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Abstract

Despite recent advances in algorithmic fairness,
methodologies for achieving fairness with gen-
eralized linear models (GLMs) have yet to be
explored in general, despite GLMs being widely
used in practice. In this paper we introduce two
fairness criteria for GLMs based on equalizing
expected outcomes or log-likelihoods. We prove
that for GLMs both criteria can be achieved via
a convex penalty term based solely on the linear
components of the GLM, thus permitting efficient
optimization. We also derive theoretical prop-
erties for the resulting fair GLM estimator. To
empirically demonstrate the efficacy of the pro-
posed fair GLM, we compare it with other well-
known fair prediction methods on an extensive
set of benchmark datasets for binary classification
and regression. In addition, we demonstrate that
the fair GLM can generate fair predictions for a
range of response variables, other than binary and
continuous outcomes.

1. Introduction

Though machine learning is increasingly being used to sup-
port and perform crucial decision making tasks, recent re-
search has clearly demonstrated that data-driven predictive
models can often retain systematic biases that are present
in the underlying data and can propagate these inequalities
to their predictions. For example, large biases in prediction
performance have been detected for machine learning mod-
els in areas such as criminal recidivism prediction relative
to race (Angwin et al., 2016), ranking of job candidates rela-
tive to gender (Lahoti et al., 2018), face recognition relative
to both race and gender (Ryu et al., 2018; Buolamwini &
Gebru, 2018), and in multiple healthcare applications rela-
tive to gender, race, and insurance status (Char et al., 2018;
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Larrazabal et al., 2020; Seyyed-Kalantari et al., 2020).

To address these issues there has recently been a signifi-
cant body of work in the machine learning community on
algorithmic fairness in the context of predictive modeling,
including (i) data preprocessing methods that try to reduce
disparities, (ii) in-process approaches which enforce fairness
during model training, and (iii) post-process approaches
which adjust a model’s predictions to achieve fairness after
training is completed. However, the majority of this work
has focused on classification problems with binary outcome
variables, and to a lesser extent on regression. There has
been little to no investigation of fairness in contexts that
include other types of outcome variables such as multiclass
or count outputs.

Generalized linear models (GLMs) provide a natural and
systematic approach to handle a variety of different types of
response variables Y including real-valued, binary, categor-
ical, ordinal, and count outcomes (Nelder & Wedderburn,
1972; McCullagh & Nelder, 1989; Hilbe, 1994). More
specifically, GLMs can be viewed as a generalization of
standard linear regression, where the normality assumption
on the conditional distribution of Y is relaxed to allow for
a range of distributional forms, including binomial, multi-
nomial, and Poisson. While GLMs have a significantly
simpler functional form compared to flexible modern ma-
chine learning models (such as tree-based models and deep
neural networks), they nonetheless are a frequent method
of choice for building predictive models across many ap-
plications areas such as biology, medicine, social science,
engineering, climate analysis, and risk analysis (Lindsey,
2000).

Thus, there is a gap between the practical use of GLMs and
the development of fairness-aware methodologies for GLMs
in the research literature. This paper addresses the gap by:

* Developing a new framework for GLMs to achieve fair
predictions for under-represented groups;

* Providing theoretical performance properties and opti-
mization guarantees for fair GLMs;

e Demonstrating that the proposed fair GLM can im-
prove prediction parities for a variety of outcomes in-
cluding the less-studied count and multinomial out-
comes, and investigating, via a systematic empirical
study across 11 datasets, the accuracy-disparity trade-
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Table 1. In-process fair prediction methods and outcome types they can handle (v': demonstrated in the paper).

Outcome Types

Methods
Binary Continuous ~ Multiclass Count
Fair Constraints (Zafar et al., 2017b) v
Disparate Mistreatment (Zafar et al., 2017a) v
Absolute/Squared Difference (Bechavod & Ligett, 2017) v
Group/Individual Fairness (Berk et al., 2017) v v
Independence measured by HSIC (Pérez-Suay et al., 2017) v
Fair ERM (Donini et al., 2018) v
Statistical Parity (Agarwal et al., 2018; 2019) v v
Bounded Group Loss (Agarwal et al., 2019) v v
General FERM (Oneto et al., 2020) v
Fair GLM (Ours) v v v v

offs of our fair GLM compared with existing alternative
approaches.

Full code and datasets for our experiments are available on
https://github.com/hyungrok-do/fair—-gl
m-cvx. The proofs for all of the theoretical results in the
paper can be found in Appendix A.

2. Related Work

We focus on approaches that consider group fairness, which
require models to have similar predictive performances
across groups. Among the general class of group fairness
methods, we focus on the widely-used in-process approach,
where fairness criteria are introduced during the training
process, typically by adding a fairness constraint or penalty
to the formulation of their objective function. We limit our
scope in this paper to methods that do not include sensitive
features as inputs to the prediction model but instead use
them during training as part of a penalty or constraint on
disparity.

Below we discuss related work organized by the types of
outcome variables that are handled by each approach, as
summarized in Table 1.

For tackling fair binary classification tasks, Zafar et al.
(2017b) and Zafar et al. (2017a) proposed the fair constraint
(FC) and the constraint for avoiding disparate mistreatment
(DM), respectively. Furthermore, Donini et al. (2018) for-
malized fair empirical risk minimization (FERM) as a con-
strained risk minimization problem and applied it to linear
and nonlinear support vector machines (SVMs). Agarwal
et al. (2018) proposed a reductions approach which can
transform binary classification problems under statistical
parity (SP) or under equalized odds constraints into uncon-

strained cost-sensitive classification problems.

For fair regression tasks, Pérez-Suay et al. (2017) proposed
a penalty based on the Hilbert-Schmidt independence crite-
rion (HSIC) to encourage independence between predicted
values and sensitive attributes, and applied this approach to
both linear and kernel regression.

There have also been attempts to develop frameworks that
can be generalized to multiple types of outcomes. Berk
et al. (2017) proposed individual fairness (IF) and group
fairness (GF) penalties and applied them to binary logistic
and linear regression models. Oneto et al. (2020) proposed
a generalized FERM (GFERM) framework, extending the
FERM idea to regression models. Agarwal et al. (2019)
extended their reductions approach for a general class of
problems defined by Lipschitz loss functions and applied
the approach to regression and binary classification. They
considered statistical parity (SP) and bounded group loss
(BGL) as fairness criteria.

Fairness for multiclass classification has also seen relatively
little investigation despite its potential utility, and in particu-
lar in-process frameworks that cover multiclass classifica-
tion do not appear to have been investigated in prior work. A
likely reason is that extending the fairness approaches used
for other problems, such as enforcing equalized odds, is not
trivial to extend to the multiclass case. Ye & Xie (2020)
proposed to use one-versus-rest SVMs with a penalty on
misclassification rates, while Putzel & Lee (2022) have in-
vestigated several different extensions of the demographic
parity and equalized odds criteria in the multiclass setting.
Denis et al. (2021) proposed a plug-in estimator that guar-
antees demographic parity for multiclass classification.

Thus, overall, to the best of our knowledge, there has been
no prior work providing a unified framework for fairness
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methods with GLMs.

