
EAT-C: Environment-Adversarial sub-Task Curriculum for RL

Shuang Ao 1 Tianyi Zhou 2 3 Jing Jiang 1 Guodong Long 1 Xuan Song 4 Chengqi Zhang 1

Abstract
Reinforcement learning (RL) is inefficient on
long-horizon tasks due to sparse rewards and its
policy can be fragile to slightly perturbed environ-
ments. We address these challenges via a curricu-
lum of tasks with coupled environments, gener-
ated by two policies trained jointly with RL: (1) a
co-operative planning policy recursively decom-
posing a hard task into a coarse-to-fine sub-task
tree; and (2) an adversarial policy modifying the
environment in each sub-task. They are comple-
mentary to acquire more informative feedback
for RL: (1) provides dense reward of easier sub-
tasks while (2) modifies sub-tasks’ environments
to be more challenging and diverse. Conversely,
they are trained by RL’s dense feedback on sub-
tasks so their generated curriculum keeps adaptive
to RL’s progress. The sub-task tree enables an
easy-to-hard curriculum for every policy: its top-
down construction gradually increases sub-tasks
the planner needs to generate, while the adversar-
ial training between the environment and RL fol-
lows a bottom-up traversal that starts from a dense
sequence of easier sub-tasks allowing more fre-
quent environment changes. We compare EAT-C
with RL/planning targeting similar problems and
methods with environment generators or adver-
sarial agents. Extensive experiments on diverse
tasks demonstrate the advantages of our method
on improving RL’s efficiency and generalization.

1. Introduction
Although RL achieves breakthrough success on some chal-
lenging tasks (Lillicrap et al., 2016; Mnih et al., 2015; Flo-

1University of Technology Sydney 2University of Washing-
ton, Seattle 3University of Maryland, College Park 4Southern
University of Science and Technology. Correspondence to:
Shuang Ao <shuang.ao@students.tus.edu.au>, Tianyi Zhou <tiany-
izh@uw.edu>, Jing Jiang, Guodong Long, Chengqi Zhang
<{jing.jiang, guodong.long, chengqi.zhang}@uts.edu.au>, Xuan
Song <songx@sustech.edu.cn>.

Proceedings of the 39 th International Conference on Machine
Learning, Baltimore, Maryland, USA, PMLR 162, 2022. Copy-
right 2022 by the author(s).

RL Agent

- Ini�al state s, final goal state g, sub-goal gi generated by path planner

- Environment/ modified environmentE Ei,j

- Training data

- Path planner generates a sub-goal given a (s,g) pair

Auto-Generated Sub-task Curriculum

layer-0

layer-1

layer-2

layer-3

S gE�

Top-Down
EASY TO HARD

· Train Path Planner;
· Generate a
 Sub-tasks Tree
 for a task (s,g)

EASY TO HARD
· Train RL agent
 to complete each
 sub-task;
· Train EG to modify
 the environment

Bottom-up

g4S gE1,1 E1,2

gg2 g4S g6E2,1 E2,2 E2,3
E2,4

S g1 g2 g3 E3,8
g5 g7g4

g6 gE3,1 E3,2
E3,3 E3,4 E3,5 E3,6 E3,7

PP

Path Planner
g

s
g’

Co-opera�ve Path Planner (PP)

EG

- A sub-task defined by two sub-goals and a modified environment

Time-cost data
c(g,g’) for
completing
each sub-task
(g,g’)

g

s
a

Goal-condi�oned RL

A sub-task sequence for each layer of the sub-task tree:
(e.g., layer-3 (s,g1,E3,1), (g1 ,g2 ,E3,2),...,(g7 ,g,E3,8))

Trajectory of RL
in a sub-task:
(s,a,r(s,a|g),E) for
each step, r(s,a|g)
is the collected
reward.

Adversarial Environment Generator (EG)

Environment
Generator (EG)

g

Ei,j

g’
Ei,j+1

RL

- EG modifies the environment for a sub-task based on its previous sub-task

- The trajectory of RL in a sub-taskRL

a - Ac�on taken by the RL agent

s g gi

- RL agent takes an ac�on at each �me-step given a goal/sub-goal state g

Figure 1: Main structure of EAT-C: The path-planner recur-
sively generates a sub-task tree for a task (g0, g), while the envi-
ronment generator (EG) adversarially modifies the environment
of each sub-task. RL agent is trained on a bottom-up curriculum
and its collected data are used to train the path-planner and EG.
(Larger version in Fig. 6)

rensa et al.), it is highly inefficient when targeting long-
horizon tasks due to the sparse rewards. Moreover, a policy
trained in a specified environment can be sensitive to small
changes in the deployed environment and thus generalizes
poorly in practice. Hence, selecting or generating more
informative tasks and environments to train an agent is es-
sential to more efficient, robust, and versatile RL. In this
paper, we mainly study goal-conditioned RL (Kaelbling,
1993) whose policy is trained to adapt to any given goal/task.

The sparse reward problem has motivated reward shap-
ing/relabeling and curiosity-driven exploration methods that
provide dense reward. Hierarchical RL/planning (Elban-
hawi & Simic, 2014; Nasiriany et al., 2019; Jurgenson
et al., 2020; Ao et al., 2021; Pertsch et al., 2020) decom-
poses a complicated task/motion as a root-to-leaf path of
sub-tasks on a search tree, where a higher-level task in-
vokes lower-level ones. However, building the tree requires
expensive hierarchical-partition of the whole state-action
space and pre-defined sub-tasks, which can be either too
easy or too hard for different stages of RL. Reward shap-
ing (Laud, 2004) relies on heuristics or external guidance
to provide dense rewards for exploring uncertain actions,

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

rarely-visited states, or intermediate goals. Hindsight expe-
rience replay (Andrychowicz et al., 2017; Fang et al., 2019)
relabels achieved states as pseudo-goals with nonzero re-
wards but they are usually redundant to provide informative
feedback. Hence, how to automatically modify the sparse
reward and generate sub-tasks to provide informative feed-
back is still an open problem and resolving it can lead to
more efficient interactive learning.

Another primary challenge in RL is to improve its robust-
ness and generalization to small changes in the environ-
ments. A growing number of studies (Pinto et al., 2017;
Vinitsky et al., 2020; Ferguson & Law, 2018) show that RL
policy is vulnerable to small perturbations. In practice, the
perturbations are usually caused by the difference between
the training environment and the deployed environment,
e.g., changes of the position and size of obstacles/objects.
Hence, how to improve the generalization to such changes
is critical. When addressing the sparse reward problem, the
engineered sub-tasks or relabeled goals might be redundant
or too easy to provide effective feedback. Adversarially
modifying their environments can produce more diverse
and informative experiences for RL. Although modifying
environment has been recently studied to assist RL (Co-
Reyes et al., 2020; Gur et al., 2021; Wang et al., 2019), it
can make long-horizon tasks even more challenging and
reward-sparse, hence detrimental to RL’s efficiency.

In this paper, we address the above two challenges by auto-
matically generating a curriculum of sub-tasks with adver-
sarial environments adaptive to the learning progress of RL.
The curriculum decomposes a long-horizon task into easier
sub-tasks offering dense rewards and modifies each sub-
task to improve RL policy’s tolerance to perturbed environ-
ments. As illustrated in Fig. 1, our approach, “environment-
adversarial sub-Task curriculum (EAT-C)”, generates a tree-
structured curriculum by (1) a path-planning policy that
recursively decomposes a task (e.g., a state-goal pair (s, g))
as coarse-to-fine sub-task sequences (e.g., consecutive sub-
goals between (s, g)) of multi-granularity; and (2) an envi-
ronment generator (EG) policy that adversarially modifies
each sub-task’s environment. The path-planner is trained to
produce the most cost-efficient/shortest path in each granu-
larity level, while the environment policy is trained to reduce
the expected return of the RL agent. In EAT-C, training these
two policies does not require external supervision: we in-
stead collect the time costs and rewards of the RL agent on
previous sub-tasks to train them towards generating better
curricula adaptive to RL progress.

The two curriculum policies and RL can efficiently learn
from each other by iterating the above mutual-boosting
scheme on the tree-structured curriculum of sub-tasks,
which naturally provide an easy-to-hard curriculum to train
each policy: (1) the top-down construction of the tree trains

the path-planner to first interpolate a few sub-goals between
(s, g) and then gradually increases the sub-goals for finer-
grained planning; (2) the adversarial training between EG
and RL follows a bottom-up traversal of the tree, i.e., it starts
from a fine-grained sequence of easier sub-tasks with more
frequent perturbations between (s, g), which is easy for both
policies, and then progressively changes to more challenging
cases, i.e., a coarse sequence of long-horizon sub-tasks with
fewer environment changes between (s, g). Experiments
on challenging discrete navigation and continuous control
tasks demonstrate that EAT-C considerably improves the
efficiency of RL and its generalization to perturbed envi-
ronments. Compared with recent RL methods with hand-
crafted curricula, environment generators, hierarchical poli-
cies, or path-planning, EAT-C consistently achieve better
generalization on different tasks in unseen environments.

2. Related Work
Goal-conditioned RL (Pong et al., 2018; Kaelbling, 1993)
aims to train a unified policy for different goals/tasks. It re-
quires extensive exploration and training on different goals
but still easily fails to reach distant goals in practice. Goal
relabeling and reward shaping (Andrychowicz et al., 2017;
Nasiriany et al., 2019) have been developed to mitigate
these issues by modifying the rewards to be dense but in-
troduce extra bias and cannot control the utility of modified
goals/rewards to the targeted ones. In order to provide
tasks at the appropriate level of difficulty for the agent to
learn, (Held et al., 2018) and (Racanière et al., 2019) train
a goal/task generator based on the agent’s performance in
previous tasks. But it is usually non-trivial to determine
the difficulty level for each training stage. In EAT-C, RL
is trained with dense rewards provided by an automatically
generated sequence of easier sub-tasks, which are adaptive
to RL progress. The adversarial EG further modifies each
sub-task to be sufficiently challenging and diverse, which
enables more efficient RL.

Planning (Sutton & Barto, 2018; LaValle, 2006) is help-
ful to solving long-horizon tasks (Levine et al., 2011) by
interpolating intermediate sub-goals or searching for the
shortest path between two nodes (states) (LaValle, 2006;
Dayan & Hinton, 1993; Eysenbach et al., 2019; Howard &
Kelly, 2007; Werling et al., 2012), but they require accurate
distance metric, which is usually unavailable. Sequentially
planning (Schmidhuber & Wahnsiedler, 1993; Zhang et al.,
2020) sub-goals from the starting state to the goal is ineffi-
cient in complex tasks, as it needs to search in a large space.
In RL, planning requires an environment model or learns a
value function to improve the policy (Levine et al., 2011;
Lau & Kuffner, 2005; Elbanhawi & Simic, 2014), which
can be as challenging as model-free RL. In EAT-C, we train
a path-planner that “learns to plan” and to directly generate

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

the shortest (in terms of time cost) path for the RL agent.
Hence, it requires neither expensive search procedures nor
a predefined distance metric. Moreover, it does not rely on
learning a world/robot model or a value function.

