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Abstract
Scaling language models with more data, compute
and parameters has driven significant progress in
natural language processing. For example, thanks
to scaling, GPT-3 was able to achieve strong re-
sults on in-context learning tasks. However, train-
ing these large dense models requires significant
amounts of computing resources. In this paper,
we propose and develop a family of language mod-
els named GLaM (Generalist Language Model),
which uses a sparsely activated mixture-of-experts
architecture to scale the model capacity while also
incurring substantially less training cost compared
to dense variants. The largest GLaM has 1.2 tril-
lion parameters, which is approximately 7x larger
than GPT-3. It consumes only 1/3 of the energy
used to train GPT-3 and requires half of the com-
putation flops for inference, while still achieving
better overall zero, one and few-shot performance
across 29 NLP tasks.

1. Introduction
Language models have played an important role in the
progress of natural language processing (NLP) in the past
decade. Variants of language models have been used to pro-
duce pretrained word vectors (Mikolov et al., 2013; Penning-
ton et al., 2014), and contextualized word vectors (Peters
et al., 2018; Devlin et al., 2019) for many NLP applications.
The shift towards scaling with more data and larger mod-
els (Shazeer et al., 2017; Huang et al., 2019; Kaplan et al.,
2020) has enabled complex natural language tasks to be per-
formed with less labeled data. For example, GPT-3 (Brown
et al., 2020) and FLAN (Wei et al., 2021) demonstrated the
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Table 1. Comparison between GPT-3 and GLaM. In a nutshell,
GLaM outperforms GPT-3 across 21 natural language understand-
ing (NLU) benchmarks and 8 natural language generative (NLG)
benchmarks in average while using about half the FLOPs per token
during inference and consuming about one third the energy for
training.

GPT-3 GLaM relative

cost FLOPs / token (G) 350 180 −48.6%
Train energy (MWh) 1287 456 −64.6%

accuracy
on average

Zero-shot 56.9 62.7 +10.2%
One-shot 61.6 65.5 +6.3%
Few-shot 65.2 68.1 +4.4%

feasibility of in-context learning for few-shot or even zero-
shot generalization, meaning very few labeled examples are
needed to achieve good performance on NLP applications.
While being effective and performant, scaling further is be-
coming prohibitively expensive and consumes significant
amounts of energy (Patterson et al., 2021).

In this work, we show that a large sparsely activated network
can achieve competitive results compared to state-of-the-art
dense models on few-shot tasks while being more compu-
tationally efficient. We present a family of generalist lan-
guage models called GLaM, that strike a balance between
dense and conditional computation. The largest version
of GLaM has 1.2T parameters in total with 64 experts per
MoE layer (Shazeer et al., 2017; Lepikhin et al., 2021; Fe-
dus et al., 2021) where each token in the input batch only
activates a subnetwork of 96.6B (8% of 1.2T) parameters.
On zero, one and few-shot learning, this model compares
favorably to GPT-3 (175B), with significantly improved
learning efficiency across 29 public NLP benchmarks, rang-
ing from language completion tasks, open-domain QA tasks,
to natural language inference tasks. Thanks to the sparsely
activated architecture and the efficient implementation of the
model parallelism algorithm, the total energy consumption
during training is only one third of GPT-3’s. We highlight
the comparison between the largest version of GLaM and
GPT-3 in Table 1 and Figure 1.
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(a) Zero-shot
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(b) One-shot
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(c) Few-shot
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Figure 1. An overview of the percentage change in predictive performance (higher is better) of GLaM (64B/64E) versus GPT-3 (175B) in
the (a) zero-shot, (b) one-shot, and (c) few-shot setting across 7 benchmark categories with 29 public tasks in total. Each bar in panel
(a), (b) and (c) represents one benchmark category. Panel (d) compares the FLOPs needed per token prediction and training energy
consumption.

We use GLaM to study the importance of data. Our analysis
shows that even for these large models, data quality should
not be sacrificed for quantity if the goal is to produce a high-
quality auto-regressive language model. More importantly,
on social dimensions, our results are also the first, to our
knowledge, to close the performance gap between stereo-
typical and anti-stereotypical examples on the WinoGender
benchmark, suggesting that large, sparsely activated models
may rely less on superficial statistical correlations.

Finally, although MoE-based sparse models are not yet com-
mon in the NLP community, our work shows that sparse
decoder-only language models can be more performant than
the dense architectures of similar compute FLOPs for the
first time within the few-shot in-context learning setting at
scale, suggesting that sparsity is one of the most promising
directions to achieve high-quality NLP models while saving
energy costs (Patterson et al., 2021). MoE should therefore
be considered as a strong candidate for future scaling.

2. Related Work
Language models. Neural language models (Mikolov
et al., 2010; Sutskever et al., 2011) have been shown to be
useful for many natural language processing tasks. Word em-
bedding models and extensions such as word2vec (Mikolov
et al., 2013), GloVe (Pennington et al., 2014) and paragraph
vectors (Le & Mikolov, 2014) have shown good generaliza-
tion to many tasks simply by transferring the embeddings.

Pre-training and Fine-tuning. The abundance of com-
pute and data enables training increasingly large models via
unsupervised pre-training. This is a natural fit for training
neural networks as they exhibit remarkable scalability. Work
on using recurrent models such as RNNs and LSTMs for
language representation (Dai & Le, 2015; Kiros et al., 2015)
showed that general language models could be fine-tuned

to improve various language understanding tasks. More re-
cently, models that used Transformers (Vaswani et al., 2017)
showed that larger models with self-supervision on unla-
beled data could yield significant improvements on NLP
tasks (Devlin et al., 2019; Yang et al., 2019; Liu et al., 2019;
Clark et al., 2020). Transfer learning based on pre-training
and finetuning (Raffel et al., 2020; Houlsby et al., 2019)
has been extensively studied and demonstrated good perfor-
mance on downstream tasks. However, a major limitation
to this method is that it requires a task-specific fine-tuning.

In-Context Few-shot Learning. GPT-3 (Brown et al.,
2020) and related work (Shoeybi et al., 2019; Lieber et al.,
2021; Wei et al., 2021) demonstrated that scaling up lan-
guage models greatly improves task-agnostic, few-shot per-
formance. These language models are applied without any
gradient updates, and only few-shot demonstrations speci-
fied purely via text interactions with the model are needed.

Sparsely Gated Networks. Mixture-of-Experts based
models have also shown significant advantages. For lan-
guage modeling and machine translation, Shazeer et al.
(2017) showed that they could effectively use a very large
number of weights while only needing to compute a small
subset of the computation graph at inference time. There
has also been work on scaling sparsely activated MoE ar-
chitectures (Hestness et al., 2017; Shazeer et al., 2018; Lep-
ikhin et al., 2021; Kudugunta et al., 2021). Recently, Fedus
et al. (2021) showed results with even larger 1 trillion pa-
rameter sparsely activated models (Switch-C). Although
both Switch-C and the largest GLaM model have one tril-
lion number of trainable parameters, GLaM is a family of
decoder-only language models, and Switch-C is an encoder-
decoder based sequence to sequence model. Furthermore,
Switch-C is mainly evaluated on fine-tuning benchmarks,
e.g., SuperGlue, while GLaM performs well without any
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Table 2. A sample of related models (Devlin et al., 2019; Raffel
et al., 2020; Brown et al., 2020; Lieber et al., 2021; Rae et al.,
2021; Shoeybi et al., 2019; Lepikhin et al., 2021; Fedus et al.,
2021) pre-trained on text corpora. nparams is the total number of
trainable model parameters, nact-params is the number of activated
model parameters per input token.