3. Problem Formulation
3.1. Notation and Problem Definition

Throughout the paper, we consider the generalized linear
model framework

E[Y|X] =g '(XB) = u(0), (1)

where X and Y are predictor and response variables dis-
tributed over RP and ), respectively, 3 € RP? is a regression
coefficient vector, f is a function of X3, ¢ is a link function,
and ;= g~ ! is a mean function. We provide representative
examples of GLMs in Table 2. The probability density/mass
function of Y given X has the following form, which is
parameterized by 6 and ¢ as

F(u10.6) = exp (3’9‘(;’)(9’

where a, b, and c are functions that vary depending on the
choice of link functions or distributions. In this paper, we
limit our scope to canonical link functions so that § = X 3.

+ C(y,¢)> ;

Suppose that we are given K groups, defined as the pos-
sible values A = {aq,--- ,ax} of a sensitive attribute A
such as race/ethnicity or gender. We denote the predictor
and response variables of group k as X* and Y* and their
probability distributions as p% and p¥., respectively. In turn,
P |y —, represents the conditional distribution of X* given

that Y* = y.

Our primary goal is to build a prediction model that learns
the relationship between X and Y well. A conventional
GLM approach is to estimate a parameter vector f")’GLM that
maximizes the expected log-likelihood, or equivalently min-
imizes expected negative log-likelihood, that is,

BGLM = argénin —E[(B; X,Y)],

where the expectation is with respect to the joint distribution
pxy of (X,Y). To relieve prediction disparity, a fairness
penalty term D(3; X,Y, A) is included to encourage fair
prediction performance between groups.

BFGLM = argmin —E[{(3; X, Y)]+AD(B; X,Y, A), (2)
B

where A is a hyperparameter. As mentioned in the previous
section, several versions of fairness penalties have been pro-
posed. In this paper, we investigate a general framework
for fairness criteria for GLMs, a framework that is theoret-
ically applicable to all types of outcomes as well as being
computationally efficient.

3.2. Fairness Criteria for GLMs

Definition 3.1 (Equalized Expected Outcomes). A GLM,
parameterized by 3, satisfies the criterion of equalized ex-
pected outcomes, with respect to a sensitive attribute A and
response variable Y, if the GLM’s expected outcomes are
identical for all possible outcomes for every pair of groups,
that is,

E [u(X"B)] =E [u(X"B)], 3)

where X5V ~ p];(\Y:v and X% ~ pl)qyzy forallk,l € A
and y € ). Here, ) is a set of all possible outcomes of Y.
In practice, for real-valued or unbounded outcomes, ) is
discretized in the fairness penalty (as in prior work, Donini
et al. (2018)), which we will discuss later in Section 5.2.

Note that the set of 3 satisfying the equalized expected
outcome is non-empty as it can be achieved by the triv-
ial solution B = 0. This criterion is a natural extension
of equalized odds (Hardt et al., 2016), which requires the
predicted values for each group to be the same for each
true outcome y € {0, 1} or equivalently, requires that the
predicted values and the sensitive attribute be conditionally
independent given the true outcomes. However, statistical
independence is not equivalent to equalized expected out-
comes for types of prediction tasks other than binary classifi-
cation; indeed, the equalized expected outcomes is a weaker
condition than statistical independence. Even though the
equalized expected outcomes does not guarantee statistical
independence, producing the same expected prediction for
the same true outcome is still a meaningful criterion.

Previous work in Donini et al. (2018) considered equalizing
loss functions across sensitive attributes for the case of bi-
nary classification. This was further extended to the case of
regression tasks in Oneto et al. (2020). Here we introduce
an extension of this approach to the case of GLMs. For
GLMs, negative log-likelihoods are used as loss functions,
thus, we consider the conditional expected log-likelihood

<y9 —b(9)
a(e)

which measures the expected log-likelihood given y.

Definition 3.2 (Equalized Expected Log-likelihoods). A
GLM satisfies equalized expected log-likelihoods with re-
spect to a sensitive attribute A and response variable Y if

E[((8; X, y)] = /

+ C(ya ¢)> de|Y=y (X)v
xeX

E[(8; XM, y)] = E[U(B: X", y)], )
forall k,l € Aandy € ).

The trivial solution ,@ = 0 also satisfies the criterion of
equalized expected log-likelihoods, so Definition 3.2 is al-
ways achievable. However, we emphasize that Definition
3.1 and 3.2 are different. Equalizing expected outcomes
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Table 2. Common GLM Distributions with Canonical Link Functions

Distribution Link Support “1(X3) ¢ 74 4
1
Bernoulli Logit 0,1 —_— 1 1-—- —
(1) g {0,1} T+ e (—X3) p(l—p)  y—p
. . . exp(Xf3;)
Multinomial( z; Logit 0,1 1 (1 — g Yi — M
(k14) g {0,1} 7S, on(XB;) pi(1 = i) p
Normal(yu,0?)  Identity R X3 o2 1 =)
) 0_2
Poisson( ) Log {0} UZy exp(X3) 1 i Yy —
need not result in equalizing expected log-likelihoods and (1). Let h = p, 0% = X*¥3, and ' = X" 3. Then,
vice versa.
ks l 2
Based on Definition 3.1 and 3.2, we define a measure of (E[M(X 'B)] - Elu(X yﬂ)D
disparity between groups by summing up the squared differ- < E[/(X™B)%E[(X*B — XY 3), (6)

ences of the pairwise expected outcomes or log-likelihoods
for all possible true outcomes:

D= Y > (Eu(X"B) - Eu(X"a)])’",
k,leAyey

DeL= Y > (BB XM, y)] _]E[f(ﬁ§xly7y)])2-
k,leAyey

Here we assume y is discretized into a finite number of
regions causing the summation Zyey to be finite. Both
disparities above can directly be plugged into (2) as a penalty
term to get a fair GLM estimator. However, they are not
convex in general, depending on the choice of link functions,
and thus, it will be hard to attain globally optimal solutions.
In the following section, we introduce a new convex penalty,
an upper bound on each of Dgg and Dgy ..

3.3. A Linear Component Fairness Penalty for GLMs

Lemma 3.3. Let h : R — R be a differentiable function.
Then, for any random variables 6% and 6" distributed over
R, the following inequality holds:

(E[h(6%)] - E[A(6")])*

where 0™ = af* +

< E[R'(0™)%]E[(6* — 6)%], (5)

(1 — )8!, for some o € [0, 1].

The lemma implies that the squared difference of the ex-
pected value of the function % is bounded by the second-
order moment of the difference of the s, provided that the
expectation of A’ is finite. Based on this lemma, we provide
two key results of our work.

Proposition 3.4. Given y € ), let u be an inverse link
Sfunction and 3 be the coefficient vector of GLM defined in

where X™ = aX* 4 (1 — )X, for some o € [0, 1].
The implication of the proposition is that the squared dif-
ference of expected GLM outcomes of group k and [ is
bounded by the second-order moment of the difference of
linear components of group & and /. Therefore, we can min-
imize the left-hand side of (6) by minimizing the second-
order moment provided E[n/(X™3)?] is bounded above.

This result motivates us to use E[(X*¥3 — X'¥3)2] as a
penalty to encourage fairness. As shown in Appendix A,
E[p/ (X™3)?] is bounded above for some outcome distribu-
tions including normal, binomial and multinomial, but not
for all distributions. To address this issue, later in this sec-
tion we introduce results that support the usage of the term
as a fairness penalty for broader classes of distributions.