Several recent works (Wang et al., 2019; Portelas et al.,
2019; Gur et al., 2021; Yang et al., 2022) show that the
efficiency and generalization of RL can be improved by
training the policy in different environments. They (Portelas
et al., 2019; Wang et al., 2019) train the RL agent based
on a curriculum of diverse environments by sampling the
parameters of environment features. However, the generated
environments can be infeasible or too challenging for the RL
agent and it is non-trivial to control their hardness. More-
over, estimating the distribution of environments requires
evaluating the RL policy on many sampled environments,
which is costly and inaccurate especially for complicated
environments. In EAT-C, we adversarially modify the envi-
ronment for each sub-task, whose hardness is controlled by
both the path planner and EG, so the modified sub-task is
still feasible for RL to learn. Moreover, a policy network for
EG facilitates the modification of complicated environments
and it is efficient to train in our mutual boosting scheme due
to the easy-to-hard curriculum.

Hierarchical planning (HP) methods (Nasiriany et al., 2019;
Jurgenson et al., 2020; Pertsch et al., 2020) search for
a sequence of sub-goal on a tree to guide an agent but
building the hierarchical partition of all possible sub-goals
can be expensive. For example, (Kaelbling & Lozano-Pérez,
2011) learns to predict sub-tasks of a tree structure based
on pre-defined motion primitives. Hierarchical RL (HRL)
for goal-reaching tasks has been studied in (Zhang et al.,
2021; Nachum et al., 2018). (Shu et al., 2018) trains an RL
agent on a human-designed curriculum of tree-structured
sub-goals. In contrast, EAT-C trains a planning policy to
decompose a hard task into sub-tasks of multiple difficulty
levels by only using the RL’s time cost data. It requires nei-
ther hierarchical partition of the task space nor a predefined
set of sub-tasks. Compared to HP and HRL, EAT-C (1)
enables a mutual training between the path-planner and RL;
(2) has an adversarial EG to train RL in a more challenging
environment for each sub-task; and (3) improves the RL
efficiency under the guidance of easy-to-hard curricula
automatically determined for each stage. We discuss and
compare with more related work in Appendix. E.

3. Problem Formulation
3.1. Goal-conditioned Reinforcement Learning

Goal-conditioned RL or multi-goal RL learns a policy that
can adapt to different goals. Given the state space S, the
action space A, and the goal space G, a goal-conditioned
policy is a mapping π(a|s, g) : S × G 7→ A that outputs
an action a (or probabilities Pr(a|s, g) over actions a ∈ A)

given a state-goal pair (s, g). An RL agent starts from a
initial state s = s0 and uses π(a|s, g) to take a sequence of
actions and interact with the environment, which determines
the agent’s new state and reward after the action taking in
each step. The interaction with the environment is defined by
a Markov decision process (MDP) {S,A,G, p, r, γ}, where
p(s′|s, a) , Pr(st+1 = s′|st = s, at = a) is the transition
probability for the agent from state s to s′ after taking action
a, r(s, a|g) : S × A × G 7→ R is a reward function, and
γ ∈ [0, 1] is a discount factor. For example, it is common to
define r(s, a|g) , 1 {d (s, g) ≤ ε}, where 1 is the indicator
function and d(·, ·) is a distance metric, so the agent achieves
reward of 1 if reaching an ε-neighborhood of the goal g.

The learning objective of goal-conditioned RL is to maxi-
mize its expected return over different tasks (s0, g), i.e.,
maxπ E(s0,g)[Eπ(R0)] where the return at step-t is de-
fined as Rt =

∑T
i=t γ

i−tr(st, at|g). This is usually
used as the objective for policy gradient methods. De-
fine the action-value function Q(s, a|g) , E(Rt|st =
s, at = a, g), the optimal policy π∗ achieves the maxi-
mal Q(s, a|g) for any feasible (s, a, g). Define the value
function V (s|g) , E(Rt|st = s, g) = Ea∼π[Q(s, a|g)] =∑
a∈A π(a|s, g)Q(s, a|g). To reduce the variance of Rt,

Actor-critic methods additionally learns a model of V or
Q as a “critic” to the “actor” π. Their training objectives
aim to minimize the Bellman residual, i.e., the difference
between the two sides of Bellman equation:

Q(st, at|g) =r(st, at|g)+

γEst+1∼p[Ea∼π[Q(st+1, a|g)]]. (1)

In experiments, to encourage exploration, we use soft actor-
critic (SAC) (Haarnoja et al., 2018a).

3.2. Generating Sub-task Curricula for
Goal-Conditioned RL

Training goal-conditional RL on long-horizon tasks can
be highly inefficient since sparse rewards can only be
achieved after taking a long sequence of actions, which
cannot provide informative feedback to improve the policy.
Moreover, the immature policy in earlier stages can easily
fail and make the rewards even more sparse. In this paper,
we train a path-planning policy πp to recursively decom-
pose a long-horizon task into coarse-to-fine sequences of
easier sub-tasks as a sub-task tree. Solving any of these
sequence can accomplish the original task but the finer
ones composed of more sub-tasks provide denser rewards
to RL. Hence, the path-planner generates an easy-to-hard
curriculum to train the RL agent, which starts from learning
easier sub-tasks in finer sequences and gradually focus on
more challenging sub-tasks in coarser ones. However, some
sub-tasks can still be either too trivial for RL or redundant
to other sub-tasks. Moreover, the RL agent is not trained

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

to adapt to small changes in the environment. To address
these two issues, we propose an environment generator
(EG) πe that adversarially modifies the environment of
each sub-task to be more challenging and informative
for RL. Therefore, the path-planner and the EG are
complementary in producing an efficient curriculum of
tasks and environments to train the RL agent.

3.2.1. CO-OPERATIVE PATH PLANNER: LEARNING
EASY-TO-HARD SUB-TASKS

We extend “sub-goal tree (SGT)” (Jurgenson et al., 2020)
to generate our curriculum of sub-tasks. Given an long
horizon task (s0, g) with initial state s0 and final goal g,
we recursively apply a path planning policy πp(g|gi, gj) to
interpolate sub-goals between s0 and g. In particular, given
two sub-goals gi and gj , sampling from πp(g|gi, gj) yields
a sub-goal interpolated between gi and gj . Hence, we can
generate a sub-goal tree g0:T for (s0, g) by

Pr
πp

(g0:T |g0 = s0, gT = g) , (2)

Pr
πp

(
g0:T2
|g0, gT

2

)
Pr
πp

(
gT

2 :T |gT
2
, gT

)
πp

(
gT

2
|s0, g

)
,

where T = 2K withK being the depth of the tree. As shown
in Fig. 1, layer-k of the sub-goal tree g0:T interpolate a se-
quence of 2k−1 sub-goals gk1:2k−1 ,

(
gk1 , g

k
2 , · · · , gk2k−1

)
between s0 and g, where gkj = gTj/2k in g0:T ,∀j ∈[
2k − 1

]
. The goal of path planning is to generate cost-

efficient sub-tasks for the RL agent, so we train πp by mini-
mizing the time cost c(gk0:2k) of the sub-goal trajectory gk0:2k
on each layer-k, i.e.,

min
πp

Jπp
, E(s0,g)Eg1:T−1∼πp

[
K∑
k=1

c(gk0:2k)

]
,

c(gk0:2k) ,
2k−1∑
t=0

c
(
gkt , g

k
t+1

)
, (3)

where c(gkt , g
k
t+1) represents the time-cost that the agent

taken from gkt to gkt+1.

3.2.2. ADVERSARIAL-ENVIRONMENT GENERATOR
(EG) APPLIED TO EACH SUB-TASK

Given the next sub-task (gkt , g
k
t+1) in layer-k, EG policy

πe adversarially modifies the environment Ekt−1 of pre-
vious sub-task (gkt−1, g

k
t) to be more challenging to the

RL agent, i.e., sampling subtask-t’s environment Ekt ∼
πe(E|skt , g) where skt , (Ekt−1, g

k
t , g

k
t+1) denotes the state

of EG at subtask-t. As an adversary to the RL agent,
the reward function for EG is defined as re(skt , E

k
t |g) ,

−1 {r(st, at|g) = 1} where (st, at) refer to the state-action
of the RL agent at the end of subtask-t. Thereby, EG re-
ceives the minimum reward −1 when the RL agent success-
fully finishes subtask-t and otherwise the reward is 0. We

can also define an MDP for EG, which mainly differs from
the RL agent in that each step corresponds to a sub-task
so EG is only allowed to modify the environment at the
beginning of each sub-task.

Similar to goal-conditioned RL defined in Sec. 3.1, the learn-
ing objective of EG is to maximize its expected return over
different tasks (s0, g), i.e., maxπe

E(s0,g)[Eπe
(Re0)] where

the return is defined asRet =
∑K
k=1

∑2k

i=t γ
i−t
e re(s

k
t , E

k
t |g)

with discount factor γe ∈ [0, 1]. By defining the correspond-
ing value function Ve and action-value function Qe as in
Sec. 3.1, we can apply any RL algorithm to train EG, e.g.,
we use A2C (Mnih et al., 2016) for the experiments.

4. Environment-Adversarial sub-Task
Curriculum

4.1. Auto Curriculum Generation and
Mutual-Boosting

In EAT-C, we need to jointly train three policies, i.e.,
the path-planner πp and EG policy πe that generate tree-
structured curricula of sub-tasks, and the RL policy π to
accomplish the targeted tasks. At the first glance, training
three policies can be more difficult than training one RL
policy and requires to collect more data via interactions.
Moreover, it is challenging to directly train a path-planner
generating dense sub-goals and EG can also suffer from
sparse rewards on long-horizon tasks. However, EAT-C
allows the three policies help each other’s training via a
mutual boosting mechanism, where each policy is progres-
sively trained on a curriculum of easy-to-hard sub-tasks us-
ing dense feedback from other policies on the sub-tasks. By
iterating this mutual-boosting on sub-task curricula, EAT-C
significantly improves the training efficiency of each pol-
icy and results in an RL agent with better generalization to
unseen tasks and perturbed environments.