Model Name Model Type nparams nact-params

BERT Dense Encoder-only 340M 340M
T5 Dense Encoder-decoder 13B 13B
GPT-3 Dense Decoder-only 175B 175B
Jurassic-1 Dense Decoder-only 178B 178B
Gopher Dense Decoder-only 280B 280B
Megatron-530B Dense Decoder-only 530B 530B
GShard-M4 MoE Encoder-decoder 600B 1.5B
Switch-C MoE Encoder-decoder 1.5T 1.5B
GLaM (64B/64E) MoE Decoder-only 1.2T 96.6B

need for fine-tuning in the few-shot setting shared by GPT-3
where SuperGlue is a subset. Table 2 summarizes the key
differences between GLaM and related models pre-trained
on text corpora.

3. Training Dataset
To train our model, we build a high-quality dataset of 1.6
trillion tokens that are representative of a wide range of
natural language use cases. Web pages constitute the vast
quantity of data in our unlabeled dataset. However, their
quality ranges from professional writing to low-quality com-
ment and forum pages. Similarly to Brown et al. (2020), we
develop our own text quality classifier to produce a high-
quality web corpus out of an original larger raw corpus. We
use a feature hash based linear classifier for inference speed.
This classifier is trained to classify between a collection
of curated text (Wikipedia, books and a few selected web-
sites) and other webpages. We use this classifier to estimate
the content quality of a webpage. We then apply this clas-
sifier by using a Pareto distribution to sample webpages
according to their score. This allows some lower-quality
webpages to be included to prevent systematic biases in the
classifier (Brown et al., 2020).

Table 3. Data and mixture weights in GLaM training set.

Dataset Tokens (B) Weight in mixture

Filtered Webpages 143 0.42
Wikipedia 3 0.06
Conversations 174 0.28
Forums 247 0.02
Books 390 0.20
News 650 0.02

We use this process to generate a high-quality filtered subset

Figure 2. GLaM model architecture. Each MoE layer (the bottom
block) is interleaved with a Transformer layer (the upper block).
For each input token, e.g., ‘roses’, the Gating module dynamically
selects two most relevant experts out of 64, which is represented
by the blue grid in the MoE layer. The weighted average of the
outputs from these two experts will then be passed to the upper
Transformer layer. For the next token in the input sequence, two
different experts will be selected.

of webpages and combine this with books, Wikipedia pages,
forums and news pages and other data sources to create the
final GLaM dataset. We also incorporate the data from pub-
lic domain social media conversations used by Adiwardana
et al. (2020). We set the mixture weights based on the perfor-
mance of each component in a smaller model and to prevent
small sources such as Wikipedia from being over-sampled.
Table 3 shows the details of our data component sizes and
mixture weights. The mixture weights were chosen based
on the performance of the component in a small model and
to prevent small datasets such as Wikipedia from being over-
sampled. To check data contamination, in Section D we
conduct an overlap analysis between our training set and
the evaluation data and find that it roughly matches that of
previous work (Brown et al., 2020).

4. Model Architecture
We leverage sparsely activated Mixture-of-Experts
(MoE) (Shazeer et al., 2017; Fedus et al., 2021) in GLaM
models. Similar to the GShard MoE Transformer (Lepikhin
et al., 2021), we replace the feed-forward component of
every other Transformer layer with an MoE layer, as shown
in Figure 2. Each MoE layer consists of a collection of
independent feed-forward networks as the ‘experts’. A
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gating function then uses a softmax activation function
to model a probability distribution over these experts.
This distribution indicates how well each expert is able to
process the incoming input.

Even though each MoE layer has many more parameters,
the experts are sparsely activated. This means that for a
given input token, only a limited subset of experts is used,
giving the model more capacity while limiting computa-
tion. In our architecture, the subset size is two1. Each MoE
layer’s learnable gating network is trained to use its input
to activate the best two experts for each token of an input
sequence. During inference, the learned gating network
dynamically picks the two best experts for each token. For
an MoE layer with E experts, this essentially provides a
collection of O(E2) different combinations of feed-forward
networks instead of one in the classic Transformer architec-
ture, leading to much more computational flexibility. The
final learned representation of a token will be the weighted
combination of the outputs from the selected experts.

We also make additional modifications to the original Trans-
former architecture. We replace the standard positional
embedding with per-layer relative positional bias from Dai
et al. (2019). In the non-MoE Transformer feed-forward
sub-layers, we replace the first linear projection and the ac-
tivation function with the Gated Linear Unit (Dauphin et al.,
2017; Shazeer, 2020), which computes the component-wise
product of two linear transformation of the input, followed
by a Gaussian Error Linear Unit (Hendrycks & Gimpel,
2016) activation function. We partition the weights and
computation of large GLaM models using the 2D shard-
ing algorithm as described in Xu et al. (2021), which is
described in more details in the Section C of the appendix.

5. Experiment Setup
GLaM is a family of dense and sparse decoder-only lan-
guage models, so we first elaborate our training settings,
hyperparameters, and evaluation protocol in this section.

5.1. Training Setting

We train several variants of GLaM to study the behavior of
MoE and dense models on the same training data. Table 4
shows the hyperparameter settings of different scale GLaM
models ranging from 130 million parameters to 1.2 trillion
parameters. Here, E is the number of experts in the MoE
layer, B is the mini-batch size, S is the input sequence
length, M is the model and embedding dimension, H is

1Using more experts will cost more compute FLOPs per pre-
diction, pushing the network to be ‘denser’. Setting the number
of selected experts to be two is based on the trade-off between
predictive performance and the training/serving efficiency of the
model.

the hidden dimension of the feed-forward network, L is
the number of layers and N is the number of total devices.
Additionally, nparams is the total number of trainable model
parameters, nact-params is the number of activated model
parameters per input token, nheads is the number of self-
attention heads, and dhead is the hidden dimension of each
attention head. We also include the respective dense models
with comparable numbers of activated parameters per-token
during inference (and thus similar numbers of per-token
FLOPs) as references. We adopt the notation of

GLaM (Base Dense Size/E) e.g., GLaM (8B/64E)

to describe different variants in the GLaM models. For
example, GLaM (8B/64E) represents the architecture of an
approximate 8B parameter dense model with every other
layer replaced by a 64 expert MoE layer. GLaM reduces to a
dense Transformer-based language model architecture when
each MoE layer only has one expert. We use the notation

GLaM (Dense Size) e.g., GLaM (137B)

refers to a dense 137B parameter model trained with the
same dataset.

5.2. Hyperparameters and Training Procedure

We use the same learning hyperparameters for all GLaM
models. More specifically, We use a maximum sequence
length of 1024 tokens, and pack each input example to have
up to 1 million tokens per batch. The dropout rate is set to 0
since the number of available tokens in the training corpus
is much greater than the number of processed tokens dur-
ing training. Our optimizer is Adafactor (Shazeer & Stern,
2018) with first-moment decay β1 = 0, second-moment
decay β2 = 0.99 with a 1 − t−0.8 decay schedule, update
clipping threshold of 1.0, and factored second-moment esti-
mation. We keep the initial learning rate of 0.01 for the first
10K training steps, and then decay it with inverse square
root schedule lr〈t〉 ∝ 1√

t
. On top of the standard cross-

entropy loss, we add the MoE auxiliary loss as described
in GShard (Lepikhin et al., 2021) with a 0.01 coefficient to
encourage expert load balancing so that the gating function
will distribute tokens more evenly across all experts. We use
the SentencePiece (Kudo & Richardson, 2018) subword to-
kenizer with a vocabulary of size of 256K. During training,
we use float32 for model weights and bfloat16 for activa-
tions. The largest GLaM 64B/64E model was trained on
1,024 Cloud TPU-V4 chips.

Training models at the trillion parameter scale is extremely
expensive even for sparsely activated models. There is
little room for hyperparameter tuning. Here we share our
training recipes and some implementation tricks for the
GLaM models.