The next proposition states that E[(X*¥ 3 — X' 3)2] bounds
the difference of expected log-likelihoods as well.

Proposition 3.5. Giveny € ), let

yb — b(6)
h(0) =4(8;X,y) = ———— + c(y, 9),
(0) = €(B; X, y) e (v, ¢)
where § = X3 and let % = X*¥3, and 6" = XY 3. Then,

we have

2
(E[(8; X, y)] - E[0(B; X", y)])
<E[(8: X", y)YJE[(XB - XYB)%,  (7)
where X™ = aX* + (1 — )X, for some a € [0,1].
As in the previous proposition, for some distributions,

E[¢'(B; X™, y)?], is bounded above but not for all. More
rigorous theoretical arguments are presented Section 3.4.
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The two propositions above motivate the definition of fair-
ness using the linear components:

Dic= Y Y E[(X"B-X"p). (8)

k,leAyey

We can rewrite the penalty term by applying the bias-
variance trade-off as

E[(X"B - X"B)*
=V [X"B - XWg] + (B [X*g8] - E [X8])°.

That is, our penalty term consists of the variance of the
difference of linear components and the expected difference
of linear components. The second term, the difference of
linear components, has been considered as a fairness penalty
previously in Bechavod & Ligett (2017) for binary classifi-
cation and Berk et al. (2017) for both binary classification
and linear regression. Our analysis shows that adding the
variance term can effectively bound the difference of the
expected log-likelihoods. In addition, computationally, Dy ¢
is still convex in 3, thus permitting efficient optimization.

3.4. The Fair Generalized Linear Model (F-GLM)

The above results provide the basis for our F-GLM estima-
tor: Brgrm 18 estimated by minimizing the function

SEBX V)] 42 Y SRS - X187 9)

k,leAyey

where A > 0 is a tuning parameter that controls the
trade-off between fairness and log-likelihood and x =
|V|K (K — 1)/2 which is the number of all possible combi-
nations.

We now provide two theorems proving that, at the value
of ﬁFGLM which minimizes (9), the corresponding Dgo and
Dg1 L are bounded by Dy ¢ multiplied by respective constants
C\, and C; independent of A\. Thus, even if we impose
a greater value of \ to get EFGLM with smaller D ¢, the
constant does not change, and thus, the upper bound of Dgg
gets smaller. That is, we can obtain BFGLM with Dgg as
small as we want, by increasing A. This applies to Dgy,
equivalently, provided by Theorem 3.7.

Theorem 3.6. Giveny € Y, let i be an inverse link function
and Brg v be the minimizer of (9), there exists C,, > 0,
which is independent of A\, satisfying

~ ~ 2
(E[N(Xky/@FGLM)] - E[H(leﬁFGLM)D (10)

< CLE[(X™ Braim — X" Braim) -
The proof makes use of the fact that ' is either bounded or

monotonically increasing for the case of canonical GLMs.
Full details of the proof can be found in Appendix A.4

Theorem 3.7. Similar to the previous theorem, we also have
Cy > 0, independent of ), satisfying

~ - 2
(EWﬁFGLw XM )] — B[(Broim: XY, y)]) (11
< CeE[(XkyBFGLM - leBFGLM)2]-

While we do not have theoretical results on the tightness of
the bounds, our empirical results later in the paper suggest
that optimizing the bounds produces models with useful
prediction-fairness trade-offs.

The corresponding empirical objective function for (9),
given a training dataset {(y;,x;, A;) € Y x R*P x A :
i=1,---,n}is

1 n
- = Xy Yi 12
n;aﬁ,x i) (12)
A 1 ,
T Z ZW Z (xiB —x;8)7,
klecAyey (i,5)€Skly
where
X3 — b(x;
g(ﬁ7xz7yl) = y(l(gb)(m +c(yi7¢)7
S = {(i,j) + yi = y; = y. A = k,A; = 1}, and

nk'ly — |8kly|.

Note that our fairness definitions are formulated conditional
on Y = y to equalize the terms (log-likelihood, expected
outcomes, or linear expectations) within each group of sub-
jects with outcomes equal to the discretized value y or in-
cluded within the discretized region. For binary outcomes,
this means enforcing parity separately for y = 0 and y = 1,
which has previously been reported to achieve better fairness
(Hardt et al., 2016) rather than encouraging demographic
parity, which does not condition on y. For continuous or
unbounded outcomes, define a discretization mapping that
maps Y into a discretized set {[d;, d;11) }, rendering finite
numbers of regions. We denote the number of [;, d;+1) by

V.

We emphasize that the discretization is only applied to the
fairness penalty term, but not to the log-likelihood term. Ad-
ditional details about the discretization process can be found
in Section 5.2. In principle, the proposed fairness definition
of equalized log-likelihoods can also be formulated without
conditioning on y to achieve marginal fairness between the
sensitive attributes.

We further note that our penalty term is similar to the individ-
ual fairness penalty of Berk et al. (2017) defined as the sum
of squared difference of linear components x;3 and x;3
of two individuals sampled from different groups weighted
by a distance function d(y;,y;). Berk et al. (2017) used
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d(yi,y;) = Wyi = y;) and d(yi, y;) = exp(—(yi — y;)?)
for binary classification and regression tasks, respectively.
The choice of the identity function as the distance function
seems to yield a formulation which bears similarity to ours.
However, two penalty terms have different denominators,
and the Individual Fairness penalty is not a finite sample
estimation of the expectation (8). In addition, our work
is the first to provide theoretical support for learning fair
GLMs; we combine these theoretical results with extensive
empirical results in Section 6, considerably broadening the
scope of Berk et al. (2017).

4. Consistency

Here we present the /n-consistency of the F-GLM estima-
tor. The full proofs can be found in Appendix A.

k

Lemma 4.1. As min; n® = n — 0o, we have,

D—>% YD E[XF XM =A

kJleAyey

One can easily confirm that if all the pairs X*¥ and X' are
identically distributed, then A becomes O.

Theorem 4.2 (/n-consistency). Let 3" be the true GLM
coefficient. Assuming the two regularity conditions specified
in Zou (20006):

If Vidn — Ao > 0and T(B*) = 271, as miny n* =
n — 0o, then,

vn (BFGLM - 5*) it =23 "H W + MABY), (13)

as ming, n* = n — oo, where W ~ N(0,%) and Z(3")
is the Fisher information matrix. Thus,

BFGLM — argmin — E[((3; X, Y)] + AoBTAB.  (14)
B

The introduction of the penalty term does not alter the
asymptotic variance of the standard GLM estimator; how-
ever, it does introduce bias. The amount of bias depends
on the variance and difference of expectations between the
pairs X*¥ and X',

5. Optimization

In this section we outline our approach for optimizing (12).
We first introduce the matrix form of the penalty term in
(12):
A ,
E/GTDklyIB

where

(i,5)eSHY

with x; € R'*P. Therefore, we can rewrite the objective
function (12) as

_% Z£(18§Xivyi) + 287 (i Z Dkly>ﬂ’
i=1 =

————
D

since D is positive semi-definite the objective function (12)
is convex; thus it can efficiently be solved with first or
second-order methods.

