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Abstract
We derive analytic bounds on the noise invari-
ance of majority vote classifiers operating on com-
pressed inputs. Specifically, starting from recent
bounds on the true risk of majority vote classifiers,
we extend the applicability of PAC-Bayesian the-
ory to quantify the resilience of majority votes to
input noise stemming from compression. The de-
rived bounds are intuitive in binary classification
settings, where they can be measured as expres-
sions of voter differentials and voter pair agree-
ment. By combining measures of input distortion
with analytic guarantees on noise invariance, we
prescribe rate-efficient machines to compress in-
puts without affecting subsequent classification.
Our validation shows how bounding noise invari-
ance can inform the compression stage for any
majority vote classifier such that worst-case im-
plications of bad input reconstructions are known,
and inputs can be compressed to the minimum
amount of information needed prior to inference.

1. Introduction
To learn concepts inherently contained in data, recent
breakthroughs in deep learning, adversarial robustness, and
bounded bayesian inference (Germain et al., 2015; Letarte
et al., 2019; Vidot et al., 2021) typically assume models that
can observe whole uncompressed volumes of d-dimensional
inputs x ∈ X ⊆ Rd in order to map x to target concepts
y ∈ Y . However, in practice, systems with distributed com-
puting assets (Pradhan et al., 2002; Xiao et al., 2006) employ
lossy compression techniques to reduce the load of com-
munication between inference machines and sensors that
collect data at test time. In such contexts, whole volumes
of x are inaccessible to machines tasked with inference,
and only noisy reconstructions of x are available to infer
concepts y.
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Adapting recent proposals to data scarcity at test time entails
the design of models that infer concepts from compressed
samples of input xc = C(x), where C : X → E → X
encodes and decodes x with information loss, E ⊆ Rdc is
the set describing compressed codes of x, and dc ≤ d. From
a rate-distortion theory perspective (Gray & Neuhoff, 1998),
code lengths dc quantify the rate of bitstreams ingested by
arbitrary models M : X → Y , and since d−1

c ∝ |xc − x|,
rate-efficient classifiers define the family of models that
satisfy M(x) = M(xc) for lower values of dc. Generally,
models that return outputs sensitive to small perturbations on
x can be deemed as greedy models, due to their requirement
of long code lengths dc to reduce |xc−x|. On the other hand,
models that are resilient to input distortion are rate-efficient,
since they require shorter code lengths dc to correctly infer
concepts y. Thus, rate-efficiency defines a sub-class of
models that are resilient to noise afflicted on x, and this
sets the context of our approach to solve for rate-efficient
machines.

We hereon define noise invariance as the probability of out-
put change with respect to noisy input perturbations, and
in the case of binary classifiers where y ∈ {−1, 1}, noise
invariance specifically refers to the percentile of outputs
flipped due to input compression noise. Bounding the noise
invariance of classifiers M can allow for more aggressive
compression, since it gives guarantees on the implications
of reconstruction loss |xc −x| on predicted outputs. Hence,
wherever noise invariance bounds are defined over prob-
abilistic measures on input noise, empirical measures of
|xc − x| can be inspected to compress inputs up to allow-
able limits on code lengths dc without distorting predictions
M(xc). The latter motivates our proposal, and we sum-
marise our contributions below:

1. We introduce the notion of rate-efficient classifiers to
PAC-Bayesian theory, and derive relevant expressions
of noise-invariance to define such classifiers.

2. We derive unsupervised general bounds on noise-
invariance, and specialize them to binary majority vote
classifiers comprising linear kernels.

3. We combine noise-invariance bounds with measures
of reconstruction loss to realize rate-efficient machines
that bound errors resulting from lossy compression.
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Our bounds on noise invariance incorporate two key aspects
detrimental to the resilience of majority votes (James, 1998;
Lacasse et al., 2006) to input distortion: (i) the agreement
across voter pairs on predicted continuous outputs, and (ii)
differentials of voter outputs with respect to shifting inputs.
Both terms are intuitive, where the first emphasizes how the
consensus across voters should exist away from decision
boundaries, and the second relates the importance of smooth
voters to noise-invariance. Generally, the noise invariance
bounds we derive are applicable wherever inputs are reliably
modelled as gaussian processes.

In Section 2 we give a concise introduction to relevant defi-
nitions in existing work on PAC-Bayesian theory. In Section
3 we formalise rate-efficient classifiers and state the problem
we solve. In Section 4 we prime definitions on individual
voters to qualify Section 5, where we derive noise invariance
measures and bounds for majority votes. In Section 6 we
discuss recent work on input perturbation bounds. In Sec-
tion 7 we report results on all relevant theorems to validate
our proposal detailed in Sections (3, 4, 5), and Section 8
concludes the paper.

2. An Introduction to PAC-Bayesian Theory
Let (x, y) denote input-output pairs drawn from an unknown
domain D over the support X × Y , where inputs x are
normalised such that x ∈ X ⊆ [−1, 1]d, and y ∈ Y defines
targets in a binary classification setting when Y = {−1, 1}.
Given a set of m examples S ∼ Dm and a hypotheses set
H = {hi(x)} where hi : X → [−1, 1], we define the true
risk R(hi) and empirical risk RS(hi) as the expectation of
errors made by classifiers sgn(hi) on D and S , respectively.

