−D(π−1,j∥π̂−1,j),
(3)

where π̂−1,j with π̂−1,j(a|o) = pϕd(a|o,µj) represents the
inferred opponent policy. The term u1(BR(π̂−1,j), π̂−1,j)
is the best expected returns against π̂−1,j . The term
RRL(π̂−1,j) is the performance gap of playing πRL

1,j

instead of BR(π̂−1,j) against π̂−1,j : RRL(π̂−1,j) =
u1(BR(π̂−1,j), π̂−1,j) − u1(π

RL
1,j , π̂−1,j). RRL(π̂−1,j) is

expected to be small, as πRL
1,j is trained against π̂−1,j via

single agent RL offline. The term D(π−1,j∥π̂−1,j) =
2∆
1−γ

√
Eo[DKL(π−1,j(o)∥π̂−1,j(o))], which reflects the

quality of the approximation to π−1,j using π̂−1,j .

Ideally, we expect that π̂−1,j approximates π−1,j and πRL
1,j

approximates BR(π−1,j). As a result, following πRL
1,j

may be much more profitable than π∗
1 . However, in prac-

tice, the regret of always following πRL
1,j can be high if

D(π−1,j∥π̂−1,j) is large, due to either that π−1,j is very
different from offline opponent policies in ΠTrain or that
little data is available to make an effective online inference
about π−1,j . In order to improve upon always following
either π∗

1 or πRL
1,j , GSCU employs the EXP3 (Auer et al.,

2002b) algorithm to select between π∗
1 and πRL

1,j during on-
line test. Denoting the policy GSCU plays at each episode j
by πEXP3

1,j , we can prove the following theorem.

Theorem 3.1. When η = min
{
1,
√

2 ln 2
(e−1)∆T

}
, the regret

of playing πEXP3
1,j for T episodes is upper bounded:

RT (π
EXP3
1,j ) ≤ 3.1

√
∆T +min

{
RT (π

∗
1), RT (π

RL
1,j)

}
.

Equation 3 and the above theorem are proven in Appendix B
and C respectively. In the theorem, the first term 3.1

√
∆T

is incurred by the bandit. The regret RT (π
∗
1) may increase

linearly with T , as π∗
1 is a fixed policy. Hence, RT (π

EXP3
1,j )

is no worse than RT (π
∗
1) and is much better if πRL

1,j is effec-
tively exploiting the opponent. The overall online Bayesian
belief update and policy selection procedure in GSCU are
summarized in Algorithm 1.

Algorithm 1 Online Bayesian Belief Update and Policy
Selection in GSCU

Input: ϕd, θ, π∗
1 , η, buffer B = ∅, MV I

Initialize ω1[i] = 1.0, ∀i = 1, 2; z1 = 0
for episode j = 1 to T do

if j mod MV I == 0 then
Compute µj and σj via variational inference by
optimizing Equation 2 using data in B
zj ← µj

B ← ∅
end if
Set pj [i] = (1− η)

ωj [i]
ωj [1]+ωj [2]

+ η
2 ,∀i = 1, 2

π1,j ←

{
π∗
1 , with probability pj [1],

π1(o, zj ;θ), otherwise
Play π1,j against π−1,j ; Obtain a sampled returns û1,j

and an opponent trajectory τ−1,j

B ← B ∪ τ−1,j

Update ωj+1[i]← ωj [i],∀i = 1, 2:
if π∗

1 is selected then
ωj+1[1]← ωj [1] exp(η

û1,j

2pj [1]
)

else
ωj+1[2]← ωj [2] exp(η

û1,j

2pj [2]
)

end if
zj+1 ← zj

end for

4. Related Work
We review related methods that can be applied to our setting
of competing online against unknown opponents. According
to the way the main agent policy is determined at each
episode during online execution, there are generally three
categories of methods from the literature.

Playing a fixed policy. In two-player zero-sum games, the
default goal of the fixed policy is a NE policy, which can be
approximated via self-play training methods such as regret
minimization algorithms (Zinkevich et al., 2007; Fu et al.,
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2021). In multiagent competitive environments, the fixed
main agent policy is often obtained via a centralized training
procedure (Hong et al., 2018; Foerster et al., 2018a; Lowe
et al., 2017; Foerster et al., 2018b; Yang et al., 2018; Wen
et al., 2019; Hernandez-Leal et al., 2019a).

Opponent modelling within an episode. The main agent
conditions its policy on not only its own observation but
also additional information about the opponent, which is
either collected or inferred using previous interactions with
the opponent within the current episode. He et al. (2016)
propose a neural architecture that jointly learns a main agent
policy and the opponent behavior, using additional hand
crafted opponent features that summarize previous interac-
tions with the opponent. Assuming the opponent has the
same goal structure as the main agent, Raileanu et al. (2018)
infer the opponent’s goal using the main agent policy net
and then condition the main agent policy additionally on
the inferred goal. Recurrent VAEs (Papoudakis & Albrecht,
2020; Zintgraf et al., 2021a) are employed to encode a com-
pact variational embedding of previous interactions with the
opponent, on which the main agent policy conditions. Re-
cently, Papoudakis et al. (2021) propose a similar approach
using an autoencoder architecture for situations where the
opponent’s observation and action are not available during
online execution.