5.1. Newton-Raphson Optimization

Below we describe a Newton-Raphson method, a widely
used second-order approach, for minimizing the objective
function defined in (12). Starting with an initial solution
ﬁ(o) = 0, the Newton-Raphson method iteratively improves
the current solution with the following update rule:

/@(t+l) _ ﬁ(t) B [VQF(,B(t))]_IVF(,@(t))v (15)

where )
VE(B) = ——X"(y - p) + \DS

and )
V2F(B) = —XTWX + \D,
n

where p = g7 1(X3) and W = diag(p).

Convergence of the algorithm is guaranteed if line search
is applied to determine step sizes, provided (12) is convex
in 3. It is well known that the Newton-Raphson method is
less sensitive to the choice of step sizes/learning rates than
first-order methods.

In addition, it has been noted that convergence of first-order
methods is in general not guaranteed for maximizing the
Poisson log-likelihood (He et al., 2016), due to its non-
global Lipschitz continuity. Second-order methods can be
more efficient and effective for finding the global optimum
solution for Poisson log-likelihood loss functions which are
not globally Lipschitz-continuous.

In the results reported in this paper we focus on second-
order methods for the reasons above, but we emphasize that
other optimization approaches (e.g., first-order stochastic
gradient methods) can be used in practice.

5.2. Discretization for Continuous and Unbounded
Outcomes

We consider a discretization mapping such that each seg-
ment [0;,0;41) contains at least one instance from each
group. In particular, for continuous outcomes we use an
equal counts strategy where each segment contains the same
number of samples. We achieve smoother approximations
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Table 3. Real-world datasets categorized by their outcome types. Sensitive attribute and number of its unique categories (K ), sample size
(n) and number of the predictor variables (p) are those of the preprocessed datasets. Preprocessing details can be found in Appendix D.

Outcome Type Dataset Outcome Sensitive Attribute (K) n p

Adult (Kohavi, 1996) Income > 50K Gender (2) 45222 34

Arrhythmia (Guvenir et al., 1997) Presence of Arrhythmia Gender (2) 418 80

Binary COMPAS (Larson et al., 2016) Recidivism in 2Y Race (4) 6,172 11

Drug Consumption (Fehrman et al., 2017) Methadone usage (Y vs N) Race (2) 1,885 25

German Credit (Dua & Graff, 2017) Credit (Good vs Bad) Gender (2) 1,000 46

Communities and Crime (Redmond & Baveja, 2002)  Violent Crimes per Capita Race (3) 1,993 97

. Law School (LSAC) (Wightman, 1998) GPA Race (5) 20,715 7

Continuous

Parkinsons Telemonitoring (Tsanas et al., 2009) UPDRS Score Gender (2) 5,875 25

Student Performance (Cortez & Silva, 2008) Final Grade Gender (2) 649 39

Count Health & Retirement Survey (HRS) # of dgpend;gc{ies Race (4) 12774 23
(https://hrs.isr.umich.edu/about) in daily activities

Multiclass Drug Consumption (Fehrman et al., 2017) I\\gletthlir?S]aYgevsn(f\\/]:f ;1;6 ggvos Race (2) 1,885 25

Obesity (Palechor & de la Hoz Manotas, 2019) Obesity Levels (6) Gender (2) 2,111 23

if we use more segments ¢t. However, because of the con-
straint that at least one sample from each group has to be
included in each segment it is not always possible to in-
crease t as large as we would like. Instead, we start from
a large desired value of ¢ and check if the constraint is sat-
isfied, then if not, we continually decrease ¢ until we get a
proper mapping. Empirically, we find that the performance
is relatively robust as a function of discretization strategy
and number of segments. For count outcomes, which are
discrete but unbounded, we choose integer maximum and
minimum thresholds. Then we set any values greater than
the maximum threshold equal to the threshold while keeping
the other values the same and vice versa. Additional details
are in Appendix B.

5.3. Computational Complexity

Our estimation procedure can be divided into two stages: (i)
preparing D and (ii) Newton-Raphson iterations. The com-
plexity of computing D*¥ is O (nklypz). As a reminder
n*! represents the number of pairs of individuals (7, j) with
A; =k, Aj =1,and y; = y; = y. Since n* is a subset
of the total number of pairs, it is bounded by n2. There
are K2|Y| total terms D*% that make up the full matrix
D. Thus in total computing D takes O(n2K?|)|p?) The
per iteration complexity of the Newton-Raphson algorithm
is O(np? + p?) for all outcomes besides multiclass. The
complexity in the case of multiclass outcomes becomes
O(mnp? + mp?) since there are an additional O(m) set of
parameters 3. However, the complexity of computing D
remains the same in all cases. The complete derivation can
be found in Appendix C.

Thus, the largest contribution to the computational com-
plexity of our approach is from pre-computing D. With
very large dataset sizes (large n), this bottleneck could be

mitigated by using a subsample of the dataset to compute D.
For a dataset which also is high-dimensional, the Newton
Raphson optimization could also be replaced by faster (per
iteration) first order gradient methods. However, in practice,
such speedups were not necessary for any of the real-world
datasets used in this paper. For the largest dataset in our ex-
periments, with n = 45, 222 and p = 14, fitting an F-GLM
took 7 seconds to compute D and an additional 9 seconds
until convergence of Newton-Raphson iterations.

6. Experiments and Results

We performed experiments for a comprehensive list of
benchmark datasets to evaluate the proposed F-GLM, com-
paring it with the naive GLM and with multiple in-process
linear model-based fairness-aware methods.

6.1. Datasets and Fairness-Aware Methods

We consider four different tasks/outcome types: binary clas-
sification (5 datasets), multiclass classification (2 datasets),
continuous outcomes (4 datasets), and count outcomes (1
dataset). General characteristics of the datasets are summa-
rized in Table 3. For the binary classification and regression
tasks, we evaluated the naive GLM, the proposed F-GLM,
and the methods listed in Table 1. For count and multino-
mial outcome prediction tasks, we evaluated the naive GLM
and the proposed F-GLM. Canonical link functions are used
for the GLM and F-GLM: the identity function for normal
continuous outcomes, logit function for binary outcomes,
log function for count outcomes, and logit functions for
multinomial outcomes.
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Figure 1. Experimental results for negative log-likelihoods and Dgy ;. for 11 real world datasets, with binary (a-e) and continuous outcomes
(f-i). Each subtitle is in the form of Dataset—Outcome Type—Sensitive Attribute(X). For both binary and continuous outcomes we use a
Generalized Linear Model (GLM, red star %), Fair Generalized Linear Model (F-GLM, black X #), Individual Fairness penalty (IF,
green pentagon @ ), Group Fairness penalty (GF, dark red square m), and Bounded Group Loss (BGL, orange triangle ). Methods for
binary outcomes also include the Support Vector Machine (SVM, grey hexagon @), Fair Constraints (FC, green diamond ¢ ), Disparate
Mistreatment (DM, blue circle @), Squared Difference Penalizer (SD, dark blue diamond ), Fair Empirical Risk Minimization (FERM,
plum pentagon ), Statistical Parity (SP, teal triangle v ). Methods for continuous outcomes include the HSIC penalty (HSIC, blue circle
@), General Fair Empirical Risk Minimization (GFERM, plum pentagon ). See Table 1 for additional information for each method.
Each dot represents the mean performance across test sets for a specific hyperparameter value A and the vertical and horizontal dotted
lines reflect variation across test sets (IQRs) for each of performance and disparity.
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6.2. Evaluation Metrics

Each method was evaluated in two aspects: (i) overall pre-
diction performance measured by log-likelihood and (ii)
disparity of the log-likelihoods between groups. Both met-
rics were computed using the test instances. Note that the
disparity of the log-likelihoods is an empirical estimate of
DgLL. Since there is not a clear consensus on the best choice
for a prediction disparity measure in the fairness literature,
we also investigated model performances for other disparity
measures (including Dgo) and included them in Appendix
F.