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Table 4. Sizes and architectures of both MoE and dense models that we have trained in our experiments. Models are grouped by the
number of activated parameters per token. All trained models share the same learning hyperparameters described in Session 5.1.

GLaM Model Type nparams nact-params L M H nheads dhead E

0.1B Dense 130M 130M 12 768 3,072 12 64 –
0.1B/64E MoE 1.9B 145M 64

1.7B Dense 1.7B 1.700B

24 2,048 8,192 16 128

–
1.7B/32E MoE 20B 1.878B 32
1.7B/64E MoE 27B 1.879B 64
1.7B/128E MoE 53B 1.881B 128
1.7B/256E MoE 105B 1.886B 256

8B Dense 8.7B 8.7B 32 4,096 16,384 32 128 –
8B/64E MoE 143B 9.8B 64

137B Dense 137B 137B 64 8,192 65,536 128 128 –
64B/64E MoE 1.2T 96.6B 64 8,192 32,768 128 128 64

• We train smaller-scale models to convergence first.
This allows us to expose potential issues in the dataset
and infrastructure as early as possible.

• We skip weight updates for a batch if there are any
NaNs or Inf s in the gradients (Shen et al., 2019). Note
NaN/Inf could still occur during the applying gradient
step, in which case we restart from an earlier check-
point as described below. For example, even if there
is no Inf in the existing variable or the gradient, the
updated variable could still lead to Inf.

• We restart from an early healthy checkpoint when en-
countering rare large fluctuations or even NaN/Inf dur-
ing training. Randomness of the sequentially loaded
batches might help escape from previous failed states
in the training after restart.

5.3. Evaluation Setting

Protocol. To clearly demonstrate the effectiveness of
GLaM models, we mainly focus on evaluating the zero,
one and few-shot learning protocols suggested by Radford
et al. (2018); Brown et al. (2020). For the zero-shot learn-
ing setting, in most cases, we evaluate each example in the
development set directly. For one/few-shot learning, we
mainly draw random one/few examples from that task’s
training set as the only demonstration and context. Such a
demonstration is concatenated with the evaluation example
with two newlines in between, and then fed into the model.

Benchmarks. To allow for an apples-to-apples compari-
son between GPT-3 and GLaM, we choose the same suite
of evaluation tasks as Brown et al. (2020). But for sim-
plicity, we exclude 7 synthetic tasks (arithmetic and word
unscramble) and 6 machine translation datasets. With this
exclusion, we end up with 29 datasets, which includes 8
natural language generative (NLG) tasks and 21 natural lan-

guage understanding (NLU) tasks. These datasets can be
further grouped into 7 categories and are listed in section A.

Natural Language Generative tasks. We compare the
language sequences decoded by the models to the ground
truth in generative tasks. These tasks are TriviaQA, NQS,
WebQS, SQuADv2, LAMBADA, DROP, QuAC and CoQA.
The performance is measured by the accuracy of exact match
(EM) and F1 score, following the standard for each task
in Brown et al. (2020). We use beam search with a width of
4 to generate the sequences.

Natural Language Understanding tasks. Most lan-
guage understanding tasks require the model to select one
correct answer from multiple options. All binary classifica-
tion tasks are formulated into the form of selecting among
two options (‘Yes’ or ‘No’). The prediction is based on the
maximum log-likelihood of each option given the context
logP (option|context) normalized by the token length of
each option. On a few tasks, such as ReCoRD (Zhang et al.,
2018) and COPA (Gordon et al., 2012), the non-normalized
loss can yield better results and thus is adopted. Except for
MultiRC (Khashabi et al., 2018) where the F1 metric over
the set of answer options (referred to as F1a) is reported,
the prediction accuracy metric is used for all the other tasks.
We use the average of the scores reported in all datasets to
report the overall few-shot performance of models on both
NLG and NLU tasks. Both Accuracy (EM) and F1 scores
have been normalized to lie between 0 and 100. On Trivi-
aQA, we also report the testing server score of our one-shot
submission.

6. Results
We conduct extensive evaluation on the whole family of
GLaM models, to show the advantages of sparsely activated
models in language modeling and their scaling trends. We
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also quantitatively inspect the effectiveness of data quality
for language model training.

6.1. Comparison between MoE and Dense Models

As previously presented in Table 1, GLaM (64B/64E) has
competitive performance compared to GPT-3 (175B) for
zero, one and few-shot learning. Figure 1 compares the
performance for each category of tasks. In total, GLaM
(64B/64E) outperforms GPT-3 in 6 out of 7 categories on
average, indicating the performance gain is consistent. For
more details on each individual task, see Table 11. We
include results on the much larger and computationally de-
manding Megatron-NLG and Gopher for reference. More
importantly, as shown in Table 4, GLaM (64B/64E) acti-
vates roughly 96.6B parameters per token during inference,
which requires only half of the compute FLOPs needed by
GPT-3 given the same input.

We highlight one particular challenging open-domain ques-
tion answer task: TriviaQA. In open-domain question an-
swer tasks, the model is required to directly answer a given
query without access to any additional context. Brown
et al. (2020) show that the few-shot performance of Trivi-
aQA is able to grow smoothly with model size, indicating
a language model is able to absorb knowledge using its
model capacity. As shown in Table 5, GLaM (64B/64E) is
better than the dense model and outperforms the previous
finetuned state-of-the-art (SOTA) on this dataset in the open-
domain setting. Our one-shot result exceeds the previous
finetuned SOTA (Yu et al., 2022) where additional knowl-
edge graph information is infused by 8.6%, and outperforms
the few-shot GPT-3 on the testing server by 5.3%. This sug-
gests that the additional capacity of GLaM plays a crucial
role in the performance gain even though the nact-params of
GLaM (64B/64E) is only half of that in GPT-3. Comparing
to Switch-C, even though both models have similar total
number of parameters, GLaM (64B/64E) uses much larger
experts (beyond one TPU core) than Switch-C. Therefore,
GLaM’s one-shot performance on TriviaQA is also better
than the fine-tuned results of Switch-C in the open-domain
setting. Finally, we report zero, one and few-shot evaluation
mainly on the development set for all tasks in Tables 11, 12,
13 and 14 of the appendix.

6.2. Effect of Data Quality

We study the impact of data quality on the few-shot perfor-
mance of downstream tasks. We use a modest-size GLaM
model (1.7B/64E) to show the effectiveness of filtering text
on model quality. We train models with the same hyper-
parameters on two datasets. One is the original dataset
described in Section 3 and the second consists of the dataset
with the filtered webpages replaced with the unfiltered web-
pages. The mixing proportions are fixed as given in Table 3.

Table 5. GLaM (64B/64E) one-shot performance significantly out-
performs prior SOTAs for open domain settings in the wiki split.

Model TriviaQA
(Open-Domain)

KG-FiD (large) (Yu et al., 2022)
(finetuned, test) 69.8

Switch-C (finetuned, dev) 47.5
GPT-3 One-shot (dev) 68.0
GPT-3 64-shot (test) 71.2
GLaM One-shot (test) 75.0
GLaM One-shot (dev) 75.8

The filtered webpages consist of 143B tokens whereas the
unfiltered webpages consist of around 7T tokens.

Figure 3 (c) and (d) show that the model trained on fil-
tered data performs consistently better on both NLG and
NLU tasks. In particular, the effect of filtering is bigger
on NLG than that on NLU. Perhaps this is because NLG
often requires generating high-quality language and filtered
pretraining corpora is crucial to the generation capability
of language models. Our study highlights the fact that the
quality of the pretrained data also plays a critical role, specif-
ically, in the performance of downstream tasks.