Opponent modelling across episodes. Our approach
GSCU belongs to this category, where data from previous
episodes is analysed to help decide the main agent policy
for the current episode. Assuming the opponent plays a
fixed set of policies known to the main agent, Johanson et al.
(2007) and Bard et al. (2013) create a mixture-of-expert
counter-strategies in offline training against this set. During
online test, the counter-strategy against the current oppo-
nent is selected using a bandit algorithm. One recent similar
approach (DiGiovanni & Tewari, 2021) combines Thomp-
son sampling with change detection against opponents that
switch among several stationary policies.

Bayesian Policy Reuse (BPR) (Rosman et al., 2016) pro-
vides a framework for adapting to different tasks in a single
agent environment. BPR+ (Hernandez-Leal et al., 2016)
extends BPR to multiagent settings. Zheng et al. (2018)
improve BPR+ with deep neural networks, a rectified belief
model, and policy distillation. During the policy reuse stage,
the main agent policy is selected based on the belief model,
which is a categorical distribution over a discrete number of
opponent policies. Once a new opponent policy is detected
based on a moving average reward signal, a learning stage
is started by training a DQN, which is initialized with a
distilled neural network.

Meta RL (Al-Shedivat et al., 2018; Nagabandi et al., 2019;
Kim et al., 2021; Wu et al., 2021; Zintgraf et al., 2021b) can
be potentially applied to competing online against unknown

opponents. These algorithms leverage data from training
tasks to train a learning procedure that can quickly adapt to
online test tasks. A general assumption in Meta RL is that
the meta-training tasks and online test tasks are drawn from
the same task distribution. Yet, in the domain of competing
online against unknown opponents, it is difficult to enumer-
ate all possible opponent policies offline, and even more
difficult is simulating different types of nonstationarity of
opponent policies.

Differing from prior methods in this category, GSCU makes
no assumption about the online opponent policy. During
online test, GSCU computes a posterior of the current oppo-
nent policy embedding, without deciding which type the cur-
rent opponent belongs to or conducting any form of change
detection. The real-time greedy policy πRL

1,j in GSCU gen-
eralizes to online unknown opponents via the single best
response π1(o, z;θ) and the decoder of the CVAE in Pol-
icy2Emb, both of which are trained offline using Πtrain.
More importantly, GSCU selects between the real-time
greedy policy πRL

1,j and the worst-case optimal conserva-
tive policy π∗

1 using EXP3, resulting in a theoretically better
regret than adhering to either.

5. Experiments
The goal of the experimental study is to test the perfor-
mance of different methods on competing online against
unknown and nonstationary opponents. We also validate the
effectiveness of each component in GSCU.

5.1. Experimental Setup

Competitive environments. We consider two competitive
multiagent benchmarks: Kuhn poker (Kuhn, 2016) and grid-
world Predator Prey (PP) (Mordatch & Abbeel, 2018). Kuhn
poker is a two-player zero-sum imperfect-information sim-
plified poker game. The PP environment studied in this
paper is partially observable for the prey (the main agent)
and fully observable for the three predators (the opponents).
More details about the two benchmarks are given in Ap-
pendix D and E.

Comparing methods. GSCU is compared with:

• Playing the fixed policy π∗
1 , which will be a NE policy in

Kuhn poker and a robust policy trained offline using PPO
for both sides in PP.

• DRON (He et al., 2016): A method that does opponent
modelling via collecting opponent information within the
current episode. The policy that conditions additionally
on this information is trained offline.

• LIAM (Papoudakis et al., 2021): A method that does
opponent modelling via summarizing an embedding using
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previous interactions within the current episode. Both the
embedding function and the policy that depends on the
embedding are trained offline.

• Deep BPR+ (Zheng et al., 2018): A method that does
opponent modelling across episodes. Deep BPR+ selects
from a library of offline trained counter policies for the
main agent using a belief model, which is a categorical
distribution over identified opponents. A new counter pol-
icy is learned online if the current opponent is identified
new according to a moving average reward signal.

• Tracking: Continuously updating the main agent policy
online using PPO.

• GSCU-Greedy: Always playing the real-time greedy pol-
icy π1(o,µ;θ), with µ being the inferred posterior mean
of the current opponent policy embedding.

Training and test protocols. As mentioned in section 2.1,
we assume the availability of π∗

1 and an opponent policy li-
brary ΠTrain. We introduce another opponent policy library
ΠTest for online test, where ΠTest ∩ ΠTrain = ∅. DRON
and LIAM train a single policy against ΠTrain. Deep BPR+
prepares a set of counter policies by training a separate
policy using PPO against each opponent policy in ΠTrain.
Afterwards, the performance model and the distilled pol-
icy network in Deep BPR+ are trained accordingly. For
initializing the policy of Tracking, we train a single policy
against ΠTrain using PPO. For GSCU, the training data
for Policy2Emb is generated by playing π∗

1 against each
opponent policy in ΠTrain. Afterwards, the approximate
best response π1(o, z;θ) is trained against ΠTrain via the
conditional RL in GSCU.