6.3. Experimental Methods

We randomly divided each dataset into training (70%) and
testing (30%) sets, except for the Adult dataset which has
predefined train/test splits. Each model was trained on the
training set by varying its fairness-related hyperparameter (if
it exists) over a suitable range. Varying the hyperparameters
in this manner produces trajectories of model performance
that illustrate the trade-offs in prediction-disparity for each
method. Evaluation for a range of such operating points
is commonly done in the fairness literature rather than fo-
cusing on selecting a single hyperparameter value for each
method. The performance and disparity measures were then
estimated on the test dataset. For each value of the hyper-
parameter, the performance and disparity measures were
estimated by averaging over 20 replicates of random splits
of the training and testing sets (except for the Adult dataset).

6.4. Results

The results for binary and continuous outcomes are dis-
played in Figure 1, where the z axis represents disparity in
the group log-likelihoods and the y axis is the overall log-
likelihood, as measured on test sets. For most datasets, the
naive GLM is the most unfair solution (largest value of the
x axis), which is expected due to the absence of any fairness
constraint. Most of the fairness-aware methods we evaluated
show wide-ranging trajectories of trade-offs between overall
prediction performance and disparity. The trajectories of
the competitive methods seem to be broadly consistent with
earlier empirical results. The proposed F-GLM is generally
one of the best performers relative to competitors for most
datasets, in that it can decrease disparity substantially while
maintaining overall predictive accuracy.

The results for multiclass and count outcomes are also dis-
played in Figure 1. For the Drug and Obesity datasets, the
negative log-likelihoods of the underrepresented sensitive
attribute group were 19% and 43% worse than those of
the majority group. For the HRS dataset, the MSEs of the
non-Hispanic black and Hispanic groups are 1.75 and 1.61
times of that of the non-Hispanic white subjects, respec-

tively, highlighting the need for fairness-aware prediction
algorithms in practice. Overall the proposed F-GLM re-
sults in trajectories that flexibly trade-off overall prediction
accuracy with disparity.

Results of the disparity and overall prediction performance
using other metrics, including log-likelihoods and AUROCs,
are presented in the supplementary materials, and showed
mostly similar patterns as Figure 1.

7. Conclusions

We presented a fair generalized linear model (F-GLM), in-
corporating a convex penalty term based solely on the linear
components of the GLM, in order to learn fair predictions.
We provided statistical justification that the F-GLM achieves
fairness both for the expected outcomes and log-likelihoods
between groups. Thus, the framework is appealing both
theoretically and computationally. Experimental results on
benchmark datasets suggest that the F-GLM framework can
improve prediction parity while maintaining overall accu-
racy for binary classification and regression, as well as for
less-studied outcomes such as count and multiclass.

One limitation of the F-GLM is its linearity; even though
it provides good interpretability, its predictive power can
be sub-optimal if the relationship between predictor and re-
sponse variables is non-linear and complex. We conjecture
that the F-GLM approach proposed here could be extended
beyond linear models to provide a useful fairness frame-
work for nonlinear machine learning models such as kernel
machines or neural networks, by equalizing the linear com-
ponents in the final decision layer.

An interesting extension of work would be to explore the
connection between our fairness penalty and variance reg-
ularization, particularly when used for robust learning of
predictive models or domain generalization.
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A. Proofs

A.1. Lemma 3.3

Since h is differentiable, by the mean value theorem, we have h(0%)—h(6") = b’ (™) (0% —6"), where 6™ = af*+(1—a)0',
a € [0, 1]. Thus, by applying Cauchy-Schwarz inequality, we obtain

(E [n(0%) — h(o")])" = (& [0 (0™)(0" — "))
E[hwm (6"~ 02].

Note that it is not necessary to assume 6% and #' are independent.

A.2. Proposition 3.4

The inverse of the canonical link functions p for GLMs are monotone and differentiable (Dobson & Barnett, 2018). Let
08 = X3, ¢ = XW3, and h = p. Note that it is not necessary to assume X*¥ and X' are independent. Applying
Lemma 1 yields

(E [u(X"B) — u(X¥B)])" = (E [u(X"B)(X B ~ XB)])"
<E[¢/(X"B)°|E[(X*8 - X"B)?],

where X™ = aX*¥ + (1 — o)X, for some a € [0, 1].

A.3. Proposition 3.5

Let
y0 — b(0) yXB — b(XB)
a(o) a(e)

here, y is a fixed value and § = X 3. The log-likelihood is a concave and differentiable function of §. Thus, with ¥ = X*¥3
and 0! = XY 3, we can apply Lemma 1. That is,

h(8) = +cy,¢) = +cly, 9) = UB; X, y),

(B [0(8; XK, y) — 0(3; X%, 9)])° = (B [¢/(8; X, y)(XF8 — X1¥3)])
<E[¢(8:X™,)*| E[(X"8 - X"8)],

where X = aX* + (1 — o)X, for some « € [0, 1].

A.4. Theorem 3.6

If 11/ is bounded (e.g. Bernoulli or Multinomial, see Table 2), we can easily find C,, = sup(u’)?; however, for some link
functions (or outcomes) ' is not bounded and in that case we cannot find C,, in the same way. Instead, for that case, we use
the fact that ' is monotonically increasing and nonnegative to complete the proof. We first introduce a lemma.

Lemma A.1. Let ,@FGLM be the solution for (9) given X\ > 0. Then,

5max A) 5
1Brcull3 < (SEA))HBGLMI; (16)

where Omax(A) and dpmin(A) are the largest and the smallest nonnegative eigenvalues of A. We further note that, by the
Perron-Frobenius Theorem, d,,,,, and ., are the largest and the smallest row sums of A.

Proof. The lemma follows from the following chain of inequalities:

~ ~T ~ ~T ~ ~
Smin (A)Beaimllz < BramABroim < BormABoim < Omax (D) Barmll3- )
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The left-most inequality follows from the eigenvalue decomposition of A, that is,

T ~ T A T ~ .
BromABraim = Braim®@ "AQBEGLM = Omin (A)Braim®@ ' QBroim = Omin (D) Braimll3,

where A is a diagonal matrix whose entries are the eigenvalues of A. Since A is positive semi-definite, the entries of A are
all non-negative. Likewise, we have

~T ~ ~T _ ~ ~T IR ~
BomABoim = Barm@ 1AQIBGLM < Omax (D) BeLm@ 1@50LM = 5maX(A)HﬁGLMH§v
which yields the right-most inequality. The inequality in the middle trivially holds because EFGLM and BGLM are optimal

solutions for the F-GLM and the naive GLM problems. O

Proof of Theorem 3.6. Here we only consider monotonically increasing p’ because otherwise (Bernoulli, multinomial,
and normal) ' is bounded and thus we can easily find the quantity that bounds E[u/ (X™Bggm)?]. We have a chain of
inequalities that follows from Lemma A.1 as well as the eigenvalue decomposition:

Bran (X" X™)Bram < Fmax(X" T X™)[1Brarmll3 < Smax(X™ T X™) Gmax(A) /Sinin (A) 1 BowmlI3-

Therefore,
~ ~T ~ ~
X" Browml = Browm (X X™)Broiw)? < (Bmax(X™TX™) (Gmax (D) /Smin (A)))?[| Bormll2,
which yields,
Eli/ (X" Brorm)’] < El (X" Brorm)?] < B (Bmax(X™TX™) (Smax (A) /6min ()2 Bomll2)?].
This term is independent of A\ but depend on the predictors and responses. O
A.5. Theorem 3.7

Proof of Theorem 3.7. In the case of Bernoulli and multinomial, we can take sup, (y — p(x))? where 0 < p(z) < 1;
otherwise even if 1 is unbounded, it is still monotonically increasing. Thus,

Ell (Brauw: X™, )2 = a(¢) 2Ely® — 2y(X™ Braim) + 1(X™ Braim)’] (18)
<a(¢)” 2(y2 +2|y|E[|N(XmBFGLM)H JFE[N(XmBFGLM)zD (19)

< a() 2y + 2y |E[| (1 X" Braru)l] + Elu(1X™ Berul)?]) (20)

< a(¢) (W + 2y [E[| i (Gunax (X™TX™) (Gmax (A) /min(A)) 2 Barmll2)l] - @21

+ B[] (Gmax (X™X™) (Gmax (A) /Gmin (A) 2| Barmll2)?]) (22)

= () 2E[(|y] + £1(] Gmax (X7 X™) (Ouna (D) /Grmin (A))) 2| Bermllz])?] (23)

L]

Moreover, we have an inequality Gpax (X™7X™) < Fmax (XFYTXFY) 4 §an (XWTXW) 4 §an (XFVTXW 4 XWTXFY)
that allows us to remove X™ and « which are unknown.

A.6. Lemma 4.1
For any k,l € A and y € ), we have a chain of inequalities
1
DY — 5 > (i —x) (% = xy), (24)

(i,5)eSHY

where S*Y = {(i,j) : v = y; = y, A; = k, A; = I}, which is a set of samples drawn from the joint distribution of
(Xky X'). Thus, as n*, n! — oo, DFW — E[(X*¥ — le)z] = V[X*¥ — XW] + E[X*¥ — X']2. Therefore,

D= D)|K Z Z chly N Iy'K Z Z ka _ le] +E[Xky o le]Q) 7 (25)

klEAyey kleAyey

as ming n* — oo.
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A.7. Theorem 4.2

For the proof, we assume the two regularity conditions given in Zou (2006):

1. The Fisher information matrix Z(3*) = ~! = E[p""(XB8*)XTX] is finite and positive definite.
2. There is a sufficiently large enough open set I/ that contains the true 3 such that Vv € U,
B(X7)] < M(X) < o0
and
E[M (X)[X; XX} < 00
foralll < j,k,1 <p.

Note that these regularity conditions are considered to be mild (Zou, 2006).
Now define

Vo(u) = F (ﬁ + %) - F(B),

where F is the objective function for the F-GLM. Then V,,(u) is minimized at u = /n (EFGLM - ,6*). Using the Taylor

series expansion, we can rewrite V,,(u) as

n

Valw) == > (vi - b'(xﬁ*))’j‘g

() n(s ) 7]

~* . . . ..
where 3 is between 3% and 8" + % Given the regularity conditions the first three terms converges to

+ i lb”(xﬂ*)uT@u + n—% i lb///(X’B*)(x‘u)g
~2 ’ n 6 ’ ’

i=1

+)\n

1
u'W + §uTEu

in distribution, where W ~ A/ (0, X). On the other hand, for the last term, we have

2uTDg n u’Du
vn n

provided A\, /v/n — Ao > 0and D — A as minj n* — oo. Thus, we have

A BooxouTAB* 40,

1
Vi (u) LN V(u) =u'W+ iuTEu +2x0ul AB".

Therefore,
vn (,E)'FGLM — ﬂ") = argmin V, (1) - argmin V(u).

Note that V(u) is minimized at u = =X~ (2)\0A8* + W).
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B. Discretization
B.1. Continuous Outcomes

For continuous outcomes, i.e., the regression task, we investigated two different discretization strategies, which we refer to
as equal counts and equal lengths. For the equal counts strategy, we construct segments [d;, d;4+1) which each include the
same amount of samples, regardless of their group memberships, while the length of the segments are allowed to vary. In
contrast, the equal lengths strategy makes each segment be the same length while the number of samples inside each segment
can differ. Both strategies do not guarantee that each segment includes at least one sample from all groups which causes
the penalty term to be undefined for some segments. To avoid this, we vary the number of segments starting from a large
number and check if all the segments include at least one sample from all the groups. If not, we continually decrease the
number of segments until we get a set of segments with each including at least one sample from all the groups. Algorithm 1
describes this discretization procedure for continuous outcomes. We intuitively expect that a larger number of segments will
provide better approximations. Thus, for the experiments, we set the max number of segments to 100. We found the equal
counts based discretization results (on average across 20 different splits of the training data) in 2.75, 25, and 8 segments for
crime, parkinsons, and student datasets, respectively, while the equal lengths results on average in 4.2, 7, and 5 segments,
respectively.

We performed additional experiments to check if the F-GLM with continuous outcomes is sensitive to the number of
segments. The results are summarized in Figure 2. We see that the choice of segments can change the performance-disparity
trade-off trajectories; however, the overall patterns do not change much.

We note that discretization of y was not a primary focus of our study: further investigation is likely to be worthwhile, both
from a theoretical perspective as well as investigating other algorithmic discretization strategies.

B.2. Count Outcomes

For count outcomes, i.e., the Poisson regression task, we find the smallest and the largest integers L and U satisfying
{(xi,yis Ai) i =y, Ai =k)} #@forallk € Aand L < y < U. Then, we set y; = min{y;, L} and y; = max{y;, U}
for all 7.

C. Computational Complexity

C.1. Preparing D

Since x;,x; € R*P, the complexity of computing (x; — x;)T (x; — x;) is O(p?). Thus, the complexity to compute D*¥
is O(n*wp?). Moreover, we have n*'¥ < n(n — 1)/2. Thus, the complexity of preparing D is O(n?p?K2|)|).

- 0.048 o 112 < 0.96
o o o
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Figure 2. Experimental results for equal counts ( ) and equal lengths (purple triangle markers) with various numbers

of segments (ranging from 1 to 3 — 25 depending on the dataset); a darker color means a greater number of segments. Our observation
from the three datasets is that there is no straightforward relationship between the number of segments and better trade-off trajectories.
However, the overall shape of the tradeoff trajectories between performance and disparity remains similar.
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C.2. Newton-Raphson Iteration

Computing the gradient consists of two matrix multiplication operations with complexities O(np) and O(p?). Moreover,
the complexity of computing the Hessian is O(np?) provided W is a diagonal matrix. Also, inverting the Hessian is O(p?®)
since the Hessian is a dense p x p matrix. Therefore, the per-iteration complexity of the Newton-Raphson algorithm for the
F-GLM is O(np? + p?).

D. Datasets and Preprocessing Details
D.1. Adult Dataset

The Adult dataset contains the income records for 45,222 individuals from the 1994 census database, where the outcome
income is dichotomized into a binary variable (below 350K in income versus above $50K in income). Each record is
composed of the outcome and 14 predictors, among which 8 are categorical and 6 are continuous.