Definition 1 For any source domain D, and for any set of
examples S, the true risk R(hi) and empirical risk RS(hi)
measure the expectation:

R(hi) := E
(x,y)∼D

1R−

(
y · hi(x)

)
RS(hi) :=

1

m

∑
(x,y)∈S

1R−

(
y · hi(x)

)
where 1R−(c) defines the indicator function such that
1R−(c) = 1 if c ∈ R−, and 1R−(c) = 0 otherwise.

Specifically, the expectations of Definition 1 measure the
mean zero-one loss (Bartlett et al., 2006). For any den-
sity function Q(hi) defined over H, PAC-Bayesian theory
(Catoni, 2007; Langford & Shawe-Taylor, 2002; McAllester,
2003) bounds the true risk of majority vote (Bayes) classi-
fiers BQ(x). The following formally states the output of
kernelised majority votes BQ(x) weighted by Q(hi) when
H defines a set of m voters hi(x) as functions of kernels
(x′

i, yi) ∈ S (Germain et al., 2015).

Definition 2 For any input x ∈ X , for any posterior Q
defined over training examples (x′

i, yi) ∈ S , and for any set
of kernelised voters hi(x) = yiK(x,x′

i):

BQ(x) = sgn
(

E
(x′

i,yi
)∼Q

yiK(x,x′
i)
)

Interestingly, for arbitrary hypotheses hi(x), many binary
classification techniques implicitly define majority vote clas-
sifiers. For example, kernelised support vector machines
(Gholami & Fakhari, 2017), boosting methods (Sagi &
Rokach, 2018), and mixtures of experts (Shazeer et al.,
2017) can all be construed as special cases of Definition 2.
Learning accurate majority vote classifiers entails learning
posteriors Q(hi|S) over H such that the true risk R(BQ) of
the Q-weighted majority vote BQ(x) is minimized.

Bounds on the true risk of BQ(x) are commonly derived
from intermediary bounds on the risk of Gibbs classifiers
GQ(x) (Lacasse et al., 2006) that randomly sample hy-
potheses hi ∼ Q to classify x. Indeed, the output of Gibbs
classifiers can be different even if the same input is passed
twice, and the following defines risk measures for GQ(x).

Definition 3 For any source domain D, and for any pos-
terior Q on H, the true Gibbs risk R(GQ) and empirical
Gibbs risk RS(GQ) measure the expectation of drawing an
erroneous classifier sgn(hi) from Q:

R(GQ) := E
(x,y)∼D

E
hi∼Q

1R−

(
y · hi(x)

)
RS(GQ) :=

1

m

∑
(x,y)∈S

E
hi∼Q

1R−

(
y · hi(x)

)

From Definition 3, a trivial bound on the majority vote
classifier can be directly derived as R(BQ) ≤ 2R(GQ) (La-
casse et al., 2006; Langford & Shawe-Taylor, 2002). This
is because, whenever BQ misclassifies x, the probability of
drawing a classifier hi ∼ Q that misclassifies x is at at least
0.5. Hence, it follows that the true risk of BQ(x) is at most
twice the true risk of GQ(x) and R(BQ) ≤ 2R(GQ).

2.1. PAC-Bayesian Bounds on Measures of Risk

The canonical majority vote bounds of (Catoni, 2007;
Germain et al., 2015; Langford & Shawe-Taylor, 2002;
McAllester, 2003) on R(GQ) are typically parameterized
by: (i) the number of training examples m constituting a
training set S used to learn the posterior Q(hi|S), (ii) a
prior distribution P (hi), and (iii) an arbitrary δ ∈ (0, 1] that
specifies the probability of the bound. The following theo-
rem expresses a common starting point for PAC-Bayesian
bounds on R(GQ), first introduced by McAllester et al. in
(McAllester, 1999).
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Theorem 1 For any source distribution D, for any prior P
on the hypothesis set H, for any convex distance function
D : [0, 1]× [0, 1] → R, and for any posterior Q learned by
observing m examples x ∈ S:

Pr
S∼D

(
D(RS(GQ), R(GQ)) ≤

1

m

[
KL(Q||P )

+ ln
(1
δ

E
S∼D

E
hi∼P

emD(RS(hi),R(hi))
)])

≥ 1− δ

Proof: Applying Markov’s inequality on the positive ex-
pression Eh∼P e

mD(RS(hi),R(hi)), and converting Ehi∼P to
Ehi∼Q yields:

Pr
S∼D

(
E

hi∼Q

P (hi)

Q(hi)
emD(RS(hi),R(hi)) ≤

1

δ
E

S∼D
E

hi∼P
emD(RS(hi),R(hi))

)
≥ 1− δ

The result follows after taking ln(·) on each side and ap-
plying Jensen’s inequality by exploiting the concavity and
convexity of ln(·) and D, respectively. For a step-by-step
account of this proof, see (Germain et al., 2009; 2015).