For online test, we create four types of sequences of oppo-
nents: “seen”, “unseen”, “mix”, and “adaptive”. For the
“seen” sequence, we randomly sample an opponent from
ΠTrain every M episodes, during which the opponent pol-
icy stays stationary. We sample No times, which results in
a total number of M ×No episodes. The same procedure
applies to the “unseen” and “mix” sequences, except that we
sample opponent policies from ΠTest and ΠTrain ∪ΠTest

respectively. For the “adaptive” sequence, the opponent,
initialized with the policy trained using PPO for both sides,
continuously updates its own policy using PPO.

For results that require repeated runs, we average over five
random seeds, with shaded areas (plots) and standard devia-
tion error bars (histograms). More details about the settings
of training and test, including the implementations and hy-
perparameters, are given in Appendix F and G.

5.2. Competing Online against Unknown Opponents

In this experiment, we study the average performance of
different methods competing against the four types of se-

quences of opponents (“seen”, “unseen”, “mix”, and “adap-
tive”). Note that both the opponent policies1 and the way
how the opponent changes its policy are unknown to all
methods.
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Figure 2. The average returns of different methods competing on-
line against different types of sequences of opponents.

For the average performance on Kuhn poker shown in Fig-
ure 2, GSCU performs competitively across the four set-
tings. In the “seen” setting, GSCU-Greedy performs the
best, which suggests that the approximate best response is
well trained and that the online Bayesian inference is effec-
tive in GSCU. In the “unseen” setting, π∗

1 performs the best
as expected because ΠTest is selected to be significantly
different from ΠTrain. The reason why GSCU comes as the
second best and performs better than GSCU-Greedy is that
π∗
1 is one of the two arms in GSCU. The better performance

of GSCU-Greedy compared to DRON and LIAM suggests
better generalization of GSCU-Greedy. In the “mix” set-
ting, GSCU-Greedy and GSCU are the top-two performing
methods, which indicates that the online Bayesian infer-
ence of GSCU is able to identify “seen” opponents in a
“mixed” sequence. This suggests better discrimination of
GSCU-Greedy over other methods. In the “adaptive” set-
ting where the opponent is doing online PPO and thus can
potentially change to any policy, GSCU performs the best,
which means GSCU is least exploitable among all methods.
GSCU-Greedy performs better than other opponent mod-
elling methods, which further demonstrates its better dis-
crimination and generalization in competing online against
unknown opponents.

For the average performance on PP shown in Figure 2, simi-
lar conclusions can be made to that on Kuhn poker. DRON
and LIAM perform relatively better on PP than on Kuhn
poker, and one reason may be that PP has significantly
longer episodes than Kuhn poker. Another observation is
that Tracking and π∗

1 perform competitively compared to
other opponent modelling methods, which indicates that
in some environment competing online against unknown
opponents without opponent modelling, such as Tracking or
playing π∗

1 , may have satisfactory performance.

1The three opponents in PP share the same policy at each
episode j: π−1,j . Yet, the actions can be different because of the
stochasticity of π−1,j and different observations. We learn a single
embedding z using trajectories of the three opponents in PP.
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Figure 3. Online adaptation performance of different methods on Kuhn poker (top) and PP (bottom). For the “seen”, “unseen”, and “mix”
sequences, we plot results only for methods that learn cross episodes.

In Appendix H, we summarize the average and worst-case
performance of different methods across the four settings,
where GSCU achieves the best performance. The results
suggest that GSCU is robust and has low regret against
a wide range of online unknown opponents. In addition,
we perform a sensitivity analysis of GSCU to the change
frequency M , where the performance of GSCU degrades
slightly as M decreases dramatically.

We further illustrate the online adaptation process of each
method in Figure 3. For each method, we save its checkpoint
every several (100 in Kuhn poker and 20 in PP) episodes.
We evaluate each checkpoint against its current opponent
using extra (10000 in Kuhn poker and 100 in PP) episodes
to obtain an average returns. On either Kuhn poker or PP,
we observe that the performance of GSCU is more stable
and better than other adaptive methods. In particular, GSCU
is least exploitable (same as π∗

1) in the “adaptive” setting.

5.3. Analyzing the Learned Policy Embeddings

We use Kuhn poker to analyze the latent policy embedding
space learned by Policy2Emb, as it has a well defined and
structured policy space (Southey et al., 2009). More results
about the learned policy embeddings in both Kuhn poker
and PP are given in Appendix D and E respectively.

Figure 4 presents the visualisation of the learned policy em-
bedding space in Kuhn poker on ΠTrain ∪ ΠTest and the
true policy space. Note that, for online test, Policy2Emb
learns using only ΠTrain, the results of which are plotted
in Appendix D. The learned policy embeddings in Figure
4 are well structured in the sense that it is almost a mirror
image of the ground truth. This is largely because the policy
embedding in Policy2Emb is produced by a probabilistic

encoder that depends solely on an opponent index. In the
mean time, the embedding, combined with an opponent ob-
servation, is trained to predict the opponent’s action within
the framework of CVAE. Yet, the policy embeddings, which
encode information of both observation and action, have
multiple clusters for the same opponent policy (e.g., Figure
4a in Papoudakis et al. (2021)).
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Figure 4. The policy embeddings learned by Policy2Emb in Kuhn
poker on ΠTrain ∪ΠTest (left) and the true policy space (right).