6.3. Scaling Studies

Scaling up dense language models generally involves mak-
ing the models deeper by adding more layers, and wider by
increasing the embedding dimension of token representa-
tions. This process increases the total number of parameters
nparams of the model. For each prediction on a given input
example, these models are ‘dense’ in that all nparams param-
eters will be activated, i.e., nparams = nact-params in Table 4.
Therefore, the effective FLOPs per prediction increases
linearly with the model size nparams. While the increased
FLOPs may lead to boosted predictive performance, it also
raises the overall cost per prediction.

In contrast, GLaM MoE models are sparsely activated in
that only a small fraction of the total nparams parameters will
be activated for each prediction where nparams � nact-params.
Therefore, GLaM MoE models can scale by also growing
the size or number of experts in the MoE layer.

As shown in Figure 3(a), the average zero, one and few-shot
performance across the generative tasks scales well with the
effective FLOPs per prediction which is in turn determined
by nact-params. We also find that GLaM MoE models perform
consistently better than GLaM dense models for similar ef-
fective FLOPs per token. For language understanding tasks
shown in Figure 3(b), the performance gain of GLaM MoE
models has a similar scaling trend to that of the generative
tasks. We observe that both MoE and dense models perform
similarly at smaller scales but MoE models outperform at
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Figure 3. Average zero, one and few-shot performance of GLaM MoE models versus GLaM dense models for similar effective FLOPs per
token over the 8 NLG tasks (a) and 21 NLU tasks (b). Comparison of model performance with filtered and unfiltered training data using
GLaM (1.7B/64E). Filtered data improves results significantly over unfiltered data for both (c) NLG and (d) NLU tasks across zero, one
and few-shot settings.

larger scales. We also show experiments with scaling the
number of experts in Section B where we observe that, for
a fixed budget of computation per prediction, adding more
experts generally leads to better predictive performance.

6.4. Efficiency of GLaM

Existing large dense language models usually require
tremendous amounts of computation resources for train-
ing and serving (Patterson et al., 2021). They also need to
consume massive amounts of pretraining data. We investi-
gate the data and compute efficiency of the proposed GLaM
models.

Data Efficiency. Figure 4 (a-c) and Figure 4(e-g) show
the learning curves of our models compared to the dense
baselines of similar effective FLOPs in both NLG and NLU
tasks. The x-axis is the number of tokens used in train-
ing where we explicitly include GPT-3’s results when it
is around 300B tokens. We first observe that GLaM MoE
models require significantly less data than dense models of
comparable FLOPs to achieve similar zero, one, and few-
shot performance. In other words, when the same amount
of data is used for training, MoE models perform much bet-
ter, and the difference in performance becomes larger when
training up to 630B. Moreover, GLaM (64B/64E) model
trained with 280B tokens outperforms GPT-3 trained with
300B tokens by large margins on 4 out of the 6 learning set-
tings (zero-shot/one-shot NLU and one-shot/few-shot NLG),
and matches GPT-3 scores for the remaining setting, i.e.,
zero-shot NLG tasks.

Computation Efficiency & Energy Consumption. Fig-
ure 4 (d) and Figure 4 (h) show how the average zero, one
and few-shot performance scales with the number of TPU
years spent training MoE and dense models. We find that to
achieve similar performance on downstream tasks, training

sparsely activated models takes much less computational
resources than training dense models.

As previously presented in Table 1, the GLaM (64B/64E)
training after 600B tokens consumes 456 MWh, about 1/3
of the energy cost of 1287 MWh used by GPT-3. Moreover,
to reach similar (and slightly exceeded) scores as GPT-3, we
train using 1,024 TPU-v4 chips for 574 hours (with 280B
tokens). This consumes 213 MWh or 1/6 of the GPT-3
energy cost. The reduced energy consumption of GLaM
is due to the MoE architecture and computation efficiency
optimizations from TPU-v4 hardware and GSPMD software.
Energy calculations can be found in Section F.

7. Ethics and Unintended Biases
Large language models’ zero-and few-shot inference is an
exciting capability: being able to control model behaviour
intuitively with natural language and small datasets signifi-
cantly lowers the barrier to prototyping and the development
of new applications; it has the potential to help democratise
using AI by dramatically decreasing the need for special-
ist knowledge. However, such opportunities also serve to
highlight the importance of the many ethical challenges
(Leidner & Plachouras, 2017; Bender et al., 2021; Bom-
masani et al., 2021) including representation bias (Blodgett
et al., 2020), proper selection and handling of training data
(Rogers, 2021) and its documentation (Bender & Friedman,
2018), privacy (Abadi et al., 2016b; Carlini et al., 2020),
and environmental concerns (Strubell et al., 2019; Patterson
et al., 2021). An important strand of this research focuses
on unintended biases learnt by language models, includ-
ing correlations between gender and profession (Bolukbasi
et al., 2016; Rudinger et al., 2018; Zhao et al., 2018), neg-
ative sentiment about racial and religious groups (Li et al.,
2020; Nadeem et al., 2021), and about people with disabili-
ties (Hutchinson et al., 2020), as well as other social biases
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Figure 4. Learning efficiency comparison. Average zero-shot , one-shot and few-shot performance of GLaM MoE models versus GLaM
dense models as more tokens are processed during training for 9 NLG tasks (a-c) and 21 NLU tasks (e-g). Panel (d) and (h) also display
the learning curves against the number of TPU years, respectively.

(Caliskan et al., 2017; Rudinger et al., 2017; Sap et al., 2020;
Sotnikova et al., 2021). While measuring and mitigating
the potential harm of language models is a very active area
of research, as recognized by Blodgett et al. (2021); Jacobs
& Wallach (2021) there is still a significant need for more
rigorous evaluation methods to assess the degree to which
language models encode harmful stereotypes (May et al.,
2019; Webster et al., 2021).

While there is not yet consensus on measurement methods or
criteria for such general purpose large language models, the
versatility and power of these models make it important to
assess them on a range of metrics. We take inspiration from
GPT-3 (Brown et al., 2020) and examine the co-occurrence
in generated text referencing identity terms as well as report
on the WinoGender benchmark (Rudinger et al., 2018). We
also analyse toxicity degeneration similarly to Gopher (Rae
et al., 2021), and extend the analysis to consider the human-
behavioral baseline.

7.1. Co-occurrence prompts

Following the procedure described in Brown et al. (2020),
we analyze commonly co-occurring words in the continua-
tions when given prompts like “{term} was very...” where
the substituted term references either gender, religions,
racial and ethnic identity. For each prompt (Table 7 of

the appendix), 800 outputs are generated using top-k sam-
pling (k = 40) with a temperature of 1. An off-the-shelf
POS tagger (Bird & Loper, 2004) is used to remove stop
words and select only descriptive words (i.e., adjectives and
adverbs). Adverbs are included because we noticed a com-
mon pattern of errors where adjectives are misclassified as
adverbs; for example “pretty” in the phrase “She was very
pretty and very accomplished”. Like Brown et al. (2020), to
make the analysis transparent and easily reproducible, we
omit any manual human labeling.

Like the analysis of other large language models that we
build on, we note associative biases for all dimensions are
obvious, for example “pretty” is the most associated descrip-
tion for the term “She”, while it is not in the top-10 for the
term “He”. Table 8 shows the most frequently occurring
descriptive words in response to prompt-templates for gen-
dered pronouns, and Tables 9 and 10 of the appendix show
the same for race and religion prompts.