The variable gender was considered a sensitive attribute in this dataset (Male: 67%, Female = 33%). Other covariates of
interest included age, professional occupation, education level, marital and relationship status, capital gains and losses,
ethnicity, and country of origin.

Note that due to missing data the total of 48,842 instances was decreased to 45,222 after filtering out incomplete records.

D.2. Arrhythmia Dataset

The Arrhythmia dataset contains the presence of arrhythmia status for 418 individuals, which we treat as a binary outcome
(presence vs absent). Each record is composed of the outcome and 80 predictors of interest.

The variable sex was considered a sensitive attribute in this dataset (Male: 53%, Female = 47%). Other attributes included
variables such as age, height, weight, QRS duration among others.

Note that the original sample size of 452 was reduced down to 418 records due to the removal to all samples with missing
data and 2 individuals with nonsensical height values.

D.3. COMPAS Dataset

The COMPAS dataset contains records for 6,172 criminal defendants across the United States of America, where we use
whether each defendant became a recidivist within 2 years of the first offense as outcome (was a recidivist within 2 years
vs was not). Each defendant has 10 predictor variables, including gender and race/ethnicity. The latter variables were
considered as sensitive features and have imbalanced distributions across defendants. (Sex: Female: 19%, Male: 81%, we
set Female as the baseline category. Race: Caucasian: 34%, African-American: 52%, Hispanic: 8%, Other: 6% which
contain Asian and Native-American ethnicities, we set Caucasian as the baseline).

The dataset further contains 1 categorical variable, degree of the charge (F: 0.36, M: 0.64, we set F as the baseline), 5
continuous variables (age in years with mean = 34.5, number of priors counts with mean = 3.2, juvenile felony counts with
mean = 0.06, juvenile misconduct counts with mean = 0.1, juvenile other category counts with mean = 0.11) and 2 time
variables (time in jail (days) with mean = 15, time in custody (days) with mean = 35).

Note that the original dataset contained 7,214 records. However to ensure data quality we removed records that had a
charge date of a defendant’s COMPAS score crime that was not within 30 days from when the person was arrested, under
the assumption that this is not the correct offense for this record. We further removed records that had missing fields for
recidivism or the degree of the charge of interest, resulting in a total sample size of 6,172 with complete observation data.

D.4. Drug Consumption Dataset

The drug consumption dataset contains records for 1,885 respondents and each respondent has 12 predictor variables,
including gender and race/ethnicity. Participants were questioned concerning their use of 18 legal and illegal drugs and
answered with one of the following seven categories: never used, used over a decade ago, used in the last decade, used in
last year, used in last month, used in last week, and used in last day.

Thus, we can define three different tasks based on the participant’s response: binary classification of classifying never
used versus the others (ever used) and both ordered and unordered multiclass classification classifying the original seven
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categories of the outcomes. For the binary classification we used methadone. Further, we choose to use methamphetamine
as a response variable, one of the most addictive and widely used drugs.

The dataset consists of 4 categorical and 8 continuous predictors. All the continuous predictors were standardized to have
zero mean and unit variance a priori, by the data provider, so we did not apply any transformations. We applied one-hot
encoding to all the categorical predictors.

There are two sensitive attributes: gender (Female: 50%, Male: 50%) and race/ethnicity (Asian: 1.38%, Black: 1.75%,
Mixed-Black/Asian 0.16%, Mixed-White/Asian: 1.06%, Mixed-White/Black: 1.06%, Other 3.34%, and White: 91.25%).
Because of the severe imbalance in race/ethnicity, we merged all the non-White race/ethnicity into a single non-White
category.

D.5. German Credit Dataset

The German Credit dataset contains records for 1000 individuals, describing the level of risk for their credit, which we
treated as binary (good vs bad). Each record is composed of the outcome and 21 predictor variables among which 14 were
categorical and 7 were continuous.

The variable sex was considered a sensitive attribute in this dataset (Male: 69%, Female = 31%). Other covariates of interest
included the status of checking account, credit history, saving in accounts and bonds, employment status, property ownership,
disposable income and age among others.

There were no reduction from the original sample size due to missingness, since all records had complete information
available.

D.6. Communities and Crime Dataset

The Communities and Crime dataset contains the criminal records for 1,994 communities in the United States of America
from socio-economic data from 1990 US Census and law enforcement data from the 1990 US LEMAS survey. The outcome
of interest is the violent crimes per population (continuous). Each record is composed of the outcome and 31 predictors,
among which is the sensitive attribute race (stratified between Asian: 4%, Black: 11%, Hispanic: 6%, White: 79%). Other
predictors included age, income, urbanism, police budget among others.

Note that the original sample size was significantly reduced due to high levels of data missingness across predictors.
Moreover, the variables, state, county, community, community name and the fold for cross-validation were removed as they
serve no purpose for prediction.

D.7. Law School Admission Council Dataset

The Law School Admission Council (LSAC) dataset contains records for 22,407 Law School students gathered by a National
Longitudinal Study primarily undertaken in response to reports suggesting bar passage rates were lower among examinees
of color. The outcome of interest is the Grade Point Average of students during Law School which is a continuous variable.
We consider both the race/ethnicity and the gender of students to be sensitive factors. (Gender: Female = 44%, Male = 56%,
we set Female as the baseline category. Race: White/Caucasian: 88.2%, African-American: 6%, Asian: 4%, we group all
other ethnicities under Other: 1.8%. We set White/Caucasian as the baseline category). We further included two continuous
variables as predictors, namely the LSAT score of each student (median 37, IQR 33-41) and the university GPA of students
(median 3.2, IQR 3-3.5) and a single categorical variable specifying if students are participating in the academic program at
full or part time (part time: 7.7%, with full time being the baseline category).

After removing observations containing missing data, the final dataset contained records for 22,368 students with complete
information.

D.8. Parkinson’s Telemonitoring Dataset

The Parkinson’s Telemonitoring dataset contains the record of 42 patients with early-stage Parkinson’s disease recruited
through a six-month trial of telemonitoring for remote symptom progression monitoring. The dataset includes 5,875
instances of data observations across all patients with outcome Unified Parkinson’s Disease Rating Scale (UPDR) score
which is a continuous value evaluating various aspects of Parkinson’s disease.
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The sensitive attribute of the dataset was set to be the sex of patients (Female: 33%, Male: 67%). We further included 16
predictors. All records had complete information and thus there was no sample size reduction due to missingness.

D.9. Student Performance Dataset

The Student dataset contains records for 382 students for 2 separate classes (mathematics and Portuguese) over 3 trimesters,
we use the grades students received in the third trimester (numeric score between 0 and 20). We separate this dataset into
two separate datasets, with mathematics scores and Portuguese scores respectively. The sensitive variable in this dataset is
the sex of students. (Sex: Female: 48%, Male: 52%, we set Female as the baseline). The dataset share the same set of 25
further predictors, among which 3 are continuous and 21 are categorical. Note that some categorical variables were further
collapsed to eliminate smaller categories (such as the education level of the mother and father, the travel and study times,
family relationship statuses and free time levels of students).

D.10. Health & Retirement Survey Dataset

The University of Michigan Health and Retirement Study (HRS) longitudinal dataset, recording survey responses on health
and aging. The dataset contains 12,744 instances. The number of dependencies in daily activities was set as the target
outcome as a count variable. This is encoded as the score in the dataset, ranging from O to 10.