5.4. Analyzing the Conditional RL

To evaluate the performance of the conditional RL in GSCU,
we compare its learning process to those of PPO, DRON,
and LIAM. Note that the purpose here is to train best re-
sponses against opponent policies in ΠTrain. PPO trains a
single common approximate best response. DRON trains
an approximate best response with additional opponent fea-
tures as input, using both RL and supervision (regression
to the policy parameters in Kuhn poker and classification
of the opponent index in PP) signals. LIAM conditions its
approximate best response on a recurrent encoder, which is
trained via a reconstruction loss and the original RL loss.
In contrast, the conditional RL in GSCU trains an approxi-
mate best response taking the opponent policy embedding z
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(learned by Policy2Emb) as additional input. For compar-
ison, we also use PPO to train K separate best responses,
with each targeting a separate opponent policy in ΠTrain.

We evaluate each method by saving a checkpoint every sev-
eral (10000 in Kuhn poker and 500 in PP) training episodes
and playing it against opponents from ΠTrain using enough
episodes (10000 in Kuhn poker and 100 in PP) to obtain
an average performance, the results of which are plotted in
Figure 5. The conditional RL in GSCU performs the best on
both benchmarks, which suggests that the opponent policy
embedding learned by Policy2Emb facilitates the effective
learning of a single approximate best response against dif-
ferent opponents. It is also worth noting that, with the
consideration of sample efficiency, the average performance
of K separate best responses has negligible advantage over
the conditional RL in GSCU.
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Figure 5. The offline RL training process of different methods.

5.5. Analyzing the Online Bayesian Inference

Based on the offline trained probabilistic decoder in Pol-
icy2Emb, GSCU makes online Bayesian inference of the op-
ponent policy embedding using opponent historic trajectory
data. The posterior mean of the online inferred opponent
policy embedding is input to the offline trained approxi-
mate best response to obtain the real-time greedy policy in
GSCU. In comparison, Deep BPR+ makes online inference
by calculating the probability the current opponent policy is
one of the opponent policies from ΠTrain. The categorical
distribution over ΠTrain is obtained by combining a nor-
malized KL-divergence score with a performance model. To
deal with the situation where the current opponent policy is
identified outside of ΠTrain, a novelty detection mechanism
is introduced using a moving average reward signal.

For methods that make explicit inference about the online
opponent policy, we hypothesize that inference in our op-
ponent policy embedding space is more effective than cal-
culating a discrete probability which category the current
opponent policy belongs to. A straightforward reason is that
the policy space is continuous, and it may be impractical to
discretize the policy space into several categories. Hence,
we examine the online inference performance of both GSCU
and deep BPR+. For GSCU, we report the embedding error,
which is the Euclidean distance between the estimated mean
and the true mean of the opponent policy embedding. For

Deep BPR+, we report the probability of the ground truth
opponent. The corresponding results on Kuhn poker are
plotted in Figure 6, which shows that the embedding error
of GSCU decreases steadily on opponents from ΠTrain in
both “seen” and “mix” sequences. Yet, Deep BPR+ some-
times fails to identify the right opponent in time.
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Figure 6. Online inference performance of GSCU and Deep BPR+.

6. Conclusion and Future Work
This paper develops a new approach (i.e., GSCU) for com-
peting online against unknown opponents. GSCU selects
between playing greedily and conservatively against the cur-
rent opponents. The conservative policy is a fixed offline
trained policy, which hopefully has the best worst-case per-
formance. The real-time greedy policy is an offline trained
approximate best response, conditioning additionally on an
online inferred opponent policy embedding. We introduce
a novel way (i.e., Policy2Emb) of learning opponent pol-
icy embeddings offline, which is of independent interest to
policy representation learning. Our offline trained approx-
imate best response generalizes to different opponents via
the opponent policy embeddings learned by Policy2Emb.
We prove a lower bound on the performance of the real-time
greedy policy in GSCU. Moreover, we prove that the regret
of selecting between playing greedily and conservatively
using EXP3 is smaller than that of adhering to either.

Experimental results on both Kuhn poker and PP demon-
strate the effectiveness of GSCU, compared to previous
state-of-the-art methods. The learned policy embeddings
by Policy2Emb are validated via both visualization and the
conditional RL. We also show that the online variational
inference of opponent policy embeddings in GSCU is more
effective than inferring a categorical distribution over a dis-
crete number of opponent policies.

One direction of future work is investigating the influence
of policy diversity in ΠTrain on the online performance of
GSCU, considering the performance gap between ‘seen’ and
‘unseen’ sequences. GSCU builds on the implicit assump-
tion that online opponents are, to some extent, exploitable
and predictable, so another interesting direction is testing
GSCU against humans, who are generally known as be-
ing limited rational (Rubinstein, 1998) and partly inertial
(Alós-Ferrer et al., 2016) in their decision making.
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A. The Pseudocode of the Conditional RL in GSCU
We illustrate the conditional RL procedure in GSCU using PPO in Algorithm 2. Note that any single agent RL method is
applicable here.