7.2. WinoGender

Coreference resolution is a capability that many applica-
tions require to perform well, including machine translation
(Stanovsky et al., 2019; Webster & Pitler, 2020) and ques-
tion answering (Lamm et al., 2020). To assess whether
gendered correlations in GLaM cause it to make corefer-
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Figure 5. The relationship between the Toxicity Probability of the
Prompt (TPP), and the Toxicity Probability of the Continuation
(TPC). Human refers to the continuation of the original human-
written sentence.

ence errors in the one-shot setting, we measure WinoGender
(Rudinger et al., 2018). GLaM (64B/64E) achieves a new
state-of-the-art of 71.7% on the full dataset (compared to
64.2% for GPT-3 (Brown et al., 2020)). Promisingly, ac-
curacy is remarkably close between ‘he’ examples (70.8%)
and ‘she’ examples (72.5%), as well as between stereotyp-
ical examples (where the intended distribution is assumed
to be close to the US occupation statistics, (Rudinger et al.,
2018)) and anti-stereotypical (or ‘gotcha’) examples (both
71.7%).

7.3. Toxicity Degeneration

Toxicity degeneration is when a language model produces
text that is unintentionally toxic. To evaluate toxicity de-
generation, we adapt the methodology used in (Welbl et al.,
2021; Rae et al., 2021). We use the RealToxicityPrompts
dataset (Gehman et al., 2020) which consists of sentences
that have been split into two parts: a prompt prefix, and a
continuation postfix. Like the previous studies, we also use
the Perspective API which assigns a probability that the text
would be considered to be rude, disrespectful or otherwise
likely to make people want to leave a conversation. We then
asses how likely a continuation is to be toxic given various
likelihoods that the prompt was toxic.

For each of 10K randomly sampled prompts, we generate
25 continuations, with up to 100 tokens per continuations
using top-k sampling (k = 40) with a temperature of 1. The
Perspective API requires an non-empty string therefore we
assign a score of toxicity 0.0 when the continuation is the
empty string; this could represent, for example, a chat bot
simply refusing to respond.

Figure 5 shows the relationship between the Toxicity Proba-
bility of the Prompt (TPP), and the Toxicity Probability of
the Continuation (TPC). Note that, for low TPP, the rela-
tively high human TPC is due to the sampling strategy used

to create the underlying dataset: sentences were selected
across the toxicity spectrum. Moreover, toxicity can often
be identified locally within a sentence, and toxicity in this
dataset tends to occur later the sentences. This causes the
human-TPC to slightly drop as the TPP increases. In con-
trast, it is noteworthy that the model’s TPC closely follows
TPP, reflecting the frequent observation that large language
models are sometimes overly-strongly influenced by their
prompt, e.g. repeating phrases from the prompt.

We also analysed the distribution of toxicity probabilities
from the API for batches of 25 continuations. This high-
lighted that, even for low toxicity prompts, it is very likely
that some generated continuation will be judged as toxic by
most people reviewing it, according to the Perspective API’s
predicted probability; further details can be found in Figure
8. We also note that this dataset’s sampling strategy, and the
source it is taken from (Reddit) are likely not reflective of
other domains. Moreover, even for very low TPP, applica-
tions are likely to want a much lower TPC: even generating
1 in 100 toxic suggestions is likely to be very problematic
for applications.

8. Discussion
As observed in previous work on sparsely-activated mod-
els (Fedus et al., 2021), MoE models are more performant in
knowledge-oriented tasks. Open-domain tasks are one way
of measuring the amount of knowledge stored in a model.
The performance of the MoE model in open-domain QA
benchmarks such as TriviaQA demonstrate the significantly
increased information capacity of these models compared
to dense models of similar effective FLOPs. Despite the
in-context learning and training efficiency advantages, the
sparsely activated models consist of a higher number of pa-
rameters and thus require a larger number of devices. This
limits the resource accessibility and increases the serving
cost especially when the serving traffic is low.

9. Conclusions
We propose and develop a family of generalist language
models called GLaM, which use a sparsely activated
mixture-of-experts architecture to achieve better average
scores than not only their dense counterparts of similar effec-
tive FLOPs, but also the GPT-3 models on 29 representative
NLP tasks in zero, one and few-shot learning. In partic-
ular, GLaM (64B/64E), our largest 1.2 trillion parameter
MoE language model, achieves better average performance
with only one third of energy consumption compared to
training GPT-3. We hope that our work will encourage
more research into methods for obtaining high-quality data,
and using MoE for more efficient scaling of giant language
models.
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A. Benchmarks
Open-Domain Question Answering: TriviaQA (Joshi

et al., 2017), Natural Questions (NQS) (Kwiatkowski
et al., 2019), Web Questions (WebQS) (Berant et al.,
2013)

Cloze and Completion Tasks: LAMBADA (Paperno
et al., 2016), HellaSwag (Zellers et al., 2019),
StoryCloze (Mostafazadeh et al., 2016)

Winograd-Style Tasks: Winograd (Levesque et al., 2012),
WinoGrande (Sakaguchi et al., 2020)

Common Sense Reasoning: PIQA (Bisk et al., 2020),
ARC (Easy) (Clark et al., 2018), ARC (Chal-
lenge) (Clark et al., 2018), OpenBookQA (Mihaylov
et al., 2018)

In-context Reading Comprehension: DROP (Dua et al.,
2019), CoQA (Reddy et al., 2019), QuAC (Choi et al.,
2018), SQuADv2 (Rajpurkar et al., 2018), RACE-
h (Lai et al., 2017), RACE-m (Lai et al., 2017)

SuperGLUE: (Wang et al., 2019) BoolQ (Clark et al.,
2019), CB (de Marneffe et al., 2019), COPA (Gordon
et al., 2012), RTE (Dagan et al., 2006), WiC (Pile-
hvar & Camacho-Collados, 2018), WSC (Levesque
et al., 2012), MultiRC (Khashabi et al., 2018),
ReCoRD (Zhang et al., 2018)

Natural Language Inference: ANLI R1, ANLI R2,
ANLI R3 (Fyodorov et al., 2000)

B. Scaling the Number of Experts
We also study the effects of increasing the number of experts
per MoE layer. More concretely, we start with a modest
size model of 1.7B, which essentially is a GLaM (1.7B/1E)
model where each MoE layer reduces to include only a sin-
gle feed-forward network as the expert. We then increase
the number of experts in each MoE layer from 1 to 256.
Despite the fact that the number of experts increases expo-
nentially, the nact-params in each model barely increases due
to the sparsity of GLaM. In fact, as shown in Table 4, they
all have almost identical FLOPs per prediction.

In Figure 6, we observe that, for a fixed budget of compu-
tation per prediction, adding more experts generally leads
to better predictive performance. This further verifies the
performance gain of GLaM sparsely activated models over
the dense counterparts when both have similar FLOPs per
prediction, thanks to the increased capacity and flexibility
from more experts.
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Figure 6. Average zero, one and few-shot performance versus the
number of experts per layer for a set of modest-size models from
1.7B/1E to 1.7B/256E.

C. Model Partitioning
We partition the weights and computation of large GLaM
models using the 2D sharding algorithm as described in
Xu et al. (2021), which exploits the 2D topology of the
device network of the TPU cluster. We place experts with
the same index across different MoE layers on the same
device in order to generate an identical computation graph
for different MoE layers. As a result, we can wrap the
repetitive modules of the MoE Transformer architecture in
a while loop control flow statement (Abadi et al., 2016a; Yu
et al., 2018) to reduce compilation time. Our experiments
reveal that we should grow the size of the experts to get
high quality models. Therefore, when each expert gets
sufficiently large, we have to allocate each expert across a set
of N

E devices. For example, we partition the expert weight
tensor with the shape [E,M,H] in the MoE layer along the
expert dimension E, and hidden dimension H , and partition
the input activation tensors with the shape [B,S,M ] along
the batch dimension B and the model dimension M . With
this 2D sharding algorithm, we are then able to fully divide
those large weight and activation tensors into smaller pieces
such that there is no redundancy in data or compute across
all devices. We rely on GSPMD’s compiler pass (Xu et al.,
2021) to automatically determine the sharding properties
for the rest of the tensors.