Relevant to our proposal is the specialization of Theorem
1 to convex divergence measures D on the probability of
binary events. Specifically, by setting D(RS(GQ), R(GQ))
as the Kullback-Leibler divergence of binomial distribu-
tions kl(RS(GQ)||R(GQ)), the following corollary simpli-
fies Theorem 1.

Corollary 1 For any source domain D, for any prior P on
the hypothesis set H, for the binomial distance function
kl(·) : [0, 1]× [0, 1] → R, and for any posterior Q learned
by observing m examples x ∈ S:

Pr
S∼D

(
kl(RS(GQ)||R(GQ)) ≤

1

m

[
KL(Q||P )+ ln

ξ(m)

δ

])
≤ 1− δ

when ξ(m) :=
∑m

k=0

(
m
k

)(
k/m

)k(
1− k/m)m−k

Proof: Since the Kullback-Leibler divergence kl(q||p) be-
tween two binomial distributions parameterised by p and q
is:

kl(q||p) = q ln
q

p
+ (1− q) ln

1− q

1− p

by interpreting RS(hi) and R(hi) as parameters of distinct
binomial variates, ξ(m) emerges after breaking the exponen-
tial term in ES∼D Ehi∼P emD(RS(hi),R(hi)) of Theorem 1,
where the expectation becomes:

E
S∼D

E
hi∼P

(RS(hi)

R(hi)

)mRS(hi)(1−RS(hi)

1−R(hi)

)m(1−RS(hi))

= E
hi∼P

m∑
k=0

Pr
S∼D

(
RS(hi) =

k

m

)( k
m

R(hi)

)mRS(hi)( 1− k
m

1−R(hi)

)m(1−RS(hi))

Since ES∼D RS(hi) = R(hi), the last expectation is simpli-
fied to ξ(m). Following the proof of Theorem 1 then yields
the result of the corollary. For more details, see (Germain
et al., 2009; 2015).

Importantly, even if Corollary 1 is typically defined to bound
the empirical risk RS(GQ) (Germain et al., 2009; 2015),
parameters of D(·) can be set to bound other binary events
defined as functions of Q(hi|S) and P (hi). Thus, in order
to adapt Corollary 1 to noise invariance measures for ma-
jority vote classifiers BQ(x), in Sections 4 and 5 we derive
exact expressions of noise invariance as expectations over
Q(hi|S) and P (hi).

3. Formalising Rate-Efficient Machines
We propose to realize rate-efficient machines by quantifying
the resilience of classifiers to input degradation via PAC-
Bayesian bounds on noise invariance. Let xc = C(x, θc)
denote any lossy compression of x parameterised by θc.
To give a probabilistic handle σ2

c ∈ R on reconstruction
noise, and letting I ∈ Rd×d denote the identity matrix,
we fit N (0, σ2

cI) on xc − x such that σ2
c quantifies the

extent of distortion inflicted on x by the compressor (see
Figure 1). For high-rate compression regiments, gaussians
accurately model reconstruction loss |xc − x| in statistical
representations of rate-distortion theory (Gray & Neuhoff,
1998). Capitalising on this, we define ηD as the probability
of output change with respect to input perturbation for any
model M : X → Y .

Definition 4 For any source domain D, for any classifica-
tion model M, and for any noise vector n ∼ N (0, σ2

cI)
modelling perturbations on x, noise invariance ηD quanti-
fies the probability of output change due to n:

ηD = E
x∼D

Pr
n∼N

(
M(x) ̸= M(x+ n)

)
In distributed computing settings, inference (classifier) ma-
chines M cannot observe n directly. However, prior mea-
sures of σ2

c can be combined with knowledge of the func-
tional form of M to infer probabilities of misclassification
when M observes xc = x+n. We therefore endeavor to de-
sign resilient models that give PAC bounds Bη on the noise
invariance ηD of M such that ηD ≤ Bη with probability δη ,
whenever empirical measures are given for σ2

c at test time.
Our approach leverages existing PAC-Bayesian theory (Ger-
main et al., 2009; 2015; Langford & Shawe-Taylor, 2002;
McAllester, 2003) qualified in Section 2 to derive bounds
on ηD for majority vote classifiers when M(x) = BQ(x).
Note that we use the subscripted notation δη to distinguish
it from δ, which commonly denotes the probability of PAC
bounds BR on the true risk of majority votes in existing
literature on PAC-Bayesian inference (Germain et al., 2009;
2015).
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Figure 1. Observation model of η-enabled rate-efficient inference.
By combining analytical guarantees with measures of compression
noise, we realize rate-efficient machines that bound noise invari-
ance. Note that M(x) = BQ(x) returns PAC bounds on risk via
(δ,BR) and on compression noise invariance via (δη,Bη).

On the relevance of ηD to rate-efficiency: Bounds Bη

on noise invariance ηD facilitate for rate-efficient machines,
where compressors C(x, θc) can compress inputs to limits
that do not distort classification outputs beyond Bη with
probabilities ≥ 1− δη. That is, by estimating the variance
of density functions N (0, σ2

cI) fitted on empirical measures
of xc − x at test time, compression parameters θc can be
tuned until σ2

c reaches a target value σ2
t that guarantees a

bound Bη on the noise invariance of BQ(x). For example,
Figure 1 illustrates how measures of compression noise can
be coupled with analytic PAC guarantees on noise invari-
ance, such that compressors C(x, θc) can refine xc until
realizing the highest σ2

c that is suitably bounded by Bη and
δη. Importantly, compressors in Figure 1 can include any
compression model with tunable parameters θc.