Algorithm 2 Offline Conditional RL in GSCU
Input: ϕe, ΠTrain, buffer B = ∅, training batch size
Initialize the parameters θ in π1(o, z;θ)
for episode = 1, 2, ... do

Sample an opponent policy π
(k)
−1 from ΠTrain and set the corresponding one-hot vector w

for time step t = 1, 2, ...,H do
Sample an opponent policy embedding z ∼ qϕe(z|w)

Sample the main agent action a1,t ∼ π1(o, z;θ) and the opponent action a−1,t ∼ π
(k)
−1

Step the environment and obtain a sample (o1,t, z, a1,t, r1,t)
B ← B ∪ (o1,t, z, a1,t, r1,t)

end for
if |B| ≥ training batch size, then

Update θ using PPO on a batch of samples from B
B ← ∅

end if
end for

B. Proof of Equation 3
Proof. Equation 3 is the result of a known equation in single-agent RL:

v(π) = v(π̃) +
∑
s

ρπ(s)
∑
a

π(a|s)Aπ̃(s, a), (4)

where π and π̃ are two arbitrary policies; v(π) and v(π̃) are the expected returns; ρπ(s) is the unnormalized discounted
visiting frequencies; and Aπ̃ is the advantage function. A proof for this equation can be found in Schulman et al. (2015). In
a multiagent environment defined in this paper, Equation 4 can be translated as

u1(π1, π−1) = u1(π̃1, π−1) +
∑

o∈O1

ρπ1,π−1(o)
∑
a∈A1

π1(a|o)Aπ̃1(o, a), (5)

where ρπ1,π−1
(o) is the unnormalized discounted visiting frequencies according to the policy pair (π1, π−1), and

Aπ̃1
(o, a) = u

π̃1,π−1

1 (o, a)−
∑

a π̃1(a|o)uπ̃1,π−1

1 (o, a). From the perspective of the other player (Note that u1(π1, π−1) +
u−1(π1, π−1) = 0), the equation can also be written as

u1(π1, π−1) = u1(π1, π̃−1)−
∑

o∈O−1

ρπ1,π−1(o)
∑

a∈A−1

π−1(a|o)Aπ̃−1(o, a), (6)

where ∑
a∈A−1

π−1(a|o)Aπ̃−1(o, a)

=
∑

a∈A−1

π−1(a|o)[uπ1,π̃−1

−1 (o, a)−
∑

a∈A−1

π̃−1(a|o)uπ1,π̃−1

−1 (o, a)]

=
∑

a∈A−1

[π−1(a|o)− π̃−1(a|o)]uπ1,π̃−1

−1 (o, a)

≤∆
∑

a∈A−1

|π−1(a|o)− π̃−1(a|o)|

≤2∆
√

DKL(π−1(a|o)∥π̃−1(a|o)).

(7)
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The last inequality is because that 1
4∥p− q∥21 ≤ DKL(p∥q) for any two probability vectors p and q. So

u1(π1, π−1) ≥u1(π1, π̃−1)− 2∆
∑

o∈O−1

ρπ1,π−1
(o)

√
DKL(π−1(a|o)∥π̃−1(a|o))

≥u1(π1, π̃−1)− 2∆
1

1− γ
Eo∼ρ̃π1,π−1

√
DKL(π−1(a|o)∥π̃−1(a|o))

≥u1(π1, π̃−1)−
2∆

1− γ

√
EoDKL(π−1(a|o)∥π̃−1(a|o)).

(8)

The last inequality holds according to Jensen’s inequality. In the above equation, ρ̃π1,π−1 is the normalized visiting
distribution. Note that ρπ1,π−1(o) ≤ 1

1−γ ρ̃π1,π−1(o). Therefore, for the left side in Equation 3, we have

u1(π
RL
1,j , π−1,j) ≥u1(π

RL
1,j , π̂−1,j)−

2∆

1− γ

√
EoDKL(π−1,j(o)∥π̂−1,j(o))

=u1(BR(π̂−1,j), π̂−1,j)−
(
u1(BR(π̂−1,j), π̂−1,j)− u1(π

RL
1,j , π̂−1,j)

)
−D(π−1,j∥π̂−1,j)

=u1(BR(π̂−1,j), π̂−1,j)−RRL(π̂−1,j)−D(π−1,j∥π̂−1,j),

(9)

which equals to the right side in Equation 3.

C. Proof of Theorem 3.1
Proof. The regret of the bandit after T episodes is

R′
T = max

π∈{π∗
1 ,π

RL
1,j}

T∑
j=1

u1(π, π−1,j)−
T∑

j=1

u1(π1,j , π−1,j), (10)

where π1,j is selected between π∗
1 and πRL

1,j using EXP3. For a two-armed bandit , EXP3 with a learning rate η ∈ (0, 1]
guarantees (Theorem 3.1 in Auer et al. (2002b)):

R′
T ≤ (e− 1)η∆T +

2 ln 2

η
. (11)

When η = min
{
1,
√

2 ln 2
(e−1)∆T

}
, we have R′

T ≤ 3.1
√
∆T . Recall that the regret defined in Equation 1 is

RT = max
π1∈Σ1

T∑
j=1

u1(π1, π−1,j)−
T∑

j=1

u1(π1,j , π−1,j). (12)