D. Data Contamination
As GLaM was trained on over 1.6 trillion tokens of text, it
is a valid concern that some of the test data might appear
exactly in the pretraining dataset, inflating some of the re-
sults. We therefore follow Brown et al. (2020) and Wei et al.
(2021) and quantify the overlap between pretraining data
and evaluation datasets.

Our analysis uses the same methodology as Wei et al. (2021),
which, in turn closely follows Brown et al. (2020). For
each evaluation dataset we report the number of examples
which overlap with the pretraining data, defining overlap as
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Table 6. Overlap statistics for the subset of datasets that are also
used in GPT-3. An evaluation example was dirty if it had any
n-gram collision with the pretraining corpus.

Dataset Split Dirty
count

Total
count % clean

ANLI R1 validation 962 1000 3.8
ANLI R2 validation 968 1000 3.2
ANLI R3 validation 596 1200 50.33
ARC Challenge validation 95 299 68.23
ARC Easy validation 185 570 67.54
BoolQ validation 3013 3270 7.86
CB validation 15 56 73.21
COPA validation 3 100 97.0
CoQa test 375 500 25.0
DROP dev 9361 9536 1.84
HellaSwag validation 1989 10042 80.19
LAMBADA test 1125 5153 78.17
MultiRC validation 3334 4848 31.23
NQs validation 141 3610 96.09
OpenBookQA validation 100 500 80.0
PIQA validation 902 1838 50.92
Quac validation 7353 7354 0.01
RACE-h dev 2552 3451 26.05
RACE-m dev 838 1436 41.64
RTE validation 152 277 45.13
ReCoRD validation 9861 10000 1.39
SQuADv2 validation 11234 11873 5.38
StoryCloze validation 1871 1871 0.0
TriviaQA validation 2121 11313 81.25
WSC test 157 273 42.49
WiC validation 46 638 92.79
Winograd validation 70 104 32.69
Winogrande test 6 1767 99.66

having any n-gram, which also appears in the pretraining
data (varying n between datasets). We find that the number
of validation examples appearing verbatim in the training
data roughly matches that of prior work. We report these
numbers in Table 6.

E. Ethics and Unintended Biases
Like Rae et al. (2021), we also analyzed toxicity degener-
ation with with respect to model scale. This is shown in
Figure 7. As with other analysis GLaM’s performance on
this benchmark, it is fairly consistent across model sizes
and with MoE variants. The 0.1B/64E MoE variant, the
smallest sparse variant analyzed, is noticeable in the plot
and smaller MoE models may be less stable, as noted by
Rae et al. (2021).

Following Rae et al. (2021), we also analysed the aspect of
the distribution of generated toxicity probabilities with re-
spect to model scale. The same pattern of scale-in-variance
is observed with respect to the maximal expected toxicity
probability of a continuation. The distribution of toxicity
probabilities from the API for 25 continuations is plotted

1/27/22, 6:53 PM visualization (26).svg
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Figure 7. Toxicity degeneration scaling plot. The different shades
show different buckets of prompt toxicity probability. The y-axis
shows the expected probability of a continuation being toxic. The
0.1B/64E variant is noticeable, but as model parameters scale, the
relationship to continuation toxicity constant.

Table 7. Prompts used for each co-occurrence category.

Category Prompts

gender {term} was very...
{term} would be described as...

race The {term} man was very...”
The {term} woman was very...”
People would describe the {term} person as...

religion {term} practitioners are...

for low toxicity prompts in Figure 8. This shows that, even
for low toxicity prompts, it is very likely that some gener-
ated continuation would be judged as toxic by most people
reviewing it, according to the Perspective API’s model.

Table 7 shows the prompts used for the co-occurrence eval-
uation; these are the same as those of Brown et al. (2020).
The top associations for gender templates are shown in Ta-
ble 8, and Tables 9 and 10 show the same for the race and
religion prompt templates.

F. Energy Usage
The power usage effectiveness (PUE) of the datacenter at
the time of training (August and September 2021) was 1.11.
Using 326W measured system power per TPU-v4 chip, this
leads to a total energy consumption of 213 MWh for GLaM,
1/6 of the energy cost of GPT-3, 1287 MWh. The datacenter
PUE was 1.10 at the time of training GPT-3 (Patterson
et al., 2021). The reduced energy consumption of GLaM
is due to the MoE architecture and computation efficiency
optimizations from TPU-v4 hardware and GSPMD software.
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Figure 8. Expected toxicity probability given low toxicity proba-
bility prompts for 8B Dense variant. This chart shows distributions
underlying the expected maximum toxicity metric for the 8B Dense
model. The y-axis shows expected toxicity and the x-axis shows
the distribution aggregated at different percentiles. At the left, the
minimum continuation toxicity reflects that after repeated eval-
uations of 25 samples the least toxic response for some outlier
non-toxic prompts was 0.8 likely to be perceived as toxicity. At
the right we see that the worst-case toxicity has an almost uniform
distribution across non-toxic prompts. In other words, in 25 sam-
ples across low probability toxic prompts, for the majority of trials,
there will be a high toxicity probability continuation.

As a result of low energy consumption, GLaM training has
lower CO2 emissions as well. The net tCO2e per MWh of
the datacenter at the time was 0.088, training GLaM with
280B tokens emits a total of 18.7 net tCO2e, compared
to 552 net tCO2e for GPT-3 (Patterson et al., 2021). The
complete GLaM training using 600B tokens consumes only
456 MWh and emits 40.2 net tCO2e.

G. Results on All Tasks for All Model Sizes
We include the zero/one/few-shot results of different model
sizes on all the tasks in Table 11, 12, 13 and 14.

Table 8. Gender: top co-occurrences for prompts like “{term} was
very...”

“He” “She”

The top 10
most common
descriptive
words (and
counts).

much (188) pretty (232)
great (130) little (185)
well (129) much (154)
little (129) beautiful (148)
good (124) always (142)
always (114) good (136)
black (103) black (117)
even (92) never (116)
many (87) even (111)
also (83) well (110)

Table 9. Race: co-occurrence in response to prompts like “People
would describe the {term} person as...”.

Term Most common descriptive words

Asian Asian, black, white, polite, even, really,
Chinese, good, also, nice

Black white, black, much, even, well, angry,
good, also, proud, happy

White white, black, many, even, Indian, much,
good, happy, angry, never

Latinx white, black, even, really, also, Spanish,
much, well, different, never

Indian Indian, white, black, much, even, differ-
ent, happy, really, never, good

Middle-Eastern white, black, even, eastern, polite, really,
middle, nice, brown, also

Table 10. Religion: co-occurrence in response to prompts like
“{term} practitioners are...”

Term Most common descriptive words

Atheism religious, also, bad, likely, really, much,
many, moral, even, sure

Buddhism also, generally, many, religious, always,
often, even, good, first, different

Christianity religious, also, Christian, many, even,
often, always, likely, different, bad

Islam also, religious, even, many, likely, still,
different, generally, much, violent

Hinduism generally, also, religious, many, differ-
ent, even, often, well, Indian, likely

Judaism Jewish, also, religious, responsible,
many, even, well, generally, often, dif-
ferent
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Table 11. Scores of GLaM (64B/64E), GPT-3 and Gopher across all 29 benchmarks. We include the significantly larger and more
computationally expensive Gopher and Megatron-NLG models for reference.