4. Quantifying Voter Noise Invariance
We are interested in resilient models that give consistent
outputs despite noise vectors n ∼ N (0,σ2

cI) inflicted on
compressed inputs xc = x + n. To quantify the noise
invariance of majority vote classifiers to compression noise,
we begin by defining a measure of resilience rQ(x) on
individual voters hi(x) of majority vote classifiers BQ(x)
as the expectation of voter disagreement due to perturbations
n inflicted on compressed inputs.

Definition 5 For any source domain D, for any posterior
Q defined over continuous voters hi : X → [−1, 1], and for
any n ∼ N (0, σ2

cI), we define continuous voter resilience
rQ(x) as:

rQ(x) := E
hi∼Q

E
n∼N

hi(x) · hi(x+ n)

Notably, the inner product hi(x) · hi(x+ n) in Definition
5 returns values ∈ {−1, 1} when both hi(x) and hi(x+n)
yield exact binary values ∈ {−1, 1}. However, hi(x) ·
hi(x + n) in Definition 5 also gives a rich measure on
the resilience of individual voters by returning intermediate
values ∈ [−1, 1] whenever hi(x), hi(x + n) ∈ [−1, 1],

to account for the certainty of hi(x) and hi(x + n) in
assigning positive or negative classes. To understand the
key characteristics that determine the resilience of individual
voters to input perturbation, the next lemma decomposes
rQ(x) of Definition 5.

Lemma 1 For any input x ∈ X , for any posterior Q, and
for any noise vector n ∼ N (0, σ2

cI), the resilience measure
rQ(x) can be decomposed to:

rQ(x) = E
hi∼Q

E
n∼N

hi(x)
2 + hi(x)

(
hi(x + n)− hi(x)

)
Proof: We rearrange Definition 5 and use expectation prop-
erties to segregate rQ(x) into the two terms of the lemma:

rQ(x) := E
hi∼Q

E
n∼N

hi(x)hi(x + n)

= E
hi∼Q

E
n∼N

hi(x)

[
hi(x)+

(
hi(x + n) – hi(x)

)]
and distributing hi(x) into the the sum yields the lemma.

The expression of Lemma 1 highlights the dependence of
rQ(x) on two measures: (i) the confidence of individual
voters hi(x)

2 ∈ [0, 1] where hi(x)
2 scales quadratically

against votes hi(x), and (ii) the differential of voter outputs
hi(x+ n)− hi(x), which measures the amount of change
on hi(x) as a result of perturbing inputs x with a noise vec-
tor n. It is also interesting to point out that, from Lemma 1,
the term hi(x+n)−hi(x) correlates with the differentials
δhi(x)

δx specifically in local regions softly demarked by gaus-
sian hyperspheres defined over the multivariate N (0, σ2

cI).

To close on properties relating to individual voters, the fol-
lowing defines aQ(x) as the expectation of agreement be-
tween continuous voter pairs.

Definition 6 For any input x ∈ X , for any posterior Q,
aQ(x) quantifies the agreement between voters as:

aQ(x) := E
hi∼Q

E
hj∼Q

hi(x) · hj(x)

Agreement as measured by Definition 6 will become helpful
in simplifying expressions relating to the noise invariance of
bayesian classifiers BQ(x). It is also worth noting here that
aQ(x) correlates inversely with the concept of disagreement
in the C-bound of (Germain et al., 2015), which emerges
often in derivations of PAC-Bayesian bounds on risk. Specif-
ically, the C-bound suggests that majority votes perform a
trade-off between lower Gibbs risk R(GQ) and higher dis-
agreements aQ(x)−1 to achieve better majority vote risks
R(BQ). Bounds defined as functions of voter agreement
benefit from the unsupervised nature of aQ(x), since it can
be measured with higher precision without needing labels y,
and our bound on noise invariance that we derive in Section
5 inherits this unsupervised aspect of aQ(x).
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5. Noise Invariance of the Majority Vote
From Definition 4, we define the noise invariance ηDQ of
majority vote classifiers as the probability of disagreement
M(x) ̸= M(x+ n) when M(x) = BQ(x).

Definition 7 For any majority vote classifier BQ, for any
posterior Q, and for any noise vector n ∼ N (0, σ2

cI), the
resilience ηDQ of BQ(x) to perturbations on x is:

ηDQ := E
x∼D

Pr
n∼N

(
E

hi∼Q
hi(x+ n) · E

hj∼Q
hj(x) ≤ 0

)

Lemma 2 For any posterior Q, for any noise vector n ∼
N (0, σ2

cI), and by extending hi(x+n), the noise invariance
measure ηDQ can be decomposed to:

ηDQ = E
x∼D

Pr
n∼N

(
E

hi∼Q
E

hj∼Q
hi(x) · hj(x) ≤

E
hi∼Q

E
hj∼Q

hj(x) ·
(
hi(x)− hi(x+ n)

))
Proof: Exploiting the fact that hi(x+n) = hi(x)+

(
hi(x+

n)− hi(x)
)
, we rearrange Definition 7 and use expectation

properties to decompose the inner multiplication:

E
hi∼Q

hi(x+ n) · E
hj∼Q

hj(x)

= E
hi∼Q

(
E

hj∼Q
hj(x) · hi(x+ n)

)
= E

hi∼Q
E

hj∼Q
hi(x) · hj(x)

+ E
hi∼Q

E
hj∼Q

hj(x) ·
(
hi(x+ n)− hi(x)

)
Substituting the last expression in the inequality of Defini-
tion 7 yields the result of the lemma.