In each episode, we train the path-planner during its
“top-down” construction of a sub-task tree: it starts from
learning to interpolate a few sub-goals between the given
task (s0, g) and gradually moves to more challenging cases
of generating dense sub-goals in bottom layers of the tree.
Since it aims to generate the most cost-efficient path of
sub-goals for the RL agent, we use the time cost of the RL
agent on those sub-tasks in the previous episode as training
data, which provide dense rewards to accelerate the training
of the path-planner.

Given a constructed sub-task tree, we then train the RL
policy and EG policy by a “bottom-up” traversal of the
sub-task tree, which naturally forms an easy-to-hard cur-
riculum for each policy. Specifically, both policies firstly
learn from dense rewards by finishing easier sub-tasks in
bottom layers, where the RL agent only needs to reach a

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

nearby sub-goal and the EG is allowed to frequently modify
the environments between (s0, g). Due to the adversarial
training between them, they are not only learning from the
environments but also from each other. As moving to the
top layers, the RL agent receives less guidance from fewer
sub-tasks, while the EG can only change the environment
once in each long-horizon sub-task. Thereby, they need
to improve their policies learned on easier tasks for more
challenging tasks. As a result, the RL agent learns to adapt
to different tasks and perturbed environments, while the
EG learns to In EAT-C, for each long-horizon task, we it-
erate the above mutual-boosting training on new sub-task
curricula re-generated by the updated path-planner and EG
for multiple episodes. This is an imitation of human learn-
ing that repeatedly practicing the same complicated task
in different ways (e.g., different sub-tasking and perturbed
environments). The path-planning and adversarial modifica-
tion of environments are complementary in constructing a
curriculum for more efficient RL: the former decomposes
a hard task into easier sub-tasks while the latter modifies
them to be sufficiently challenging and diverse so the RL
agent can learn different skills with better generalization to
unseen tasks or perturbed environments.

4.2. EAT-C Algorithm

Top-Down Planning of Sub-task Curriculum We pro-
vide the detailed procedure of the top-down construction of
the sub-task curriculum and the update of path-planner πp in
Algorithm 1 (more detailed in Appendix. C). For each layer-
k from k = 0 to k = K, EAT-C firstly updates the planning
policy πp in line 4 by an RL algorithm using the time cost
data collected on sub-tasks up to layer-k from the previous
episode’s bottom-up training (i.e., Algorithm 2), and then
recursively generates the sub-tasks on layer-k for the current
episode (line 5-8). Hence, the path-planner firstly learns to
plan coarse trajectories of fewer sub-goals in top layers and
gradually increases the sub-goals to form finer paths that
can provide more guidance to RL in bottom layers. Since
we always use the latest time cost data from Dp for training,
the planning policy πp keeps being optimized to generate
cost-efficient sub-task trajectories for the latest RL policy π.

Algorithm 1 Top-Down Planning of Sub-task Curriculum

1: Input: (s0, g), T , planning policy πp and its training set Dp.
2: Output: tree structured sub-goals g0:T , πp
3: for k = 1, 2, . . . ,K do
4: Apply an RL algorithm to minimize Jπp in Eq. (3) com-

puted on time cost data up to layer-k in Dp;
5: for t = 1, . . . , 2k−1 do
6: Generate the sub-goal gkt ∼ πp(gkt |gk−1

t−1 , g
k−1
t);

7: Add gkt , g
k−1
t into the trajectory gk0:T on layer-k;

8: end for
9: end for

Bottom-Up Curriculum for RL and EG Given a sub-
task tree generated by Algorithm 1 (more detailed shown in

Appendix. C), EAT-C trains RL policy π and EG policy πe
by following a bottom-up traversal of the tree. As shown in
Algorithm 2 (more detailed shown in Appendix. C), it starts
from learning easier sub-tasks on the bottom layer-K and
gradually moves to top layer-0 (line 4-12), which recovers
the original long-horizon task. In each layer, we reset the
initial state of the RL agent (line 5) and apply πe and π to
a sequence of 2k sub-tasks gk0:2k−1 towards the final goal
g (line 6-10), and then we update the two policies using
the experiences collected on these sub-tasks (line 11). On
each sub-task, EG adversarially perturbs the environment
(line 7) and the RL agent is then applied to accomplish this
modified sub-task (line 8). If the RL agent fails and ends
at a state s, EAT-C recursively invoke the planning policy
πp to add more sub-goals between s and the sub-task’s goal
to provide more detailed guidance to the RL agent until it
reaches the goal. This is described in line 9 and line 13-21.

Algorithm 2 Bottom-Up traversal in EAT-C
1: Input: RL and EG policy π, πe, sub-goal tree g0:T , τmax, ε
2: Output: π, πe, Dp
3: Initialize: πp’s training set Dp ← ∅, RL’s replay buffer D ←
∅, EG’s replay buffer De ← ∅

4: for k = K, . . . , 1, 0 do
5: Reset RL agent’s initial state to g0;
6: for t = 1, 2, 3, . . . , 2k do
7: EG modifies the environment Ekt−1 to Ekt ;
8: Apply RL agent to complete sub-task (gkt−1, g

k
t), and

store (sτ , aτ , r(sτ , aτ |gkt), sτ+1) to D(τ 6 τmax);
9: REACH(s, gkt);

10: end for
11: Update π and πe using samples in D;
12: end for
13: Procedure REACH(s, g):
14: if d(s, g) ≤ ε then
15: De ← De ∪ (sτ , bt, re(sτ , E

k
t |g), gkt);

16: Dp ← Dp ∪ (s0, sτ , τ), s0 ← sτ ;
17: else
18: Re-apply πp to interpolate temporary sub-goals for

(gkt−1, g
k
t);

19: Repeat Line.8 with new generated sub-goal sequence;
20: REACH(s, g);
21: end if

Algorithm 3 EAT-C
1: Input: p0, T , τmax, ε, n
2: Output: π, πp, πe
3: Initialize: π, πp, Dp
4: while not converge do
5: Sample a task (s0, g) with s0 ∼ p0 and g ∈ G;
6: for episode = 1, 2, . . . , n do
7: Algorithm 4: top-down construction of a sub-task tree

g0:T , train planning policy πp based on Dp;
8: Algorithm 5: bottom-up traversal of the sub-task tree

g0:T , train RL policy π and EG policy πe, collect Dp;
9: end for

10: end while

EAT-C algorithm The complete procedure of EAT-C is
introduced in Algorithm 3. Given a long-horizon task (s0, g)

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

(line 5), EAT-C iterates between the top-down and bottom-
up procedures in Algorithm 4-5 for n episodes (line 6-9)
before moving to a new long-horizon task. Therefore, the
planning policy πp and EG policy πe are optimized to pro-
duce better curricula of sub-tasks to train the RL agent to
complete task (s0, g) while the RL agent learns skills for
solving different sub-tasks and generalizing to non-trivial
changes of the environment.

5. Experiments
In this section, we evaluate EAT-C and compare it with
a broad range of RL methods on three benchmarks, i.e.,
navigation and manipulation of a 6-point 2D robot to push
an object to a goal state, a 7DoF robotic arm control problem,
and three compositional tasks in a discrete space. In these
experiments, we mainly focus on their efficiency on long-
horizon tasks and generalization to environments with small
changes. Moreover, we present an ablation study to evaluate
the contribution of each part in EAT-C. In addition, we
provide case studies to analyze the planned sub-task tree
and the modified environment for each sub-task, which
explains why EAT-C can improve RL in several aspects.

2D pusher (Yamada et al., 2020). As shown in Fig. 9, this
is a robot navigation and manipulation task in a continues
space: a 2D robot with a 4-joint arm needs to firstly
navigate to an object and then push it to a goal location
within an environment of multiple obstacles. We randomly
sample diverse environments and tasks for training and test
from a uniform distribution. In 2D pusher, the agent only
receives reward when it navigates near the object or pushes
the object to the goal state.

Discrete space tasks (Maxime Chevalier-Boisvert & Pal,
2018). We train and test RL policies on three types of com-
positional tasks depicted in fig 4, i.e., hunting, scavenging,
and salad-making, as illustrated in Fig. 4.(a)-(c). The agent
needs to take two or three key steps to finish each task and
only get reward when finishing each key step. In EAT-C, the
path-planner is applied to every two consecutive key steps.
EG perturbs the environment by moving objects including
tree and stones.

7DoF robotic arm, To demonstrate that EAT-C can adapt
to more complex tasks, we conduct an experiment of con-
trolling a 7DoF (degrees of freedom) robotic arm (i.e., the
one used in (Jurgenson et al., 2020)) to evaluate how EAT-C
performs in a complicated control task. We use MuJoCo as
the simulator. In this experiment, the robotic arm learns to
avoid obstacles and reach a goal state (as shown in Fig. 2).

More details of the implementation of environments and
experiments are introduced in Appendix A.

Baselines: We compare EAT-C with a broad class of
RL methods having related ideas to EAT-C: (1) ALP-

Figure 2: 7DoF Robotic Arm in a training environment with
randomly sampled obstacles (those cyan cubes).

GMM (Portelas et al., 2019) that generates a curriculum of
diverse tasks with large progress for goal-conditioned RL;
(2) POET (Wang et al., 2019) with two auxiliary agents for
generating a curriculum of adversarial yet solvable environ-
ments to accelerate RL; (3) Ecological RL (Co-Reyes et al.,
2020) that dynamically modifies the environment to improve
non-episodic (and thus long-horizon) RL without reset of
the initial state; (4) A hierarchical RL method (Zhang et al.,
2021); (5) (Zhang et al.) trains the RL agent by modelling
a goal proposal curriculum that samples goals at the frontier
of the set of goals that an agent is able to reach. All these
baselines and EAT-C need to invoke an RL algorithm as their
subroutine. For fair comparisons, we use Soft Actor Critic
(SAC) (Haarnoja et al., 2018b) in all evaluated methods for
its stable and promising performance. All methods are not
allowed to modify the environments during test since test
environments are assumed to be the realistic ones in which
we deploy the RL agents. More details of experimental
settings are given in Appendix A.

(a) Main result (b) Abla�on Study

Figure 3: (a) report the success rate (mean±std averaged over 6
random seeds) of EAT-C and baselines on test tasks in 2D Pusher
environments. (b) Ablation study of EAT-C on 2D Pusher tasks.

5.1. Main Results

We report the performance of EAT-C and all baselines evalu-
ated on the test tasks in Fig. 3(a) for 2D pusher, in Fig. 4(d)-
(f) for the discrete space tasks and in Table. 1. Due to the
limited space, we provide a more clear version of main
results in Appendix. D.2. In all experiments, EAT-C out-
performs all other baselines by a large margin on both the
learning efficiency and the final generalization performance
to test tasks in new environments. In most experiments,
baselines adopting a curriculum of environments, i.e., ALP-
GMM, POET, and Ecological RL, performs worse than
EAT-C but better than the other baselines without changing

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

environments for training. This indicates that building a cur-
riculum of training environments is essential to improving
RL’s generalization and robustness to small changes in the
deployed environments. The final performance on 7DoF
robotic arm control problem shown in Table. 1 indicates that
EAT-C improves the RL policy in complex tasks.