Zero-shot One-shot Few-shot (shots)

Name Metric Split GPT-3
(175B)

GLaM
(64B/64E)

GPT-3
(175B)

GLaM
(64B/64E)

GPT-3
(175B)

Gopher
(280B)

Megatron-NLG
(530B)

GLaM
(64B/64E)

TriviaQA acc (em) dev 64.3 71.3 68.0 75.8 71.2 (64) 57.1 (64) – 75.8 (1)

NQs acc (em) test 14.6 24.7 23.0 26.3 29.9 (64) 28.2 (64) – 32.5 (64)

WebQS acc (em) test 14.4 19.0 25.3 24.4 41.5 (64) – – 41.1 (64)

Lambada acc (em) test 76.2 64.2 72.5 80.9 86.4 (15) 74.5(0) 87.2 86.6 (9)

HellaSwag acc dev 78.9 76.6 78.1 76.8 79.3 (20) 79.2(0) 82.4 77.2 (8)

StoryCloze acc test 83.2 82.5 84.7 84.0 87.7 (70) – – 86.7 (16)

Winograd acc test 88.3 87.2 89.7 83.9 88.6 (7) – – 88.6 (2)

WinoGrande acc dev 70.2 73.5 73.2 73.1 77.7 (16) 70.1(0) 78.9 79.2 (16)

DROP f1 dev 23.6 57.3 34.3 57.8 36.5 (20) – – 58.6 (2)

CoQA f1 dev 81.5 78.8 84.0 79.6 85.0 (5) – – 79.6 (1)

QuAC f1 dev 41.5 40.3 43.4 42.8 44.3 (5) – – 42.7 (1)

SQuADv2 f1 dev 62.1 71.1 64.6 71.8 69.8 (16) – – 71.8 (10)

SQuADv2 acc (em) dev 52.6 64.7 60.1 66.5 64.9 (16) – – 67.0 (10)

RACE-m acc test 58.4 64.0 57.4 65.5 58.1 (10) 75.1 (5) – 66.9 (8)

RACE-h acc test 45.5 46.9 45.9 48.7 46.8 (10) 71.6 (5) 47.9 49.3 (2)

PIQA acc dev 81.0 80.4 80.5 81.4 82.3 (50) 81.8 (0) 83.2 81.8 (32)

ARC-e acc test 68.8 71.6 71.2 76.6 70.1 (50) – – 78.9 (16)

ARC-c acc test 51.4 48.0 53.2 50.3 51.5 (50) – – 52.0 (3)

OpenbookQA acc test 57.6 53.4 58.8 55.2 65.4 (100) – – 63.0 (32)

BoolQ acc dev 60.5 83.1 76.7 82.8 77.5 (32) – 84.8 83.1 (8)

Copa acc dev 91.0 90.0 87.0 92.0 92.0 (32) – – 93.0 (16)

RTE acc dev 63.5 67.9 70.4 71.5 72.9 (32) – – 76.2 (8)

WiC acc dev 0.0 50.3 48.6 52.7 55.3 (32) – 58.5 56.3 (4)

Multirc f1a dev 72.9 73.7 72.9 74.7 74.8 (32) – – 77.5 (4)

WSC acc dev 65.4 85.3 69.2 83.9 75.0 (32) – – 85.6 (2)

ReCoRD acc dev 90.2 90.3 90.2 90.3 89.0 (32) – – 90.6 (2)

CB acc dev 46.4 48.2 64.3 73.2 82.1 (32) – – 84.0 (8)

ANLI R1 acc test 34.6 39.2 32.0 42.4 36.8 (50) – – 44.3 (2)

ANLI R2 acc test 35.4 37.3 33.9 40.0 34.0 (50) – 39.6 41.2 (10)

ANLI R3 acc test 34.5 41.3 35.1 40.8 40.2 (50) – – 44.7 (4)

Avg NLG – – 47.6 54.6 52.9 58.4 58.8 – – 61.6
Avg NLU – – 60.8 66.2 65.4 68.6 68.4 – – 71.4



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Table 12. Zero-shot scores on all 29 benchmarks for GPT3 and different GLaM MoE and dense models.

GLaM (MoE) GLaM (Dense) GPT3

Name Metric Split 0.1B/64E 1.7B/64E 8B/64E 64B/64E 0.1B 1.7B 8B 137B 175B

TriviaQA acc (em) dev 9.42 44.0 55.1 71.3 2.3 27.0 48.1 64.0 64.3

NQs acc (em) test 2.24 9.2 11.9 24.7 1.1 5.6 9.0 17.3 14.6

WebQS acc (em) test 3.44 8.3 10.7 19.0 0.7 5.9 7.7 13.8 14.4

Lambada acc (em) test 41.4 63.7 67.3 64.2 37.8 60.1 69.3 70.9 76.2
HellaSwag acc dev 43.1 65.8 74.0 76.6 34.7 60.6 72.2 76.9 78.9
StoryCloze acc test 66.4 76.2 78.9 82.5 63.3 75.1 79.5 81.1 83.2

Winograd acc test 66.3 80.2 83.9 87.2 67 78.7 81.6 84.3 88.3
WinoGrande acc dev 51.0 63.9 67.8 73.5 49.7 62.6 70.1 71.5 70.2

DROP f1 dev 9.43 13.4 16.8 57.3 5.67 14.0 17.0 21.8 23.6

CoQA f1 dev 45.9 65.3 65.5 78.8 40.7 66.5 68.7 72.1 81.5
QuAC f1 dev 25.2 32.8 33.8 40.3 25.4 33.3 30.7 38.3 41.5
SQuADv2 f1 dev 22.9 49.2 57.1 71.1 16.8 44.9 55.7 65.5 59.5

SQuADv2 acc (em) dev 7.06 29.6 38 64.7 3.4 24 35.8 48.2 52.6

RACE-m acc test 43.4 56.1 61.9 64.0 40.6 53.6 63.0 67.8 58.4

RACE-h acc test 30.4 40.4 43.4 46.9 29.4 40.0 45.0 47.2 45.5

PIQA acc dev 70.0 76.9 78.6 80.4 64.4 73.6 78.2 78.5 80.4
ARC-e acc test 52.0 66.2 66.2 71.6 44.5 62.2 67.9 71.7 68.8

ARC-c acc test 26.5 37.6 42.8 48.0 23.2 35.1 42.7 47.2 51.4
Openbookqa acc test 40.0 46.4 50.0 53.4 36.8 46.7 49.8 52.0 57.6

BoolQ acc dev 56.6 62.7 72.2 83.1 56.6 56.1 73.6 78 60.5

Copa acc dev 73 85 86 90 67 80 86 90 91
RTE acc dev 45.8 58.8 60.3 67.9 51.3 49.1 63.8 50.5 63.5

WiC acc dev 50.0 49.8 49.5 50.3 50.8 50.3 44 50.6 0.0

Multirc f1a dev 57.7 58.0 52.4 73.7 58.6 53.0 39.0 54.8 72.9

WSC acc dev 65.6 79.3 81.8 85.3 66.3 77.2 80.7 82.8 65.4

ReCoRD acc dev 77.5 87.1 88.9 90.3 71.6 86.7 89.2 90.3 90.2

CB acc dev 66.1 33.9 40.7 48.2 42.9 37.5 33.9 42.9 46.4

ANLI R1 acc dev 34.1 33.9 33.4 39.2 36.1 33.2 34.7 39.4 34.6

ANLI R2 acc dev 33.8 32.4 34.9 37.3 36.7 33.6 34.8 35.7 35.4

ANLI R3 acc dev 32.8 34.0 34.6 41.3 34.8 34.1 34.9 34.6 34.5

Avg NLG - - 18.6 35.1 39.6 54.6 14.9 31.3 38.0 45.8 47.6

Avg NLU - - 51.5 58.3 61.1 66.2 48.9 56.1 60.2 63.2 60.8



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Table 13. One-shot scores on all 29 benchmarks for GPT3 and different GLaM MoE and dense models.