The ethnicity of patients was set as the sensitive attribute of the dataset (Afro-American: 15%, Hispanic: 10%, Other: 2%
and White: 73%). The 22 predictor variables included gender, marital status, age, education and net worth among others.
Note that large portions of the data entries were missing and we considered only complete cases.

D.11. Obesity Dataset

The Obesity dataset contains the health records of 2,111 individuals with their assessed level of obesity. Obesity is treated a
multilevel outcome with levels: Insufficient weight (13%), normal weight (13%), overweight level 1 (14%), overweight level
2 (14%), obesity type I (17%), and obesity type II/III (29%).

The gender of patients was set as the sensitive attribute of the dataset (Female: 49%, Male: 51%), and we further included
14 predictor variables such as age, family history and smoking status. Note that there were no missing data in this dataset,
all individuals had complete information.

E. Experimental Setting Details
E.1. Implementation of Competitive Methods

For the fair constraints (Zafar et al., 2017b) and disparate mistreatment (Zafar et al., 2017a) methods, we used the Python
code provided by the authors'. For the squared difference penalty (Bechavod & Ligett, 2017), and the group and individual
fairness convex penalty (Berk et al., 2017), we adapted our Newton-Raphson method (all three methods can be expressed in
the same form as that of F-GLM using a different D.) Note that both papers suggested using CVXPY (Diamond & Boyd,
2016; Agrawal et al., 2018), which is an off-the-shelf optimization solver, for solving their problems. We also implemented
the HSIC penalty (Pérez-Suay et al., 2017) which can easily be solved because the problem has a closed form solution for
the linear case. For the linear FERM method, we used its Python implementation provided by the authors?>. We used the
fairlearn?® Python package for the reductions approach with statistical parity or bounded group loss (Agarwal et al.,
2018; 2019). Specifically, we used grid search (GridSearch function) instead of the exponentiated gradient method to get
a single model. For the general FERM (Oneto et al., 2020), since we did not find any available code online, we implemented
the method with CVXPY. Note that the authors suggested using CPLEX*, which is an off-the-shelf optimization solver.

'nttps://github.com/mbilalzafar/fair-classification
https://github.com/jmikko/fair ERM
‘https://fairlearn.org/
‘nttps://www.ibm.com/analytics/cplex—optimizer
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E.2. Hyperparameters

We presented the range of the hyperparameters used for our experiments in Table 4. For some datasets, we used slightly
different range of hyperparameters for some methods. Details can be found in our code.

Table 4. The range of the hyperparameters that control accuracy-fairness trade-off used for the experiments

Methods hyperparameter = min value  max value
Generalized Linear Model - - -
Linear SVM* - - -
Fair Constraints c 1073 20
Disparate Mistreatment c 1073 20
Squared Difference A 1073 10
Group Fairness A 1073 10
Individual Fairness A 1073 10
HSIC Penalty I 1073 5
FERM* e 0 0
GFERM € 0 100
Statistical Parity w** 0 1
Bounded Group Loss w** 0 1
Fair GLM A 1073 10

*We used v € {0.05,0.01} for SVM and FERM.
**The code provided by the authors allows only € = 0.

*#*We varied constraint_weight parameter of GridSearch function.

F. Additional Experimental Results

We provide additional plots that summarize the experimental results here. Figure 4 shows the overall performance and
disparity in mean squared error (for binary and multiclass classification)—also referred to as Brier score). The overall
patterns are quite similar to those in Figure 1 in the main paper, supporting the conclusion that the F-GLM can produce
favorable performance-disparity trajectories. For regression tasks, the negative log-likelihoods and mean squared errors are
equivalent.

Figure 5 shows the performance and disparity measured for miscellaneous task-specific metrics; AUROC for binary
classification, mean absolute error (MAE) for regression, misclassification rate for multiclass classification, and MAE
for Poisson regression. We note that AUROC is the only higher-the-better metric so we plotted 1-AUROC instead to be
consistent with other metrics. Also, AUROC cannot be calculated for each class because it is a concordance score, so it was
not separately calculated for each class. Here the results are more mixed than in Figure 1, in Figure 3 or in Figure 4 (in
terms of comparing F-GLM with other methods), but this is to be expected since performance criteria such as AUROC are
not necessarily highly correlated with the other performance metrics.
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Figure 3. Experimental results in negative log-likelihoods and Dgo from 11 real world datasets with binary (a-e) and continuous outcomes
(f-i). Each subtitle is in the form of Dataset—Outcome Type—Sensitive Attribute(X). For both binary and continuous outcomes we use a
Generalized Linear Model (GLM, red star %), Fair Generalized Linear Model (F-GLM, black X #), Individual Fairness penalty (IF,
green pentagon @ ), Group Fairness penalty (GF, dark red square m), and Bounded Group Loss (BGL, orange triangle » ). Methods for
binary outcomes also include the Support Vector Machine (SVM, grey hexagon @), Fair Constraints (FC, green diamond ¢ ), Disparate
Mistreatment (DM, blue circle @), Squared Difference penalizer (SD, dark blue diamond ), Fair Empirical Risk Minimization (FERM,
plum pentagon ), Statistical Parity (SP, teal triangle v ). Methods for continuous outcomes include the HSIC penalty (HSIC, blue circle
@), General Fair Empirical Risk Minimization (GFERM, plum pentagon ). See Table 1 for additional information for each method.
Each dot represents mean performance across test sets for a specific hyperparameter value .
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Figure 4. Experimental results in mean squared errors (also referred to as brier scores for classification problems) from 11 real world
datasets with binary (a-e) and continuous outcomes (f-i). x-axis is disparity of mean squared errors. Each subtitle is in the form of
Dataset—Outcome Type—Sensitive Attribute(K). For both binary and continuous outcomes we use a Generalized Linear Model (GLM,
red star %), Fair Generalized Linear Model (F-GLM, black X #), Individual Fairness penalty (IF, green pentagon @ ), Group Fairness
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). Methods for binary outcomes also include the
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Figure 5. Experimental results in some other metrics (AUROC/MAE/misclassification rate) from 11 real world datasets with binary (a-e)
and continuous outcomes (f-i). The x-axis is the disparity of each metric. Each subtitle is in the form of Dataset—Outcome Type—Sensitive
Attribute(K). For both binary and continuous outcomes we use a Generalized Linear Model (GLM, red star ¥% ), Fair Generalized Linear
Model (F-GLM, black X #), Individual Fairness penalty (IF, green pentagon @ ), Group Fairness penalty (GF, dark red square m), and
Bounded Group Loss (BGL, orange triangle » ). Methods for binary outcomes also include the Support Vector Machine (SVM, grey
hexagon @), Fair Constraints (FC, green diamond ¢ ), Disparate Mistreatment (DM, blue circle @), Squared Difference penalizer (SD,
dark blue diamond ), Fair Empirical Risk Minimization (FERM, plum pentagon ), Statistical Parity (SP, teal triangle v ). Methods
for continuous outcomes include the HSIC penalty (HSIC, blue circle @), General Fair Empirical Risk Minimization (GFERM, plum
pentagon ). See Table 1 for additional information for each method. Each dot represents mean performance across test sets for a specific
hyperparameter value \.
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