Among the three compositional tasks in Fig. 4, hunting and
scavenging contain a moving object, i.e., the deer and the
predator, which require the RL agent to adapt to the changes
of their locations. On these two tasks, EAT-C exhibits more
advantages over other baselines than on the salad-making
task, which does not contain any moving object. Therefore,
EAT-C enables RL to learn to adapt to changes in the envi-
ronment efficiently. Our analysis about the main results is
more detailed in Appendix. D.3.

1

2

3

1

2

1

2

3

Hun�ng
Step 1: Pick up axe
Step 2: Hunt deer with axe
Step 3: Eat food

Scavenging
Step 1: Evade chasing
 predators
Step 2: collect food

Salad-Making
Step 1: Collect carrot
Step 2: Collect le�uce
Step 3: Make salad

(a) Hun�ng (b) Scavenging (c) Salad-Making

(d) Main result (Hun�ng) (e) Main result (Scavenging) (f) Main result (Salad-Making)

Figure 4: (a)-(c) illustrate the 2-3 key steps for completing each
task. In Scavenging, the agent will have 2 points when it collects
food each time. (d)-(f) report different methods’ performance
(mean±std over 10 random seeds) on multiple test tasks.

Methods Average Collision Rate Success Rate

EAT-C 0.22 ± 0.05 0.873 ± 0.027
ALP-GMM 0.34 ± 0.07 0.524 ± 0.092
POET 0.42 ± 0.07 0.544 ± 0.084
SGT-PG 0.25 ± 0.02 0.772 ± 0.014

Table 1: Main results for the experiments on 7DoF robotic arm. In
more complex control tasks, EAT-C achieves the best success rate
in completing test tasks, and has the lowest possibility of collision.

5.2. Ablation study

EAT-C jointly trains a path-planner and an environment gen-
erator (EG) to produce a curriculum of sub-tasks to improve
RL. Hence, we conduct two thorough ablation studies of
how the performance changes if removing each component
from EAT-C under different training/test conditions. In par-
ticular, we compare the original EAT-C with three variants,
i.e., EAT-C with path-planner removed, EAT-C with EG
removed, and SAC (with both removed), on the 2D Pusher
tasks. Since the last two variants are not trained on per-
turbed environments, for fair comparisons, we use the same

environment for both training and test and only create new
test tasks by sampling (s0, sobj , g) in Fig. 3(b).

To evaluate the generalization and robustness, which are the
advantages due to the adversarial environment generator, we
conduct an ablation study that evaluates different methods
on multiple new random environments during the test phase
and report the test performance in Table. 2.

Test Setting Multiple New Random Environments Training Environment

EAT-C 80.24 ± 12.25 92.04±6.49
EAT-C (no EG) 42.23±10.34 85.47±9.12
EAT-C (no Planner) 27.58 ± 14.67 46.02±10.3
SAC 20.83 ± 7.24 39.62 ± 12.25
Hierarchical RL 22.04 ± 10.44 68.27 ± 6.99

Table 2: Success rate on test tasks in random environments and
training environment. Different from the ablation study in Fig. 3(b),
we evaluate EAT-C and baseline methods on multiple new random
environments during the test phase. The results demonstrate that
EG in EAT-C can improve the generalization and robustness of RL
policy.

When the path-planner is removed from EAT-C, we no
longer have any easy-to-hard curriculum of sub-tasks to
train the RL agent or EG and they can only learn inefficiently
from the original long-horizon tasks. The adversarial envi-
ronments generated by EG make tasks for RL even harder
and unsolvable. Hence, we can observe that, in Fig.3(b), it
only completed 50% of the test tasks within 1.6×106 en-
vironment steps, compared to 90% of the original EAT-C.
This phenomenon becomes more obvious when evaluating
on random environments (27.58 vs. 80.24 in Table. 2). This
indicates that the plan-planner and its generated sub-task
tree are critical in creating an effective curriculum for RL.

When EG is removed from EAT-C, we still have the curricu-
lum of sub-tasks to train the RL agent, but some sub-tasks
might be too trivial or redundant to provide informative
feedback for improving the RL agent. This results in
poorer efficiency in earlier-stages compared to the original
EAT-C with an EG: in Fig. 3(b), it reaches 80% success rate
after 0.84×106 interaction steps instead of 0.73×106 steps
required by the original EAT-C. Although ETA-C without
EG can eventually achieve a comparable success rate at the
end of training, the learned RL policy cannot generalize to
diverse environments (42.23 vs. 80.24, in Table. 2). During
later stages, the success rate fluctuates unstably over time,
while EAT-C with an EG performs more robustly due to
the adversarial environments used for training. Moreover,
EAT-C significantly improves SAC by a large margin via
running SAC on an automatically generated curriculum of
sub-tasks, which implies the importance of curriculum on
improving RL’s efficiency. More discuss and analysis about
ablation study results is in Appendix. D.3.

Due to the limited space, we report the results of more
ablation studies about EG in EAT-C and curriculum RL
methods of baseline in Appendix. D.4 to Appendix. D.7.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

- The object needed to move
- Goal state
- Obstacles
- The obstacle before modified by EG
- The inital state of the agent
- Sub-goals in EAT-C
- The current sub-task the agent
 needs to complete
-The RL agent

(a) Episode = 3 (b) Episode = 6

 Time-cost for each sub-task (k=2)Expected return of the Environment Generator (k=2) Time-cost for each sub-task (k=2)Expected return of the Environment Generator (k=2)

k = 0

k = 1

k = 2

sub-task:
g0 to g1

sub-task:
g1 to g

sub-task: g0 to g1 sub-task: g1 to g2 sub-task: g2 to g3 sub-task: g3 to g

original task:
s0 to g

sub-task:
g0 to g1

sub-task:
g1 to g

sub-task: g0 to g1 sub-task: g1 to g2 sub-task: g2 to g3 sub-task: g3 to g

original task:
s0 to g

Figure 5: Visualization of EAT-C. A 2D robot with a 4-joint arm starts from the initial state (pink), navigates to the object (green)
location, and then pushes the object to the goal state (black). The histograms in (a) and (b) represents the expected return of EG taking
action bt, and the costs of sub-tasks predicted by the path planner in layer k = 2, respectively.

5.3. How does EAT-C work? An Empirical Study

To better understand how the path planner and EG help
RL in EAT-C, in Fig. 9, we visualize the sub-task tree (with
layer k ∈ {0, 1, 2}) generated by the path-planner and the
EG’s modifications to the environment in each sub-task at
Episode 3 and Episode 6 (episode was defined in Alg. 3) for
a 2D Pusher task (s0, sobj , g). In the histograms, we also
report the expected return of EG and the time cost of the
RL agent on each sub-task from the bottom layer k = 2 for
the two episodes.

The curriculum of sub-tasks generated by the path-
planner. Each plot on the tree describes a sub-task, where
the arrow highlights the sub-task and the yellow trajectory
denotes the sequence of all sub-tasks of the layer. Com-
paring the sub-tasks in different layers, bottom layers (e.g.,
k = 2) provides more guidance and dense rewards to the
RL agent while the sub-tasks in upper layers (e.g., k = 1)
are much harder. Comparing the same-layer sub-tasks
generated in different episodes, the sub-tasks in Episode 3
do not take all obstacles into account, e.g., some sub-task se-
quences trespass obstacles and some sub-tasks are too close
to obstacles, because the planning policy is not fully opti-
mized yet to produce a cost-efficient path for the RL agent.
Hence, the time costs for the RL agent to accomplish these
sub-tasks can be much higher than later episodes. Moreover,
the time costs of some sub-tasks can be much higher than
others and thus cannot provide dense rewards to assist RL.
On the contrary, in Episode 6, the path-planner has learned
to generate cost-efficient sub-tasks with similar hardness so
the trajectories and sub-goals are distant from the obstacles
and can provide dense rewards facilitating RL. Comparing
the histograms of time costs for the two episodes, the RL
agent is significantly improved by learning to complete the

sub-tasks in the easy-to-hard (bottom-up) curriculum.

Adversarial modifications to obstacles in the environ-
ments: In each sub-task plot of Fig. 9, EG adversarially
modifies some obstacles by changing their previous sizes
and positions (depicted by the blue boxes) to make the sub-
tasks sufficiently challenging and diverse. Similar to the
path-planner, EG is improved over time: for example, in
the sub-task “g0 to g1” on layer-2, the RL agent needs to
pass a corridor formed by three obstacles, while EG makes
the corridor longer and narrower and thus more challeng-
ing for the agent to pass in Episode 6, its modification in
Episode 3 is not ideal and even moves one obstacle away
from the agent. The improvement of EG is also reflected by
its increasing expected return shown in the two histograms.
By modifying the environments to be more difficult in sub-
tasks, EG encourages the RL agent to learn diverse skills
in different sub-tasks. Hence, the sub-tasks are easy for the
agent to collect dense rewards but they are non-trivial and
informative because of EG’s modifications.

6. Conclusion
We propose a mutual learning and auto-curriculum frame-
work “EAT-C” to improve the efficiency of RL on long-
horizon tasks as well as its generalization and robustness
to new environments. EAT-C trains a planner to decom-
pose a hard task into coarse-to-fine sequences of sub-tasks
providing an easy-to-hard curriculum to train an RL agent,
while an adversarial environment generator modifies these
sub-tasks to be diverse and more informative to learn. The
three policies are trained with data collected by each other.
On three types of tasks, EAT-C outperforms a diverse set of
baselines, e.g., curriculum-based RL, hierarchical RL, and
planning-based methods.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

References
Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong,

R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P., and
Zaremba, W. Hindsight experience replay. In NIPS, 2017.

Ao, S., Zhou, T., Long, G., Lu, Q., Zhu, L., and Jiang, J. Co-
pilot: Collaborative planning and reinforcement learning
on sub-task curriculum. In Advances in Neural Informa-
tion Processing Systems, volume 34. Curran Associates,
Inc., 2021.

Co-Reyes, J. D., Sanjeev, S., Berseth, G., Gupta, A., and
Levine, S. Ecological reinforcement learning. ArXiv,
abs/2006.12478, 2020.

Dayan, P. and Hinton, G. E. Feudal reinforcement learning.
In Hanson, S., Cowan, J., and Giles, C. (eds.), Advances
in Neural Information Processing Systems, volume 5.
Morgan-Kaufmann, 1993.