Therefore, we have

RT (π
EXP3
1,j ) =R′

T + max
π1∈Σ1

T∑
j=1

u1(π1, π−1,j)− max
π∈{π∗

1 ,π
RL
1,j}

T∑
j=1

u1(π, π−1,j)

=R′
T +min

{
RT (π

∗
1), RT (π

RL
1,j)

}
,

(13)

where RT (π
∗
1) = maxπ1∈Σ1

∑T
j=1 u1(π1, π−1,j)−

∑T
j=1 u1(π

∗
1 , π−1,j) is the regret of using policy π∗

1 and RT (π
RL
1,j) =

maxπ1∈Σ1

∑T
j=1 u1(π1, π−1,j)−

∑T
j=1 u1(π

RL
1,j , π−1,j) is the regret of using policy πRL

1,j . So,

RT (π
EXP3
1,j ) ≤ 3.1

√
∆T +min

{
RT (π

∗
1), RT (π

RL
1,j)

}
. (14)
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D. The Kuhn Poker Benchmark
We use the Kuhn poker benchmark from Lanctot et al. (2019). Kuhn poker is a simplified poker game with two players (P1
and P2) and three cards (Jack, Queen, and King). There are two actions (bet and pass) for each player. The value of a bet is
1.0. When two players have matched bets, the cards of both players are revealed, and the player with a higher card wins
the pot. Our experiments focus on playing the main agent as P1, and hence P2 is the opponent. Following Southey et al.
(2009), we eliminate dominated policies for P2, after which the policy of P2 can be parameterized using two parameters.
The corresponding policy space of P2 is illustrated in Figure 7. The policy space of P2 can be divided into 6 regions, as
shown in Figure 7. Within each region, there exists a single pure policy of P1 that is the best response to all the policies of
P2 in that region. For points in the border lines, both best responses have the same returns.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4
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0.8

1.0
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o3

o4

o2
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o5
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Figure 7. The policy space of player P2 in Kuhn poker. The only one NE policy ( 1
3
, 1
3
) is denoted by ‘NE’.

We sample a policy for each region according to the way in Southey et al. (2009), as illustrated in Figure 7. We set
ΠTrain = {o3, o5, o7} and ΠTest = {o2, o4, o6}. The policy embeddings learned by Policy2Emb using ΠTrain are plotted
in Figure 8.
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Figure 8. The policy embeddings learned by Policy2Emb in Kuhn poker using data generated by ΠTrain. The embeddings for ‘o7’ lie in
the middle of those for ‘o3’ and ‘o5’, which corresponds to the layout in Figure 7.

E. The Predator Prey Benchmark
The PP environment consists of one prey (the main agent), three predators (the opponents), and two obstacles (grey circles),
as illustrated in Figure 9. The prey is trying to keep a distance as far as possible from the predators while the predators
are trying to catch the prey. Each agent has five actions: accelerating east, south, west, north, and no acceleration. The
environment is partially observable from the perspective of the main agent: it can only observe predators and obstacles
within its receptive field, which is ±0.5. The predators yet have full visibility of the environment.

At each time step, the prey receives a reward that is proportional to the sum of distances from each predator. The prey
receives a reward −10 whenever it is captured by one predator. The gird world is two dimensional, with each dimension
within the range [−1.0, 1.0]. The prey is penalized for crossing the range. The maximal speed of the prey is 1.3, and the
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maximal speed of each predator is 1.0. Each episode of a PP game terminates after 50 time steps. For more information of
the PP benchmark, readers are referred to Lowe et al. (2017) and Mordatch & Abbeel (2018).

Figure 9. An illustration of the PP benchmark, extracted from Lowe et al. (2017).

We create eight different rule-based opponent policies2, each of which acts greedily (i.e., minimizing its distance to the
main agent) with probability 0.4 and otherwise moves according to its preferred direction. There are eight predefined
directions, and this results in eight different opponent policies: east (OE), south (OS), west (OW ), north (ON ), southeast
(OSE), southwest (OSW ), northeast (ONE), and northwest (ONW ). For a combined direction, e.g., southeast, the opponent
OSE moves south with probability 0.3 and east with probability 0.3. We set ΠTrain = {ON , ONW , OW , OSW } and
ΠTest = {OS , OSE , OE , ONE}. The policy embeddings learned by Policy2Emb on ΠTrain ∪ΠTest are plotted in Figure
10. The policy embeddings learned by Policy2Emb on ΠTrain are plotted in Figure 11.
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Figure 10. The policy embeddings learned by Policy2Emb in PP using data generated by ΠTrain ∪ΠTest. The layout of different policy
embeddings matches the real distribution of the eight directions.

F. Implementation Details for the Experiment on Kuhn Poker
F.1. Neural Architectures

PPO: The architecture for PPO has an actor network with three linear layers and a separate critic network with another three
linear layers. All hidden layers consist of 128 nodes with ReLU activation.