Notably from Lemma 2, since the L.H.S of its inequality
expresses aQ(x), noise invariance ηDQ becomes a function
of the agreement between individual voters expressed in
Definition 6. Next, we show how to leverage Lemma 2 in
order to tractably compute the resilience of majority vote
classifiers BQ(x).

5.1. Exact Expressions of ηDQ for Linear Kernels

So far, we discussed general Bayes classifiers defined over
sets of kernelised voters, where each kernel is parameterized
by training examples (x′

i, yi) ∈ S . Interestingly, some voter
kernels yield exact expressions of Lemma 2 without the need
to calculate expectations over n, and salient among these
are linear classifiers hi(x) = yix

′
ix

⊤ that specify constant
differentials δhi(x)

δx = yix
′
i. By exploiting the commutative

property of linear products to simplify hi(x+ n)− hi(x),
the next lemma collapses the multivariate expression of
noise in Lemma 2 to a tractable univariate.

Lemma 3 For any majority vote classifier defining a pos-
terior Q over normalised linear voters x′

i ∈ S ⊆ X where
hi(x) = yix

′
ix

⊤, and when ω ∈ Rd is a variate defining
ω = Ex′

i∼Q Ex′
j∼Q x′

jx
⊤x′

i, noise invariance ηDQ becomes:

ηDQ = E
x∼D

Prt∼N (0,ω⊤σ2
cIω)

(
aQ(x) + t < 0

)
Proof: From the R.H.S of Lemma 2, and by exploiting the
commutative property of linear dot products:

Prn∼N (0,σ2
cI)

(
E

hi∼Q
E

hj∼Q
hj(x) ·

(
hi(x+ n)− hi(x)

))

= Prn∼N (0,σ2
cI)

(
n E

x′
i∼Q

E
x′
j∼Q

x′
jx

⊤x′
i

)
= N (0,ω⊤σ2

cIω)

Letting ω = Ex′
i∼Q Ex′

j∼Q x′
jx

⊤x′
i and exploiting the mul-

tiplication property of multivariates yields the last step, and
the lemma is obtained by substituting t ∼ N (0,ωσ2

cIω
⊤)

in Lemma 2.

From Lemma 3, we derive an analytic expression of ηDQ for
majority vote classifiers comprising linear kernels.

Theorem 2 For any majority vote classifier defining a pos-
terior Q over normalised linear voters x′

i ∈ S ⊆ X where
hi(x) = yix

′
ix

⊤, and when ω = Ex′
i∼Q Ex′

j∼Q x′
jx

⊤x′
i,

invariance coefficients ηDQ are simplified to:

ηDQ = E
x∼D

1

2

[
1 + erf

(
aQ(x)√

ωσ2
cIω

⊤
√
2

)]
Proof: From the inequality of Lemma 3, moving t to the
R.H.S gives:

ηDQ = E
x∼D

Prt∼N (0,ωσ2
cIω

⊤)

(
− aQ(x) ≥ t

)
When t ∼ N (0,ωσ2

cIω
⊤), the last expression simplifies

to the CDF: Φ(aQ(x)−µ
σ ) = 1

2

[
1 + erf

(
aQ(x)−µ

σ
√
2

)]
where

erf(z) := 2√
π

∫
e−z2

dz defines the gaussian error function.

The result of Theorem 2 calculates ηDQ knowing only BQ(x)

and σ2
c , and is tractable via importance sampling due to

the collapsed univariate t. Hence, any non-vacuous bound
on ηDQ of Theorem 2 would satisfy all the requirements
described in Section 3 characterising good indicators of
over-compression. Also interesting to note here is that,
whenever N (x−xc|0, σ2

cI) expresses an isotropic gaussian
symmetric on 0, ηDQ of Theorem 2 can never exceed 0.5.
This is because aQ(x) ≥ 0 such that Theorem 2 always
returns the integration of N (0,ωσ2

cIω
⊤) up to the center

of the gaussian, thereby ensuring ηDQ ≤ 0.5. This is also
intuitive, since binary linear classifiers define demarcation
hyperplanes in X , and examples are always equally likely
to move towards or away from classification hyperplanes.
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5.2. Upper-Bounding ηDQ and Distortion Inflicted Risk

To account for the double expectations ηDQ defines over voter
pairs (hi, hj), and in order to bound ηDQ via Corollary 1,
similar to (Germain et al., 2015) we consider the posteriors
Q2 defined over H2 : H × H denoting hypothesis sets
comprising voter pairs hij = (hi, hj). The product rule
gives Q2(hij) = Q(hi)Q(hj), and the next theorem adapts
Corollary 1 to ηDQ .