Elbanhawi, M. and Simic, M. Sampling-based robot motion
planning: A review. IEEE Access, 2:56–77, 2014. doi:
10.1109/ACCESS.2014.2302442.

Eysenbach, B., Salakhutdinov, R., and Levine, S. Search on
the replay buffer: Bridging planning and reinforcement
learning. In NeurIPS, 2019.

Fang, M., Zhou, T., Du, Y., Han, L., and Zhang, Z.
Curriculum-guided hindsight experience replay. In Ad-
vances in Neural Information Processing Systems, vol-
ume 32. Curran Associates, Inc., 2019.

Ferguson, M. and Law, K. Learning robust and adaptive real-
world continuous control using simulation and transfer
learning. ArXiv, abs/1802.04520, 2018.

Florensa, C., Duan, Y., and Abbeel, P. Stochastic neural
networks for hierarchical reinforcement learning. In ICLR
(Poster).

Francis, A., Faust, A., Chiang, H.-T. L., Hsu, J., Kew, J. C.,
Fiser, M., and Lee, T.-W. E. Long-range indoor navi-
gation with prm-rl. IEEE Transactions on Robotics, 36:
1115–1134, 2020.

Gur, I., Jaques, N., Malta, K., Tiwari, M., Lee, H., and Faust,
A. Adversarial environment generation for learning to
navigate the web. ArXiv, abs/2103.01991, 2021.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft actor-
critic: Off-policy maximum entropy deep reinforcement
learning with a stochastic actor. In ICML, 2018a.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S.,
Tan, J., Kumar, V., Zhu, H., Gupta, A., Abbeel, P., and
Levine, S. Soft actor-critic algorithms and applications.
ArXiv, abs/1812.05905, 2018b.

Held, D., Geng, X., Florensa, C., and Abbeel, P. Automatic
goal generation for reinforcement learning agents. ArXiv,
abs/1705.06366, 2018.

Howard, T. M. and Kelly, A. Optimal rough terrain tra-
jectory generation for wheeled mobile robots. The In-
ternational Journal of Robotics Research, 26:141 – 166,
2007.

Jurgenson, T., Avner, O., Groshev, E., and Tamar, A. Sub-
goal trees - a framework for goal-based reinforcement
learning. ArXiv, abs/2002.12361, 2020.

Kaelbling, L. P. Learning to achieve goals. In IN PROC.
OF IJCAI-93, pp. 1094–1098. Morgan Kaufmann, 1993.

Kaelbling, L. P. and Lozano-Pérez, T. Hierarchical task and
motion planning in the now. In 2011 IEEE International
Conference on Robotics and Automation, pp. 1470–1477,
2011. doi: 10.1109/ICRA.2011.5980391.

Lau, M. and Kuffner, J. J. Behavior planning for character
animation. In Symposium on Computer Animation, pp.
271–280. ACM, 2005.

Laud, A. D. Theory and Application of Reward Shaping in
Reinforcement Learning. PhD thesis, USA, 2004.

LaValle, S. M. Planning Algorithms. Cambridge University
Press, Cambridge, U.K., 2006.

Levine, S., Lee, Y., Koltun, V., and Popović, Z. Space-time
planning with parameterized locomotion controllers. 30
(3), 2011.

Lillicrap, T., Hunt, J. J., Pritzel, A., Heess, N., Erez, T.,
Tassa, Y., Silver, D., and Wierstra, D. Continuous control
with deep reinforcement learning. CoRR, abs/1509.02971,
2016.

Maxime Chevalier-Boisvert, L. W. and Pal, S. Minimalistic
gridworld environment for openai gym. 2018.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Ve-
ness, J., Bellemare, M. G., Graves, A., Riedmiller, M.,
Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wier-
stra, D., Legg, S., and Hassabis, D. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, February 2015.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T. P., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
ICML, 2016.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. Data-efficient
hierarchical reinforcement learning. In NeurIPS, 2018.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

Nasiriany, S., Pong, V. H., Lin, S., and Levine, S. Planning
with goal-conditioned policies. In NeurIPS, 2019.

Pertsch, K., Rybkin, O., Ebert, F., Finn, C., Jayara-
man, D., and Levine, S. Long-horizon visual planning
with goal-conditioned hierarchical predictors. ArXiv,
abs/2006.13205, 2020.

Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. Ro-
bust adversarial reinforcement learning. In ICML, 2017.

Pong, V. H., Gu, S., Dalal, M., and Levine, S. Temporal
difference models: Model-free deep rl for model-based
control. ArXiv, abs/1802.09081, 2018.

Portelas, R., Colas, C., Hofmann, K., and Oudeyer, P.-Y.
Teacher algorithms for curriculum learning of deep rl
in continuously parameterized environments. In CoRL,
2019.

Racanière, S., Lampinen, A., Santoro, A., Reichert, D. P.,
Firoiu, V., and Lillicrap, T. Automated curricula through
setter-solver interactions. ArXiv, abs/1909.12892, 2019.

Schmidhuber, J. and Wahnsiedler, R. Planning simple tra-
jectories using neural subgoal generators. In Proceedings
of the Second International Conference on From Animals
to Animats 2: Simulation of Adaptive Behavior: Simu-
lation of Adaptive Behavior, pp. 196–202, 1993. ISBN
0262631490.

Shu, T., Xiong, C., and Socher, R. Hierarchical and in-
terpretable skill acquisition in multi-task reinforcement
learning. ArXiv, abs/1712.07294, 2018.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA,
2018. ISBN 0262039249.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems,
pp. 5026–5033, 2012. doi: 10.1109/IROS.2012.6386109.

Vinitsky, E., Du, Y., Parvate, K., Jang, K., Abbeel, P., and
Bayen, A. Robust reinforcement learning using adversar-
ial populations. ArXiv, abs/2008.01825, 2020.

Wang, R., Lehman, J., Clune, J., and Stanley, K. O. Paired
open-ended trailblazer (poet): Endlessly generating in-
creasingly complex and diverse learning environments
and their solutions. ArXiv, abs/1901.01753, 2019.

Werling, M., Kammel, S., Ziegler, J., and Gröll, L. Op-
timal trajectories for time-critical street scenarios using
discretized terminal manifolds. The International Journal
of Robotics Research, 31:346 – 359, 2012.

Yamada, J., Lee, Y., Salhotra, G., Pertsch, K., Pflueger, M.,
Sukhatme, G. S., Lim, J. J., and Englert, P. Motion plan-
ner augmented reinforcement learning for robot manipula-
tion in obstructed environments. ArXiv, abs/2010.11940,
2020.

Yang, Y., Jiang, J., Zhou, T., Ma, J., and Shi, Y. Pareto policy
pool for model-based offline reinforcement learning. In
International Conference on Learning Representations,
2022.

Yingjun, P. and Xin-wen, H. Learning representations in re-
inforcement learning:an information bottleneck approach.
2019.

Zhang, J., Yu, H., and Xu, W. Hierarchical reinforce-
ment learning by discovering intrinsic options. ArXiv,
abs/2101.06521, 2021.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. Gen-
erating adjacency-constrained subgoals in hierarchical
reinforcement learning. ArXiv, abs/2006.11485, 2020.

Zhang, Y., Abbeel, P., and Pinto, L. Automatic curriculum
learning through value disagreement. In Larochelle, H.,
Ranzato, M., Hadsell, R., Balcan, M. F., and Lin, H.
(eds.), NeurIPS 2020. Curran Associates, Inc.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

A. Details of Environment Implementations
A.1. 2D pusher

The positions of the robot, object and goal are defined as prob, pobj , and g, respectively, and T is the maximum number of
episodes (i.e., the horizon). We train EAT-C on 50 environments with the positions and sizes of obstacles randomly sampled
from uniform distributions. In each environment, we randomly sample 80 training tasks with different (s0, pobj , g), where
s0 is the initial state, pobj is the state of the object, and g is the goal state. Most evaluated policies in our experiments need
≥ 250 steps to finish each task so they are long-horizon tasks. The rewards are sparse since the agent only receives a reward
when near the object or when pushing the object and reaching the goal. In EAT-C, the path-planner generates sub-tasks
between (s0, pobj) and (pobj , g). For every sub-task, EG can perturb the sizes and locations of at most three obstacles within
pre-defined ranges. For the test, we randomly sample 30 new environments each having one randomly sampled task. We
simulate the environment of 2D pusher in Mujoco physics engine (Todorov et al., 2012). An 2D-pusher agent with four
joints can take actions of six dimensions, two for navigation and the rest four for arm control. The map size is 1 × 1 so
both the x and y coordinates lie in (−0.5, 0.5). The x and y coordinates of goals and objects are randomly sampled from
uniform distributions of U(−0.35,−0.2) and U(−0.15, 0.1), respectively. The initial state of the agent is randomly sampled
from uniform distribution of U(−0.05, 0.3). For obstacles, their initial coordinates and sizes are randomly drawn from an
uniform distribution, as explained in the first row of Table. 3. We train 2D pusher using sparse reward: when the robot
reaches a vicinity of the object or the sub-goal state (||prob − pobj ||2 6 0.05) the agent will receive a reward= 150/2k,
where k is the layer of the sub-task tree where the sub-goal is located. Once the agent pushes the object to the goal state
with ||pgoal − pobj ||2 6 0.05, the agent will receive a one-time reward= 150; otherwise there is no reward. By taking an
action, EG can change the size and the location of 0 ∼ 3 obstacles near the agent. Assume that there are n obstacles in the
environment, and we represent each obstacle-i by its location (xi, yi) (2D coordinates) and size (wi, hi) (width and height)
as θi = (xi, yi, wi, hi). The action bt of EG is defined as

bt , ∆θi = (∆xi,∆yi,∆wi,∆hi), ∀i ∈ [n]. (4)

In order to provide feasible and smoothly changing environments to RL along the sub-task trajectory in each layer, and
to prevent the environment generator from being too powerful and overly adversarial, it is important to restrict EG from
changing the environment too much at one time for each sub-task. Hence, in the experiments, we constrain every dimension
in an action of EG not to exceed some threshold, e.g., for xi, we apply

∆xi ← min{max{∆xi, βx · xmin}, βx · xmax}, (5)

where βx ∈ [0, 1] and (xmin, xmax) is the valid range of x-coordinate. The above environment parameterization can be easily
extended to other environments so EAT-C is a general and principal scheme that can be adapted to different environments.