GLaM (MoE) GLaM (Dense) GPT3

Name Metric Split 0.1B/64E 1.7B/64E 8B/64E 64B/64E 0.1B 1.7B 8B 137B GPT-3 (175B)

TriviaQA acc (em) dev 15.2 54.1 65.9 75.8 8.3 36.3 56.4 70.0 68.0

NQs acc (em) test 2.5 10.7 16.0 26.3 1.19 6.5 10.7 19.1 23.0

WebQS acc (em) test 5.9 13.9 17.0 24.4 3.44 9.3 11.6 18.8 25.3

Lambada acc (em) test 36.9 57.4 64.1 80.9 21.8 52.3 64.7 68.5 72.5

HellaSwag acc dev 43.5 66.4 74.0 76.8 34.7 60.5 72.6 76.8 78.1
StoryCloze acc test 67.0 77.9 80.0 84.0 63.7 76.4 82.1 82.6 84.7

Winograd acc test 69.2 80.2 85.3 83.9 65.6 80.2 84 85.3 89.7
WinoGrande acc dev 51.7 63.5 68.7 73.0 49.8 62.8 70.0 73.1 73.2

DROP f1 dev 16.3 24.8 28.4 57.8 19.3 24.9 41.2 49.4 34.3

CoQA f1 dev 48.3 72.8 76 79.6 33.3 72.7 74.4 78.8 84.0
QuAC f1 dev 28.7 35.2 43.1 42.7 23.7 35.7 35.1 44.6 43.4

SQuADv2 f1 dev 35.5 69.5 76.3 71.8 34.2 67.1 69.2 70.0 65.4

SQuADv2 acc (em) dev 21.8 53.6 60.9 66.5 29.0 50.8 64.2 63.7 60.1

RACE-m acc test 42.7 60.9 60.6 65.5 43.1 56.4 63.1 69.0 57.4

RACE-h acc test 29.1 41.9 44.6 48.7 29.4 40.8 45.3 47.7 45.9

PIQA acc dev 69.0 76.0 78.1 81.4 63.7 73.1 76.3 79.5 80.5

ARC-e acc test 53.5 68.1 73.4 76.6 45.9 63.8 62.6 77.2 71.2

ARC-c acc test 27.0 39.3 44.8 50.3 24.5 35.2 41.5 50.7 53.2
Openbookqa acc test 39.6 47.6 50.6 55.2 37.8 47.2 53.0 55.4 58.8

BoolQ acc dev 53.6 62.0 70.8 82.8 55.7 58.1 76.4 77.5 76.7

Copa acc dev 75 81 86 92 71 81 86 91 87

RTE acc dev 53.1 54.5 57.0 71.5 53.4 55.2 62.0 58.4 70.4

WiC acc dev 47.3 47.0 48.0 52.7 47.3 46.8 48.0 48.7 48.6

Multirc f1a dev 58.5 59.6 62.0 74.7 56.3 59.4 61.9 64.2 72.9

WSC acc dev 67.7 77.5 83.8 83.9 63.8 78.5 83.0 86.3 69.2

ReCoRD acc dev 77.5 87.3 89.0 90.3 71.6 86.2 89.2 90.2 90.1

CB acc dev 41.1 35.7 44.6 73.2 42.9 41.1 30.4 48.2 64.3

ANLI R1 acc dev 32.1 31.1 32.3 42.4 32.5 31.4 31.9 34.8 32.0

ANLI R2 acc dev 31.1 30.7 32.5 40.0 30.7 31.2 30.7 32.6 33.9

ANLI R3 acc dev 30.5 31.6 34.8 40.8 30.9 30.3 32.4 35.0 35.1

Avg NLG - - 23.5 43.6 49.7 58.4 19.4 39.5 47.5 52.8 52.7

Avg NLU - - 50.4 58.1 61.9 68.6 48.3 56.9 61.7 65.0 65.4



GLaM: Efficient Scaling of Language Models with Mixture-of-Experts

Table 14. Few-shot scores on all 29 benchmarks for GPT3 and different GLaM MoE and dense models. We tune the number of shots up
to the respective value in each task used by GPT3.

GLaM (MoE) GLaM (Dense) GPT3

Name Metric Split 0.1B/64E 1.7B/64E 8B/64E 64B/64E 0.1B 1.7B 8B 137B GPT-3 (175B)

TriviaQA acc (em) dev 21.7 60.1 67.7 75.8 8.3 38.8 56.4 70.0 71.2

NQs acc (em) test 5.3 17.7 24.4 32.5 1.50 9.0 20.1 27.9 29.9

WebQS acc (em) test 12.1 24.4 29.6 41.1 6.90 9.3 25.5 32.9 41.5

Lambada acc (em) test 36.9 64.3 79.0 86.6 21.8 63.0 77.1 84.2 86.4

HellaSwag acc dev 45.6 66.2 74.0 77.2 34.7 60.7 72.6 76.8 79.3
StoryCloze acc test 69.4 80.0 82.8 86.7 63.7 78.7 83.7 85.7 87.7

Winograd acc test 69.2 82.8 85.3 88.6 65.6 80.5 85.4 85.3 88.6
WinoGrande acc dev 52.6 66.2 71.4 79.2 49.8 64.2 72.3 76.6 77.7

DROP f1 dev 23.5 37.0 40.0 58.6 19.3 41.4 49.4 49.4 36.5

CoQA f1 dev 48.3 66.0 72 79.6 33.3 66.0 74.4 78.8 85.0
QuAC f1 dev 26.0 34.2 43.1 42.8 23.7 34.3 35.1 37.2 44.3
SQuADv2 f1 dev 38.7 61.8 67.1 71.8 34.2 60.0 69.6 70.0 69.8

SQuADv2 acc (em) dev 32.7 55.5 60.9 67.0 29.0 53.9 64.2 63.7 64.9

RACE-m acc test 41.8 53.6 60.6 66.9 43.1 56.5 56 65.1 58.1

RACE-h acc test 31.5 40.2 44.6 49.3 29.5 40.8 43 48.1 46.8

PIQA acc dev 69.0 76.1 78.1 81.8 64.2 73.1 77 80.8 82.3
ARC-e acc test 57.8 70.1 75.3 78.9 48.9 66.0 74 79.0 70.1

ARC-c acc test 29.7 38.3 45.5 52.0 24.8 35.2 41.5 45.7 51.5

Openbookqa acc test 41.6 49.6 53.0 63.0 37.8 54 54.0 58.8 65.4

BoolQ acc dev 53.6 62.0 70.5 83.1 59.9 63.1 76.4 80.5 77.5

Copa acc dev 75 82 88 93.0 71 83 92.0 91.0 92.0

RTE acc dev 53.1 54.5 60.0 76.2 54.9 55.2 64.0 63.9 72.9

WiC acc dev 49.4 51.3 53.3 56.3 51.9 50.9 50.0 53.6 55.3

Multirc f1a dev 58.5 59.7 62.0 77.5 56.3 59.4 61.5 68.1 74.8

WSC acc dev 67.7 80.4 83.8 85.6 65.6 80.0 82.0 87.4 75.0

ReCoRD acc dev 77.5 87.3 89.0 90.6 71.8 86.2 89.0 90.5 89.0

CB acc dev 43.0 53.6 60.7 84.0 42.9 55.4 58 53.6 82.1

ANLI R1 acc dev 34.3 31.4 34.0 44.3 33.5 33.1 33.2 35.8 36.8

ANLI R2 acc dev 32.3 33.0 32.0 41.2 34.4 33.7 33.9 35.6 34.0

ANLI R3 acc dev 33.9 35.8 33.0 44.7 32.9 33.3 35.0 34.7 40.2

Avg NLG - - 27.2 46.8 53.0 61.6 19.8 42.7 52.4 57.1 58.8

Avg NLU - - 51.7 59.7 63.6 71.4 49.2 59.2 63.7 66.8 68.4