LIAM: Different from the original architecture in Papoudakis et al. (2021) where a LSTM (Hochreiter & Schmidhuber,
1997) is applied to the encoder, we change the LSTM to linear layers in our implementation for the Kuhn poker experiment,
as the observation in Kuhn poker includes information for all previous steps. The encoder in our implementation has two
linear layers with ReLU activation. The decoder has one shared linear layer and two separate linear layers to reconstruct the
observation and action of the opponent respectively. All hidden layers consist of 128 nodes. The embedding dimension is 8.

DRON: We use the DRON-concat architecture in He et al. (2016) for the experiment on Kuhn poker. A feature network is
built to learn a 4-dim hidden representation using hand crafted features (i.e., the opponent’s previous action). The hidden

2The three predators share a policy.
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Figure 11. The policy embeddings learned by Policy2Emb in PP using data generated by ΠTrain. The layout of different policy
embeddings is well structured in the sense that the embeddings for ONW lie between those for ON and OW and that the embeddings for
OW lie between those for ONW and OSW .

representation is concatenated with the second layer of the actor and critic network, which is the same as those in PPO.
In addition, an auxiliary task that predicts the opponent’s 2 policy parameters is applied as extra supervision. The feature
network contains 2 linear layers with ReLU activation and one linear layer with sigmoid activation for the auxiliary task. All
hidden layers consist of 128 nodes.

Deep BPR+: We train three counter-strategies against the three opponent policies using PPO. As described in Zheng et al.
(2018), a Distillation Policy Network (DPN) is built for fast learning in the online learning stage of Deep BPR+. In our case,
we use two DPNs, one for the actor and the other for the critic. Each DPN consists of a trunk with two linear layers with
ReLU activation and three separate parts following the trunk. Each part (a linear layer for the critic and a linear layer with
Softmax activation for the actor) corresponds to each of the three opponent policies. All linear layers consist of 128 nodes.

The Conditional RL in GSCU: We use the same architecture as that of PPO, except that our opponent policy embedding z is
used as additional input for both the actor and the critic networks.

Policy2Emb: The encoder qϕe and decoder pϕd have two and four linear layers respectively. All hidden layers consist of
128 nodes with ReLU activation function. The embedding dimension is 2.

F.2. Training Hyperparameters

We use the Adam optimizer (Kingma & Ba, 2014) for all experiments on Kuhn poker. The training parameters for each
method are shown in Table 1.

In the training of Policy2Emb, in order to mitigate KL-vanishing, we apply the cyclical annealing schedule approach (Fu
et al., 2019), which repeats the procedure of increasing β from 0 to a maximal value for multiple times.

Parameter Range Best
Shared

Learning rate {1e-4, 5e-4} 5e-4
Batch size - 1000
Number of PPO update per batch {5, 10} 5
PPO clip ratio - 0.2
Training episodes - 300000
Discount factor (γ) - 0.99

Policy2Emb
Learning rate - 1e-3
The maximal value for (β) {0.01, 0.1} 0.01
Number of annealing cycles - 2

Table 1. The hyperparameters used for training on Kuhn poker.
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F.3. Test Hyperparameters

For a single run of online test, we first randomly sample 10 sequences of opponents, where each sequence is of length 20
(No = 20). We test each method on the 10 sequences to obtain an average performance. During test on a single sequence of
opponents, the opponent changes its policy every 1000 episodes (M = 1000). We repeat the above process 5 times with 5
different random seeds. The hyperparameters of each method for online test are shown in Table 2. DRON and LIAM have
no hyperparameters for online test, as they do opponent modelling within an episode.

Parameter Range Best
GSCU

Variational Inference (VI) frequency (MV I ) - 10
VI batch size - 10 ∼ 20
Number of VI update per batch {10, 50} 50
Minimal VI standard deviation (σ) - 0.5
VI learning rate {0.005, 0.01} 0.005
EXP3 learning rate (η) {0.2, 0.3} 0.3

Shared for Tracking, Deep BPR+, and the “adaptive” opponent
Learning rate {5e-5, 5e-4} 5e-5
PPO clip ratio - 0.2
Batch size - 100
Discount factor (γ) - 0.99
Number of PPO update per batch {5, 10} 10

Deep BPR+
Moving average reward threshold {-0.6, -0.4, -0.2} -0.4
Moving average window size (episodes) {200, 800, 1200} 800
DPN convergence reward threshold {-0.1, 0.0, 0.1} 0.0

Table 2. The hyperparameters used for online test on Kuhn poker.

G. Implementation Details for the Experiment on PP
G.1. Neural Architectures

PPO: The architecture for PPO has an actor network with four linear layers and a separate critic network with another four
linear layers. All hidden layers consist of 128 nodes with ReLU activation.

LIAM: We implement the original architecture of LIAM. The encoder contains a LSTM layer and two linear layers, with
ReLU activation after the first layer. The encoder encodes the observation-action trajectory of sequence length 8 into an
embedding of dimension 20. The decoder has two shared linear layers and two separate linear layers to reconstruct the
observation and action of the opponent respectively. All hidden layers consist of 128 nodes.

DRON: We use the DRON-concat architecture in He et al. (2016) for the experiment on PP. A feature network is built to
learn a 2-dim hidden representation using hand crafted features (i.e., the opponent’s previous action frequency). The hidden
representation is concatenated with the second layer of the actor and critic network, which is the same as those in PPO. In
addition, an auxiliary task that predicts an opponent’s identity is applied as extra supervision. The feature network contains
2 linear layers with ReLU activation and one linear layer with Softmax activation for the auxiliary task. All hidden layers
consist of 128 nodes.