A.2. Discrete space tasks

The environment for the three tasks is an N ×N grid. There are 250 environments used for training and 100 environments
for test, each associated with one task. It is partially observed by the RL agent: the agent at each state obtains a local
egocentric view of a 5× 5 grid around it, where the object in each cell of the grid is represented by a C-dimensional one-hot
vector (there are C possible types of objects). The agent can pick up and carry one object at a time. It can also combine two
objects to construct a new one by putting a carried object onto an existing object, e.g., it can combine wood with metal to
make an axe. The RL agent can take action such as moving in the cardinal directions, picking up an object, and dropping an
object. In discrete space tasks, the environment generator (EG) can modify the environment by taking an action to move an
object/obstacle. In order to provide feasible and smoothly changing environments to RL along the sub-task trajectory, and to
prevent EG from being too powerful and overly adversarial, each action of EG can only move every object/obstacle to an
adjacent cell around it.

A.3. 7DoF Robotic Arm

In 7DoF robotic arm, both the training and test tasks have 5 obstacles with different and randomly sampled location and size
parameters. The start-goal pair of each task are also randomly sampled. Both EAT-C and curriculum RL methods (compared
baseline methods) are able to modify exactly the same parameters defining the location and size of each obstacle. We report
the success rate of reaching the goal state without collision and the collision rate as the two metrics to evaluate EAT-C and
all the baselines. After training, we evaluate them on 100 new random tasks different from the training tasks.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

A.4. Environment Encoding of Baselines

The baselines in our experiments include two curriculum RL methods, i.e., ALP-GMM and POET, which both can control
some environment-dependent parameters for mutation and generation of the training environments. For their fair comparisons
to EAT-C, we set their environment-dependent parameters exactly the same as the ones controlled by EG in EAT-C. For
2D-pusher, as detailed in Table 3, the baselines control the same four environment-dependent parameters as EAT-C. Each
parameter is initialized by sampling from a uniform distribution and each mutation step can modify it by a small value if it is
within the valid range. For the discrete space tasks, ALP-GMM/POET can generate environments by sampling/mutating the
location of each obstacle/object, which is the same parameter controlled by EAT-C. The valid range for location for each
obstacle/object is (0, 1) and the mutation step size is 0.1.

Parameter Obstacle Obstacle Obstacle Obstacle
Type x-coordinate xi y-coordinate yi width wi height hi
Initial Range (−0.3, 0.3) (−0.3, 0.3) (0, 0.1) (0, 0.1)
Mutation Step (0.02, 0.02) (0.02, 0.02) (0.05, 0.05) (0.05, 0.05)
Minimal Value (−0.5,−0.5) (−0.5,−0.5) (0, 0) (0, 0)
Maximal Value (0.5, 0.5) (0.5, 0.5) (0.3, 0.3) (0.3, 0.3)

Table 3: Environment-dependent parameters in baselines on 2D-pusher. Each baseline generates an environment of obstacles
by uniformly sampling the four parameters defining each obstacle from the corresponding ranges. It starts from the initial
ranges below and can take a mutation step one time to change the lower and upper bounds of each parameter’s range, if
the two bounds do not exceed their minimal and maximal values listed below. The two numbers in each tuple (·, ·) below
corresponds to the lower and upper bound of the range.

A.5. Implement of Hyperparameters in Baselines of Curriculum RL methods

The learning efficiency and final performance of curriculum RL methods are usually sensitive to the setting of curriculum
related hyperparameters. Therefore, we have finetuned the hyperparameters related to the task/environment propoerties in
our experiments, and we keep the rest same to the original paper/code.

POET (Wang et al., 2019): For most hyperparameters, we follow the same setting in the original code of POET
(https://github.com/uber-research/poet). We list the tuned hyperparameters in the table below:

Hyperparameter Tuning set Final picked value
Max num envs {20, 30, 40} 40
Max children {6, 8, 10} 8
Reproduction threshould {70, 80, 90, 100} 80
Nearest neighbor k [4, 8] 6
Lower criteria {5, 10, 15, 20, 25} 10
Higher cirteria {125, 130, 135, 140, 145, 150} 130
Ndevi [0.05, 0.15] 0.1
Ntransfer {25, 30} 25

Table 4: Finetuned hyperparameters of POET

A complete grid search over all the listed hyperparameters is too costly. Hence, we partitioned these hyperparameters into
four groups of strongly related ones (listed below) and applied grid search within each group. For Group 2-4, we started from
the default values used in the original POET paper. Since our environments are different, we cannot start from the default
hyperparameters for Group 1 used in POET paper. Therefore, we tuned the hyperparameters from Group 1 to Group 4 in a
greedy manner. We also tried different orders for Group 2-4. This resulted in hundreds of combinations of hyperparameters
and we ran 0.8 millions environment training steps for each combination. We then chose the best combination with the
highest success rate for all experiments.

The partition of hyperparameters in POET:

• Group 1: The criteria for mutating environments: {lower criteria, higher criteria, reproduction threshould};

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

• Group 2: Pool size of environments/ mutation environments: {max num envs, max children};

• Group 3: Exploration and exploitation: {Ntransfer,Ndevi};

• Group 4: Novelty bonus of mutating: {nearest neighbor k}.

ALP-GMM (Portelas et al., 2019): We carefully tuned the hyperparameters of ALP-GMM in the new setting by grid
search and chose the one achieving the best performance. Specifically, for the hyperparameters in Algorithm 1 of ALP-GMM
paper (https://arxiv.org/pdf/1910.07224.pdf):

• We tuned the probability of random sampling prnd ∈ [0, 05, 0.5] and the best one selected is prnd = 0.25;

• We tuned kmax ∈ {4, 6, 8, 10, 12} and the number of Gaussians is adapted online by fitting multiple GMMs (here
having from 4 to 12 Gaussians);

• we tuned the fitting rate N ∈ {200, 250} and the best one is N = 250, the same as ALP-GMM paper.

B. Model Architecture and Hyperparameters of SAC (RL Algorithm used in All Experiments)
We use the same neural network architecture (i.e., an MLP) for the RL agent and the same RL algorithm (SAC) in all the
experiments of all the methods.

Besides the reward of completing a task/sub-task, it is common in MuJoCo and many other simulators to also issue a small
instantaneous reward after taking any action in order to encourage exploration. Moreover, different methods usually need
to re-scale this exploration reward because they may need different levels of exploration. In our experiments, we tune the
re-scaling factor for every method to get its best performance. Specifically, we chose 0.3 for EAT-C/ALP-GMM/ POET and
8.0 for hierarchical RL/value disagreement/Ecological RL. An explanation of applying a smaller factor for the former three
methods is that they already have some strong exploration strategies and a larger factor might downweigh the task reward
and thus results in performance degeneration.

Moreover, we use the same coefficient α of the entropy term in SAC’s objective for all methods (they all use SAC as
the RL algorithm). The coefficient α controls the degree of exploration and is automatically tuned. A complete list of
hyperparameters for SAC in 2D-pusher tasks is given in Table 5. They are exactly the same hyperparameters defined in in
SAC paper (Haarnoja et al., 2018b) and in Table 1 of their Appendix D except that we choose different values for them in
2D-pusher.

In the discrete space tasks, the environment is a 10× 10 grid and the 5× 5 partial observation (as mentioned in A.2) of
the RL agent can be represented as a 5 × 5 × C one-hot tensor. We flatten this tensor to a vector and process it by an
MLP with three hidden-layers whose output dimensions are (64, 64, 32), respectively. We apply another MLP with three
layers of output dimensions (16, 16, 16) to process the inventory observation. The two MLPs’ outputs are then concatenated
and processed by an MLP with two hidden layers of output dimensions (16 , action_dimension) that outputs a probability
distribution over all possible actions. We use ReLU as our nonlinear activation functions in all MLP models except their last
layer, which uses a softmax function to compute the probability of taking each action. In EAT-C, the RL agent and EG
share the same observations as well as the first two MLP models but they use different MLP models to output the actions. A
complete list of hyperparameters of SAC in the discrete space tasks is given in Table. 6.

C. Pseudo-Code of EAT-C
In the training phase, we first randomly initialize πp, and apply it to predict a sub-task tree using Euclidean distance as an
initialization of the cost in line 4 of Algorithm 4 when no time cost data have ever been collected at the very beginning.
Given the sub-task tree, we can train the RL agent by a bottom-up curriculum of the sub-tasks on the tree. In particular, we
start from the bottom layer and train the RL agent to consecutively complete a sequence of sub-tasks from the starting state
to the goal state. As training proceed, the RL agent collects data of the time cost for completing feasible sub-tasks (g, g′).
When the RL agent cannot complete the pre-assigned sub-task (gki , g

k
i+1) within a time limit, we re-apply πp to interpolate

more sub-goals between (gki , g
k
i+1) by line 25 in Algorithm 5. More technical details are given in Algorithm 5. In the test

phase, we apply πp to produce a sub-task tree and only use the sub-task sequence in the bottom layer to guide the RL agent.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

Table 5: SAC hyperparameters in EAT-C (2D-pusher)

Parameter Value
Optimizer Adam
Learning rate 3.0× 10−4

Discount factor (γ) 0.99
Replay buffer size 1.0× 106

Number of hidden layers for all networks 2
Number of hidden units for all networks 400
Minibatch size 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 5.0× 10−3

Target update interval 1
Network update per environment step 1
Entropy target −dim(A)

Table 6: SAC hyperparameters in EAT-C (discrete space tasks)

Parameter Value
Optimizer Adam
Learning rate 5.0× 10−4

Discount factor (γ) 0.99
Replay buffer size 1.0× 106

Number of hidden layers for all networks 3
Number of hidden units for all networks 256
Minibatch size 256
Nonlinearity ReLU
Target smoothing coefficient (τ) 5.0× 10−3

Target update interval 1
Network update per environment step 1
Entropy target −dim(A)

Algorithm 4 Top-Down Planning of Sub-task Curriculum

1: Input: (s0, g), T , planning policy πp and its training set Dp.
2: Output: tree structured sub-goals g0:T , πp
3: for k = 1, 2, . . . ,K do
4: Apply an RL algorithm to minimize Jπp in Eq. (3) computed on time cost data up to layer-k in Dp;
5: for t = 1, . . . , 2k−1 do
6: Generate the sub-goal gkt ∼ πp(gkt |gk−1

t−1 , g
k−1
t);

7: Add gkt , g
k−1
t into the trajectory gk0:T on layer-k;

8: end for
9: end for

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

Algorithm 5 More detailed Bottom-Up traversal in EAT-C

1: Input: RL policy π, EG policy πe, sub-goal tree g0:T , τmax, ε
2: Output: π, πe, Dp
3: Initialize: πp’s training set Dp ← ∅, RL’s replay buffer D ← ∅, EG’s replay buffer De ← ∅
4: for k = K, . . . , 1, 0 do
5: Reset RL agent’s initial state to g0;
6: for t = 1, 2, 3, . . . , 2k do
7: EG adversarially modifies the environment Ekt−1 to Ekt ;
8: while τ ≤ τmax or sτ /∈ B(gkt , ε) do
9: RL agent takes action aτ ∼ π(aτ |sτ , gkt);