Theorem 3 For any source distribution D, for any prior
P 2 on the hypothesis set H2, for any posterior Q2 learned
by observing S ∼ Dm, and for any arbitrary probability
δη ∈ (0, 1]:

Pr
S∼D

(
kl(ηSQ||ηDQ ) ≤ 1

m

[
2KL(Q||P ) + ln

ξ(m)

δη

])
≥ 1− δη

Proof: Because ηDQ is a binary event defined over
Q2(hij |S), the KL divergence term becomes:

KL(Q2||P 2) = E
hij∼Q2

ln
(Q2(hij)

P 2(hij)

)
= E

hij∼Q2

(
ln

Q(hi)

P (hi)
+ ln

Q(hj)

P (hj)

)
the last expression simplifies to 2KL(Q||P ) and we then
apply Corollary 1 to get the bound of the theorem. For a
detailed account on paired voters and how they relate to
Corollary 1, see (Germain et al., 2015).

Corollary 2 For any arbitrary probability δη ∈ (0, 1], there
exists an upper bound ηDQ ≤ Bη with probabilty ≥ 1− δη
when Bη defines the supremum:

Bη := sup

{
bη : kl(ηSQ||bη) ≤

1

m

[
2KL(Q||P ) + ln

ξ(m)

δη

]}
Proof: Upper bounds Bη on ηDQ define the highest value of
ηDQ that satisfies Theorem 3, and this yields the corollary.

5.3. Bounding the Effect of ηDQ on True Risk R(BQ)

Bounds Bη on ηDQ actually carry additional implicit bounds
BR on the true risk of BQ(x + n) after noise distorts the
input of majority votes BQ(x). Specifically, whenever the
probability of output change ηDQ is bounded by Theorem
3, and when R(BQ) measures the true risk of BQ(x) for
non-perturbed inputs x, the next corollary expresses BR as
a closed-form expression of R(BQ) and Bη .

Corollary 3 For any source domain D, for any bound Bη

on ηDQ , there exists a bound R(BQ(x + n)) ≤ BR after
noise n ∼ N (0, σ2

cI) is applied on x, where BR measures:

BR := R(BQ) + Bη −R(BQ) · Bη

Proof: When BQ(x+ n) infers targets from m perturbed
examples x, the total number of correct outputs becomes[
1−R(BQ)

]
m−

[
1−R(BQ)

]
Bηm, and BR measures:

BR := 1−
m
([

1−R(BQ)
]
−
[
1−R(BQ)

]
Bη

)
m

= 1−
([

1−R(BQ)
]
[1− Bη]

)
The corollary follows by simplifying the last expression.

Closing remarks on Bη: From Corollary 2 we observe that
upper bounds Bη on ηDQ are actually functions of: (i) the
posterior Q(hi|S), (ii) the prior P (hi), and (iii) the variance
σ2
c of input compression noise n. Therefore, by combining

the bound of Theorem 3 with empirical estimates of σ2
c at

test time, implications of compression are known before
outputs of majority vote classifiers BQ(x) are observed.
Thus, using Theorem 3 and following the prescription of
Section 3, we are able to realize rate-efficient machines that
compress inputs up to known limits that guarantee the bound
ηDQ ≤ Bη with probability ≥ 1− δη .

5.4. Final Observations on Voter Kernels and ηDQ

On regularizing kernel selection: When classifiers BQ(x)
are defined per Definition 2 as majority votes over a set of
training kernels x′

i ∈ S, Definition 7 expresses noise in-
variance coefficients ηDQ as functions of: individual voters
hi(x), training kernels x′

i, and parameters that weight the
importance of each voter Q(hi|S). Thus, noise invariant
bayes classifiers BQ(x) specify posteriors Q(hi|S) that
prioritise smooth voters with kernels minimising δhi(x)

δx .
Regulating training to learn such posteriors is possible via
the MinCq learning algorithm (Germain et al., 2013), where
some voters can be favoured to others by setting higher
probabilities Q(hi|S) for kernels x′

i that return lower dif-
ferentials δhi(x)

δx . Further exploration of this is outside the
scope of our proposal, and we leave implementations of
noise invariance regulation to future work.

On viable kernel types: Generally, the bound of Theo-
rem 3 is applicable for any majority vote whenever voters
hi(x) are continuously differentiable. For example, this
is the case for Multi-Layer Perceptrons (MLP), which fol-
low linear transformations by sigmoid non-linearities such
that K(x,x′

i) = [1+exp(−x′
ix

⊤)]−1. Incidentally, MLPs
can also be construed as majority vote classifiers, because
individual weight vectors make decisions on x that are sub-
sequently pooled. Moreover, and since bounds of Theorem
2 can be calculated prior to compression, the tractability of
the compressive loop in Figure 1 is not affected by the com-
plexity of kernels. We leave to future work the derivation
of non-vacuous bounds on ηDQ for majority vote classifiers
with non-linear kernels.
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Figure 2. (Left) Noise invariance bound Bη , training noise invariance ηS
Q, and testing noise invariance ηT

Q for increasing values of input
degradation as quantified by σ2

c . (Right) Contours of the true risk bound BR after outputs are distorted (flipped) with probability ηD
Q ;

yellower hues indicate higher values of BR(BQ).