Deep BPR+: We train four counter-strategies against the four opponent policies using PPO. Similar to Kuhn poker, we use
two DPNs, one for the actor and the other for the critic. Each DPN consists of a trunk with three linear layers with ReLU
activation and four separate parts following the trunk. Each part (a linear layer for the critic and a linear layer with Softmax
activation for the actor) corresponds to each of the four opponent policies. All linear layers consist of 128 nodes.

The Conditional RL in GSCU: We use a similar architecture as that of PPO except that we use a LSTM layer to encode
previous observation-action trajectory information. The observation-action sequence length is 8. Our opponent policy
embedding z is used as additional input for both the actor and the critic networks.
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Policy2Emb: The encoder qϕe and decoder pϕd have two and four linear layers respectively. All hidden layers consist of
128 nodes with ReLU activation function. The embedding dimension is 2.

G.2. Training Hyperparameters

We use the Adam optimizer (Kingma & Ba, 2014) for all experiments on PP. The training parameters for each method are
shown in Table 3.

Parameter Range Best
Shared

Learning rate {1e-4, 5e-4} 5e-4
Batch size - 4000
Number of PPO update per batch {5, 10} 10
PPO clip ratio - 0.2
Training episodes - 10000
Discount factor (γ) - 0.99

Policy2Emb
Learning rate - 1e-3
The maximal value for (β) {0.01, 0.1} 0.1
Number of annealing cycles - 2

Table 3. The hyperparameters used for training on PP.

G.3. Test Hyperparameters

For a single run of online test, we first randomly sample 5 sequences of opponents, where each sequence is of length 20
(No = 20). We test each method on the 5 sequences to obtain an average performance. During test on a single sequence
of opponents, the opponent changes its policy every 200 episodes (M = 200). We repeat the above process 5 times with
5 different random seeds. The hyperparameters of each method for online test are shown in Table 4. As on Kuhn poker,
DRON and LIAM have no hyperparameters for online test.

Parameter Range Best
GSCU

VI frequency (MV I ) - 1
VI batch size - 50
Number of VI update per batch {10, 50} 10
Minimal VI standard deviation (σ) - 0.5
VI learning rate {0.005, 0.01} 0.005
EXP3 learning rate (η) {0.2, 0.3} 0.2

Shared for Tracking, Deep BPR+, and the “adaptive” opponent
Learning rate {5e-5, 1e-4} 5e-5
PPO clip ratio - 0.2
Batch size - 400
Discount factor (γ) - 0.99
Number of PPO update per batch {5, 10} 10

Deep BPR+
Moving average reward threshold {-500, -400, -300} -500
Moving average window size (episodes) {50, 100, 150} 100
DPN convergence reward threshold {-30, -20, -10} -10

Table 4. The hyperparameters used for online test on PP.
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H. Additional Results on Competing Online against Unknown Opponents
In practice, online opponents can exhibit various dynamics, and our four settings “seen”, “unseen”, “mix”, and “adaptive”
are designed to cover a wide range of such dynamics. Hence, it is worth comparing the average and worst-case performance
of different methods over different opponent dynamics.

For the average performance of a method over different opponent dynamics, we simply average the returns under the four
settings. For the worst-case performance of a method over different dynamics, we first compute its performance gap with
the corresponding best performance under each setting. Afterwards, we report the worst gap across different dynamics as
the worst-case performance of a method. Using the above definitions of average and worst-case performance, we reorganize
the results presented in Figure 2 to obtain the new results in Figure 12. From the results in Figure 12, we can conclude that
GSCU performs significantly better than prior methods in terms of the average and worst-case performance. Besides, we
can observe that methods that learn across episodes generally have an advantage over methods that learn only within the
current episode.
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Figure 12. The average and worst-case returns of different methods across the 4 settings of online opponents: “seen”, “unseen”, “mix”,
and “adaptive”.

The results shown in Figure 2 are obtained in situations where the change frequency M of opponent policies is set to 1000
episodes for Kuhn poker and 200 episodes for PP. Apart from the opponent policies, the change frequency M also has a
large influence on the online test performance of a method, as it controls the amount of stationary data that can be used to
infer about the current opponent. To this end, we conduct additional experiments to investigate the performance of GSCU
under different settings of M on Kuhn poker, the results of which are plotted in Figure 13.
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Figure 13. The influence of the opponent change frequency M on GSCU-Greedy and GSCU in Kuhn poker.

From Figure 13, we can observe a general tendency that the performance of either GSCU-Greedy or GSCU improves as
M increases. The improvement is most significant in the “seen” setting, as GSCU-Greedy benefits most from more data
of “seen” opponents. In the “unseen” setting, the change frequency M has nearly no influence on the performance of
GSCU-Greedy. Yet, the performance of GSCU increases slightly with larger M , which may be due to the convergence of
EXP3 to the arm of π∗

1 in GSCU. In the “mix” setting, similar results can be observed as the “seen” setting.