10: RL agent moves to sτ+1 ∼ p(sτ+1|sτ , aτ) and receives reward r(sτ , aτ |gkt);
11: D ← D ∪ (sτ , aτ , r(sτ , aτ |gkt), sτ+1);
12: end while
13: REACH(s, gkt+1);
14: end for
15: for every gradient step do
16: Apply gradient steps in SAC: update Q, V, π using samples drawn from D;
17: Apply gradient steps in A2C: update Qπe

, πe using samples drawn from De;
18: end for
19: end for
20: Procedure REACH(s, g):
21: if d(s, g) ≤ ε then
22: De ← De ∪ (sτ , bt, re(sτ , E

k
t |g), gkt);

23: Dp ← Dp ∪ (s0, sτ , τ), s0 ← sτ ;
24: else
25: Re-apply πip(g

k
t−1.g

k
t) to predict temporary sub-goals g′1:nfor (gkt−1, g

k
t);

26: Add g′1:n into the planned sub-goals trajectory gk0:2k−1 ;
27: Re-apply agent start from s0 with the new sub-goal trajectory to reach gk2k−1 and collect training data (Follow line.8

to line.14);
28: REACH(s, g);
29: end if

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

D. Larger Versions of Figures and Additional Experiment Results
D.1. Larger Version of Main Structure in EAT-C

RL Agent

- Ini�al state s, final goal state g, sub-goal gi generated by path planner

- Environment/ modified environmentE Ei,j

- Training data

- Path planner generates a sub-goal given a (s,g) pair

Auto-Generated Sub-task Curriculum

layer-0

layer-1

layer-2

layer-3

S gE�

Top-Down
EASY TO HARD

· Train Path Planner;
· Generate a
 Sub-tasks Tree
 for a task (s,g)

EASY TO HARD
· Train RL agent
 to complete each
 sub-task;
· Train EG to modify
 the environment

Bottom-up

g4S gE1,1 E1,2

gg2 g4S g6E2,1 E2,2 E2,3
E2,4

S g1 g2 g3 E3,8
g5 g7g4

g6 gE3,1 E3,2
E3,3 E3,4 E3,5 E3,6 E3,7

PP

Path Planner
g

s
g’

Co-opera�ve Path Planner (PP)

EG

- A sub-task defined by two sub-goals and a modified environment

Time-cost data
c(g,g’) for
completing
each sub-task
(g,g’)

g

s
a

Goal-condi�oned RL

A sub-task sequence for each layer of the sub-task tree:
(e.g., layer-3 (s,g1,E3,1), (g1 ,g2 ,E3,2),...,(g7 ,g,E3,8))

Trajectory of RL
in a sub-task:
(s,a,r(s,a|g),E) for
each step, r(s,a|g)
is the collected
reward.

Adversarial Environment Generator (EG)

Environment
Generator (EG)

g

Ei,j

g’
Ei,j+1

RL

- EG modifies the environment for a sub-task based on its previous sub-task

- The trajectory of RL in a sub-taskRL

a - Ac�on taken by the RL agent

s g gi

- RL agent takes an ac�on at each �me-step given a goal/sub-goal state g

Figure 6: Main structure of EAT-C: The path-planner recursively generates a sub-task tree for a task (g0, g), while the
environment generator (EG) adversarially modifies the environment of each sub-task. RL agent is trained on a bottom-up
curriculum and its collected data are used to train the path-planner and EG.

D.2. Larger Versions of Plots for Main Results

Considering that the figures and tables of the experiment results in the main paper might be too small to read, we list the
main results with a more clear vision (Fig. 7, Fig. 8 and Table. 7).

Methods Average Collision Rate Success Rate
EAT-C 0.22 ± 0.05 0.873 ± 0.027
ALP-GMM 0.34 ± 0.07 0.524 ± 0.092
POET 0.42 ± 0.07 0.544 ± 0.084
SGT-PG 0.25 ± 0.02 0.772 ± 0.014

Table 7: Test performance of the experiments on 7DoF robotic arm.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

(a) Main result (b) Abla�on Study

Figure 7: (a) report the success rate (mean±std averaged over 6 random seeds) of EAT-C and baselines on test tasks in 2D
Pusher environments. (b) Ablation study of EAT-C on 2D Pusher tasks.

1

2

3

1

2

1

2

3

Hun�ng
Step 1: Pick up axe
Step 2: Hunt deer with axe
Step 3: Eat food

Scavenging
Step 1: Evade chasing
 predators
Step 2: collect food

Salad-Making
Step 1: Collect carrot
Step 2: Collect le�uce
Step 3: Make salad

(a) Hun�ng (b) Scavenging (c) Salad-Making

(d) Main result (Hun�ng) (e) Main result (Scavenging) (f) Main result (Salad-Making)

Figure 8: (a)-(c) illustrate the 2-3 key steps for completing each task. In Scavenging, the agent will have 2 points when it
collects food each time. (d)-(f) report different methods’ performance (mean±std over 10 random seeds) on multiple test
tasks.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

- T
he

 o
bj

ec
t n

ee
de

d
to

 m
ov

e
- G

oa
l s

ta
te

- O
bs

ta
cl

es
- T

he
 o

bs
ta

cl
e

be
fo

re
 m

od
ifi

ed
 b

y
EG

- T
he

 in
ita

l s
ta

te
 o

f t
he

 a
ge

nt
- S

ub
-g

oa
ls

 in
 E

AT
-C

- T

he
 c

ur
re

nt
 su

b-
ta

sk
 th

e
ag

en
t

ne

ed
s t

o
co

m
pl

et
e

-T
he

 R
L

ag
en

t

(a
) E

pi
so

de
 =

 3
(b

) E
pi

so
de

 =
 6

 T
im

e-
co

st
 fo

r e
ac

h
su

b-
ta

sk
 (k

=2
)

Ex
pe

ct
ed

 re
tu

rn
 o

f t
he

 E
nv

iro
nm

en
t G

en
er

at
or

 (k
=2

)
 T

im
e-

co
st

 fo
r e

ac
h

su
b-

ta
sk

 (k
=2

)
Ex

pe
ct

ed
 re

tu
rn

 o
f t

he
 E

nv
iro

nm
en

t G
en

er
at

or
 (k

=2
)

k
=

0

k
=

1

k
=

2

su
b-

ta
sk

:
g 0 to

 g
1

su
b-

ta
sk

:
g 1 to

 g

su
b-

ta
sk

: g
0 to

 g
1

su
b-

ta
sk

: g
1 to

 g
2

su
b-

ta
sk

: g
2 to

 g
3

su
b-

ta
sk

: g
3 to

 g

or
ig

in
al

 ta
sk

:
s 0 to

 g

su
b-

ta
sk

:
g 0 to

 g
1

su
b-

ta
sk

:
g 1 to

 g

su
b-

ta
sk

: g
0 to

 g
1

su
b-

ta
sk

: g
1 to

 g
2

su
b-

ta
sk

: g
2 to

 g
3

su
b-

ta
sk

: g
3 to

 g

or
ig

in
al

 ta
sk

:
s 0 to

 g

Figure 9: Visualization of EAT-C. A 2D robot with a 4-joint arm starts from the initial state (pink), navigates to the object (green)
location, and then pushes the object to the goal state (black). The histograms in (a) and (b) represents the expected return of EG taking
action bt, and the costs of sub-tasks predicted by the path planner in layer k = 2, respectively.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

D.3. Additional Analysis on Main Results and Ablation Studies

Analysis on main results: Refer to the results reported in Fig 7, Fig 8, and Table 7, by comparing the methods with
environment changed, we notice that controlling the difficulty of the modified environments is critical to earlier-stage
learning efficiency. In particular, both EAT-C and POET trains another agent (e.g., the path-planner in EAT-C and the
antagonist agent in POET) to control the hardness of the training tasks matching the capability of the RL agent, so their
earlier-stage improvement than others. In contrast, the environments selected in ALP-GMM might be too challenging
and the ones modified by POET might be too easy, leading to poorer efficiency in earlier stages. Although these methods
are designed to train RL policies that can adapt to different environments or tasks, only EAT-C trains a path-planner
to decompose a long-horizon task into a curriculum of easy-to-hard sub-task sequences for training. The guidance of
path-planner and its curriculum plays a critical role in outperforming these baselines.

Analysis on ablation study: To evaluate the generalization and robustness, which are the advantages of EAT-C due
to the adversarial environment generator (EG), we evaluate different methods on multiple new random environments
during the test phase. This is different from the ablation study in Fig. 3(b), which evaluates all methods on the fixed
training environment. The new results show a large gap (80.24 vs. 42.23) between EAT-C and EAT-C (remove EG).
This demonstrates that EG is important to improving the generalization and robustness of the RL policy. In the training
environment (non-random) used in our original ablation study of Fig. 3(b), Hierarchical RL (HRL) does improve the
performance of the default RL algorithm (SAC) on long-horizon tasks, i.e., 39.62 (SAC) vs. 68.27 (HRL). However, in
random and unseen environments, HRL generalizes much poorer than EAT-C.

Test Setting Multiple New Random Environments Training Environment
EAT-C 80.24 ± 12.25 92.04±6.49
EAT-C (remove EG) 42.23±10.34 85.47±9.12
EAT-C (remove Planner) 27.58 ± 14.67 46.02±10.3
SAC 20.83 ± 7.24 39.62 ± 12.25
Hierarchical RL 22.04 ± 10.44 68.27 ± 6.99

Table 8: Ablation Study Results (larger version of Table. 2)

D.4. Ablation Study: Whether EG will make reward more sparse?

In EAT-C, EG can improve the learning efficiency of the RL agent by adversarially modifying the environment. This may
raise two essential questions: (1) whether EG could make the environment more reward sparse? (2) whether planner could
always generate infeasible sub-goals? To answer these questions, in Fig. 10, we report the average time-cost that the agent
needs to complete each sub-task in layer-3 of the sub-task tree.

• In earlier stages when πp and the RL agent are not well trained, πp may generate hard sub-tasks. However, after a little
training on the sub-task curriculum, πp is trained to generate a minimum-cost path for the RL agent and the capability
of the RL agent to finish the sub-tasks is also improved.

• We apply EG to simple sub-tasks that are optimized to be simple in EAT-C (via optimizing the planner) for the RL
agent. The goal of EG is to avoid learning similar and easy sub-tasks repeatedly, which cannot provide informative
feedback to RL even if the reward is dense. On the other hand, we set several restrictions to avoid over-adversarial
environments, as mentioned in Appendix. A

D.5. Ablation Study: What if EG generate unfeasible environments?