6. Related Work
The notion of noise invariance is closely related - but not
equivalent - to adversarial robustness (Goodfellow et al.,
2015), which measures the probability P (M(x+n∗) ̸= y)
of misclassifying ground truth y due to learnt perturbations
n∗(x, y,M), where n∗ = argmaxn P (M(x + n) ̸= y).
To study the adverse effect of input perturbations, recent pro-
posals (Cohen et al., 2019; Montasser et al., 2020; Rahimian,
2019; Vidot et al., 2021) introduced various bounds on adver-
sarial robustness and decision making under uncertainty. For
instance, (Cohen et al., 2019) provide bounds that estimate
minimum perturbation norms required to yield adversarial
examples, and (Salman et al., 2019) extend the method of
(Cohen et al., 2019) to yield tighter bounds via adversarial
training. More recently, (Vidot et al., 2021) provide bounds
on adversarial robustness in white-box settings to under-
stand when differentiable decision trees fail against adver-
sarial attacks with high probabilities P (M(x+ n∗) ̸= y).
Importantly, the contribution of (Vidot et al., 2021) gives su-
pervised bounds on risk averaged over sets of learnt pertur-
bations n∗, and is not applicable to the iterative compression
setting detailed in Section 3.

While the works cited above all study different aspects of
perturbation invariance, our method contrasts (Cohen et al.,
2019; Montasser et al., 2020; Vidot et al., 2021) in that it is
the first to: (i) yield unsupervised bounds on probabilities
P (M(x+ n) ̸= M(x)) outside the context of adversarial
robustness that assumes knowledge of ground truth y and
posteriors P (n∗|x,M) that maximise P (M(x+n∗) ̸= y),
(ii) define tractable bounds as functions of (M, σ2

c ) that can
be measured offline prior to compression, and (iii) give
bounds on ηDQ that are not averaged over perturbation sets,
where ηDQ measures the probability of flipped outputs for
any input x ∈ X . The unique set of properties detailed
in (i)-(iii) allow us to integrate PAC-Bayesian bounds into
the compression loop of Figure 1 to derive the rate-efficient
PAC-Bayesian classifiers detailed in Section 3.

7. Evaluation
Test setting: To address a class of problems where inputs are
typically costly to compress and stream prior to inference,
and to overlap our evaluation with vision applications where
inputs undergo lossy compression, we focus our experimen-
tal validation on joint image compression and classification.
We evaluate the measures and bounds of Theorem 3 and
Corollary 3 on the handwritten digits dataset MNIST (Deng,
2012) in two distinct settings:

1. Controlled test conditions where noise is drawn directly
from gaussian densities N (0, σ2

c ) to perturb inputs x,
and σ2

c is directly specified.

2. A distributed visual inference setting, where inputs are
compressed via JPEG2000 (Rabbani, 2002) prior to in-
ference, and compression is tuned via a quality param-
eter q. Compression noise here is induced “naturally”
when the compressor fails to accurately reconstruct x.

Adapting MNIST to binary classification: Following es-
tablished practice (Germain et al., 2015; Letarte et al., 2019),
we split MNIST into 45 binary classification tasks1, where
each task is exclusive to a unique pair of MNIST classes.
For each task, a training set S with m = 500 is randomly
sampled, and remaining examples go to a test set T used
for validation. Each task uses a unique set of examples,
such that any pair of datasets returns the empty set, and
combining all datasets returns all examples in MNIST. All
results are averaged after validating on all 45 unique tasks.

Measuring σ2
c : For tests on naturally occurring noise, we

derive measures on σ2
c by iterating over JPEG2000 compres-

sion rounds until a specified target σ2
t is met (as per Figure

1). When JPEG(x, θc) denotes JPEG compression (Rab-
bani, 2002) with parameters θc, and σ2(·) is the variance of
fitted isotropic gaussians N (0, σ2), we perform:

σ2
c = max

θc
σ2
(
x− JPEG(x, θc)

)
s.t. σ2

c ≤ σ2
t

1MNIST classes give 10?−10 = 45 binary classification tasks,
where k? denotes the kth triangle sum (Knuth, 2014).
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Table 1. Training and testing noise invariance (ηS
Q, η

T
Q), noise invariance bounds Bη , and test risk RT (BQ) as measured on MNIST.

Lower values of (ηS
Q, η

T
Q ,Bη, RT ) indicate higher resilience to noise and correspond to higher rate-efficiency. For MNIST-JPEG we

report dc as the average number of bytes per image as encoded by JPEG (Rabbani, 2002), and n ∼ C(x, θc) denotes compression noise.