Considering that modifying/generating environments will result in unfeasible ones, we conduct connectivity check on the
modified/generated environments for EAT-C (Line.7, Algorithm. 5) and baseline methods. The connectivity test is common
in navigation as well as many complicated and realistic environments/tasks (Francis et al., 2020; Yingjun & Xin-wen, 2019).
For example, in maze tasks like 2D-pusher, modifying the obstacles easily results in unsolvable environments. Whether to
apply the test is a property of an environment/task instead of a limitation of our method only: to avoid wasting computation
on unsolvable ones, most methods adopt the connectivity test by default when applied to such an environment/task. For
some simpler environments/tasks, e.g., BipedalWalker mainly used in the original ALP-GMM and POET paper, connectivity

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

Figure 10: Average time-cost of the RL agent to complete a sub-task from layer-3 of the sub-task tree. As the training
proceed, time-cost that the agent needs to complete each sub-task decreases significantly, indicating that πp does not propose
infeasible goals, and EG does not make the reward more sparse.

test is not required by any method. However, as we show in the table 9, ALP-GMM and POET generate more unsolvable
environments than EAT-C when applied to 2D-pusher.

Env. Steps 2.0 million 8.0 million 10.0 million

EAT-C 6.046 % 2.015 % 1.131 %
POET 10.889 % 2.510 % 1.586 %
ALP-GMM 13.740 % 3.490 % 1.697 %

Table 9: Results of EAT-C and curriculum RL methods generating unfeasible environments during training. Due to the low
fail possibility of generating unfeasible environments, removing connectivity check will not heavily change the final training
results.

Removing the connectivity test will not heavily change the final training results because the agent gets no effective reward
from unsolvable environments. However, removing the test does affect the efficiency because the agent has to waste time on
unsolvable environments. As the new experiments we will show later, EAT-C generates fewer unsolvable environments than
other baselines, so removing the test will not change the advantage of EAT-C on training efficiency.

Due to the nature of the environments in this paper, we applied the connectivity test to every method evaluated, so the
comparison is fair to all methods. To evaluate how these methods’ efficiency is affected by the removal of the connectivity
test, in the table below, we report the percentage of unsolvable environments generated/sampled by different methods at
different stages of the training. It shows that (1) the unsolvable environments generated by all the three methods drastically
decrease to < 2% after 10 millions steps so they only affect the efficiency of early training stages; (2) EAT-C generates
much less unsolvable environments than other baselines so it is still more efficient when the connectivity test is removed.

D.6. Ablation Study: What if combine hierarchical RL with other curriculum RL method?

One main difference between EAT-C and other curriculum RL that can also modify the environments is: EG in EAT-C
locally modify environments rather than change the entire environment once. Training an environment generator (EG)
to locally modify environments for a curriculum of sub-task is easier and results in more efficient learning because:

• EG does not need to create a curriculum or fully explore the whole environment space, which is highly expensive and
challenging in other environment design methods;

• Generating does NOT add complexity compared to other environment design methods. On the opposite, it REDUCES

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

the complexity because easier sub-tasks can provide denser and more informative feedback than the original long-
horizon task.

We conduct an empirical experiment to illustrate the advantages of the designing of EG in EAT-C and report in Table. 10.
In this ablation experiments, we replace EG in EAT-C with POET so both the path-planner and the RL agent are trained
within the environments generated/mutated by POET. This is “EAT-C (EG→ POET)” in table 10. Note that “EAT-C (EG
→ POET) maintains a hierarchical structure of sub-tasks generated by the path-planner. Thus, it can also be regarded as an
example of combining hierarchical RL (HRL) with curriculum RL (POET).

Env. steps 2.5 million steps 5.0 million steps 7.5 million steps 10.0 million steps
EAT-C (original) 22.07± 10.55 39.76± 13.46 61.24± 16.13 69.45± 17.42
EAT-C (EG→ POET) 16.44± 8.21 37.18± 14.25 49.94± 12.21 57.64± 10.93
POET 20.32± 11.35 39.22± 10.79 43.10± 14.54 50.23± 12.83

Table 10: In this experiment, we compare the performance of training RL policy in diverse environments mutated by POET
(EAT-C (EG→POET)) with the original EAT-C and POET. Note that EAT-C (EG→ POET) has a hierarchical sub-task
structure generated by the path-planner. From the result, we prove that locally modifying the environment (EAT-C) allows
the RL agent learns more efficiently than change the entire environment once.

The results show that applying some curriculum generated by existing methods such as POET to HRL (i.e., EAT-C (EG→
POET)) can finally outperform POET but it is less efficient than POET in early stages (before 5.0 million steps), because of
the expensive and inefficient exploration of the environment space discussed above. On the other hand, our original EAT-C
significantly outperforms both POET and EAT-C (EG→ POET) on learning efficiency and final performance. Hence, our
sub-task curriculum with adversarial environments is more efficient than some existing curricula applied to HRL.

D.7. Ablation Study: Curriculum RL controls everything rather than environment only

An insight of curriculum learning method is that the generated curriculum should be able to control everything during
training (i.e., training tasks, initial state, and training environments), which is possible to lead to a better performance than
control training environments only. Therefore, we conducted an ablation experiments of curriculum RL (e.g., ALP-GMM)
that can control everything (initial and goal states, obstacles, object) in 2D-pusher. Specifically, ALP-GMM can control the
location and size of the obstacles, the initial/goal state, and the location of the object by sampling from the learned GMM.
We report the performance of the new “ALP-GMM (control all)” on test tasks over the course of training in the table 11.
We also include our previous results of EAT-C and ALP-GMM for comparison. Note these two cannot control the original
tasks, i.e., the initial state s0 and the final goal state g.

This ablation experiments show that (1) EAT-C with partial control still significantly outperforms ALP-GMM (control all),
i.e., 81.45 vs. 61.05; and (2) ALP-GMM (control all) can surpass ALP-GMM with partial control in the middle stage of
training (54.52 vs. 48.15 at 10.0 million env. steps) but its final performance is worse (61.05 vs. 66.21). This can be
explained by our analysis in the response to your first comment: curriculum having total control over the assigned tasks
can introduce bias and distribution drift over the course of online RL. Therefore, randomly drawing the assigned tasks but
building a curriculum within each task, which is how EAT-C works in our evaluation setting, is more robust.

Environment Steps 5.0 million steps 10.0 million steps 15.0 million steps 20.0 million steps

ALP-GMM 18.33± 14.25 48.15± 11.34 62.35± 8.47 66.21± 9.35
ALP-GMM (control all) 34.28± 12.14 54.52± 14.33 58.67± 10.54 61.05± 12.45
EAT-C 39.76± 13.46 69.45± 17.42 78.15± 13.66 81.45± 11.35

Table 11: Ablation Study Results in 2D pusher. In this ablation experiment, ALP-GMM (control all) can control the location
and size of the obstacles, the initial/goal state, and the object’s location by sampling from the learned GMM. Results show
that even though the generated curriculum can control more, the performance is not better.

EAT-C: Environment-Adversarial sub-Task Curriculum for RL

E. More Related Work
The sub-goal generation in (Pertsch et al., 2020) follows a top-down and coarse-to-fine manner. However, they need
to search for each sub-goal in the tree from many possible candidates, which is expensive and requires a search tree
(hierarchical partition of the whole sub-goal space) much larger than our sub-goal tree (see Eq. 2). On the contrary, EAT-C
learns a planning policy to directly generate su-bgoals and we do not need to build the search tree covering the whole
sub-goal space. Another major difference is that they study a planning-only method while we study a mutual learning
strategy between planning and RL to improve both planning and RL policies.

(Zhang et al., 2020) trains a high-level policy to find the shortest path of sub-goals in a trained adjacency space. However, the
distance between any two points in the adjacency space is expected to reflect the time cost of the agent navigating between
the two points in the environment, which can be very challenging or even infeasible to achieve in many tasks (If we
have such an adjacency space, both planning and RL can have dense feedback and simple supervised learning should work).
In contrast, EAT-C trains a planner to directly generate a min-cost path of sub-goals through an easy-to-hard curriculum
(fewer sub-goals interpolated at first), which provides an easier and more efficient solution without requiring learning an
adjacency space. Moreover, the data used to train the planner in EAT-C are more informative than (Zhang et al., 2020) and
cover multi-granularity since they are collected from RL when completing the bottom-up sub-task curriculum.

In (Dayan & Hinton, 1993), the high-level managers set a sequence of subgoals in the environment partitioned by Euclidean
distance, which does not consider the obstacles or the RL agent capability. Hence, there is no mutual training between
high-level (planner) and low-level (controller) managers in (Dayan & Hinton, 1993). On the contrary, the planner in
EAT-C is jointly trained with the RL agent to produce a min-cost path of sub-goals for RL, which results in a more efficient
curriculum of sub-tasks to train the RL agent.

(Zhang et al., 2020) and (Schmidhuber & Wahnsiedler, 1993) plan sub-goals sequentially from the starting state to the goal
state, which might be inefficient in complex tasks (requiring expensive search in a large space) and cannot produce the
easy-to-hard curricula on a sub-goal tree as in EAT-C. In contrast, we train a planner to recursively produce coarse-to-
fine sub-goal trajectories between the starting and goal states, which naturally provide an easy-to-hard curriculum for every
component.

	Introduction
	Related Work
	Problem Formulation
	Goal-conditioned Reinforcement Learning
	Generating Sub-task Curricula for Goal-Conditioned RL
	Co-operative Path Planner: Learning Easy-to-Hard Sub-tasks
	Adversarial-Environment Generator (EG) applied to each Sub-task

	Environment-Adversarial sub-Task Curriculum
	Auto Curriculum Generation and Mutual-Boosting
	EAT-C Algorithm

	Experiments
	Main Results
	Ablation study
	How does EAT-C work? An Empirical Study

	Conclusion
	Details of Environment Implementations
	2D pusher
	Discrete space tasks
	7DoF Robotic Arm
	Environment Encoding of Baselines
	Implement of Hyperparameters in Baselines of Curriculum RL methods

	Model Architecture and Hyperparameters of SAC (RL Algorithm used in All Experiments)
	Pseudo-Code of EAT-C
	Larger Versions of Figures and Additional Experiment Results
	Larger Version of Main Structure in EAT-C
	Larger Versions of Plots for Main Results
	Additional Analysis on Main Results and Ablation Studies
	Ablation Study: Whether EG will make reward more sparse?
	Ablation Study: What if EG generate unfeasible environments?
	Ablation Study: What if combine hierarchical RL with other curriculum RL method?
	Ablation Study: Curriculum RL controls everything rather than environment only

	More Related Work