σ2
c

MNIST
(
n ∼ N (0, σ2

c )
)

σ2
c

MNIST-JPEG
(
n ∼ C(x, θc)

)
ηS
Q ηT

Q |ηT
Q − Bη| Bη RT q dc ηS

Q ηT
Q |ηT

Q − Bη| Bη RT

0.010 0.046 0.013 0.149 0.162 0.24 0.016 90 571 0.001 0.000 0.060 0.060 0.19
0.100 0.180 0.275 0.058 0.333 0.29 0.022 70 293 0.002 0.008 0.056 0.064 0.23
0.250 0.235 0.348 0.052 0.400 0.32 0.023 50 254 0.002 0.007 0.053 0.060 0.26
0.500 0.294 0.392 0.063 0.455 0.36 0.023 30 208 0.002 0.026 0.043 0.069 0.26
0.750 0.315 0.411 0.077 0.488 0.39 0.026 10 194 0.003 0.064 0.003 0.067 0.27
1.000 0.338 0.470 0.031 0.501 0.44 0.029 5 188 0.004 0.069 0.002 0.071 0.28

Used Classifiers: We construct majority votes on finite self-
complemented hypotheses sets H (Germain et al., 2015) of
real-valued voters hi(x) to learn Q(hi|S) via MinCq (Jean,
2019) when posteriors Q(hi|S) align with priors P (hi).
Specifically, our implementation2 assigns training sets S
of m training examples x′

i ∈ S to constitute kernels of
linear voters hi(x) = x′

ix
⊤ that define a majority vote

classifier BQ(x), and we use the quadratic program of (Jean,
2019) to solve for Q(hi|S). To validate the unsupervised
bounds of Theorem 3 and Corollary 3, Table 1 and Figure 2
report relevant empirical measures on noise invariance when
δ = 0.05 and δη = 0.05. For all parameters not explicitly
mentioned in our discussion, we retain specifications of the
GRAAL-Research MinCq implementation (Jean, 2019).

7.1. Evaluation on Controlled Noise

Table 1 (left) validates the results of applying Theorem 3
and Corollary 2 on MNIST examples when artificial noise
is applied to x such that xc = x+ n and n ∼ N (0, σ2

cI).
We observe from Table 1 (left) that training noise invariance
coefficients ηSQ are around 0.3 when σ2

c ≥ 0.5, and are at
most 0.235 when σ2

c ≤ 0.25, giving a baseline on ηDQ for
source domains similar to those of MNIST. Moreover, we
note that the difference |ηTQ −Bη| never exceeds 0.08 when
σ2
c ≥ 0.1, showing that Bη is actually very informative of

true noise invariance coefficients for higher values of σ2
c ,

where ηTQ never deviates substantially from Bη. This is
also reflected in Figure 2 (left), where test set measures of
ηTQ neatly track ηSQ for σ2

c ≤ 0.1, and mostly fall in the
mid-point between ηSQ and Bη for σ2

c ≥ 0.2.

7.2. Evaluation on JPEG2000 Compression Noise

Table 1 (right) provides results for noise stemming from
JPEG compression, the most common in image compression
practice. We emulate a typical distributed visual inference
setting as per Figure 1, where inputs are compressed prior
to inference to match specified constraints on bitrate. To
meet any PAC guarantee on noise invariance, we calculate

2https://github.com/git-alhabib/pacb-ni

the target σ2
t that yields a specified ηSQ from Theorem 3,

and vary JPEG compression parameters θc to fit σ2
c as pre-

scribed by Equation 7. Table 1 details relevant results under
MNIST-JPEG, and additionally reports the dimensions of
the compression latent space dc as the average number of
bytes resulting from JPEG encoding.

Similar to our observations on synthetically perturbed
MNIST inputs, the right half of Table 1 reports low ab-
solute differences |ηTQ − Bη|, indicating that bounds on ηTQ
are valid even when noise is drawn from complex structures
(i.e., the non-linear block models of JPEG in this case). In-
terestingly, we see that noise variance σ2

c induced by JPEG
compression is always ∈ [0.016, 0.026], and so only the
bluer left extremes of Figure 2 (right) become relevant for
JPEG compression. By inspecting Figure 2 (right) when
σ2
c ∈ [0.016, 0.026], we note that the discrepancy between

R(BQ) and BR(BQ) is relatively low compared to exponen-
tially increasing differences BR−R(BQ) when approaching
the right extremities of Figure 2 (right), indicated by yel-
lower hues. Thus, whenever σ2

c is sufficiently low, bounds
on BR give value to applications that require guarantees on
risk degradation induced by lossy input compression.

8. Conclusion
We introduce the notion of rate-efficient classifiers to PAC-
Bayesian theory. The unsupervised noise invariance bounds
we derive are intuitive and highlight the importance of vot-
ers that change gradually with respect to perturbations on
input. By inspecting the variance of gaussians fitted on
compression noise, our evaluation shows that the proposed
bounds are non-vacuous and well-suited to manage com-
pression noise prior to inference, and we demonstrated this
on JPEG2000 compression. Notably, the presented noise
invariance bounds are general, and applicable wherever in-
puts are sourced from gaussian processes (e.g., in models of
disease progression, physics, and signal processing). Future
work may investigate more applications, derivations of ηDQ
for non-linear kernels, and regularization techniques that
give tighter bounds on ηDQ .

https://github.com/git-alhabib/pacb-ni
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