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Abstract

Data imbalance is prevalent in classification problems and tends to bias the classifier to-
wards the majority of classes. This paper proposes a decision tree building method for
imbalanced binary classification via deep reinforcement learning. First, the decision tree
building process is regarded as a multi-step game and modeled as a Markov decision process.
Then, the tree-based convolution is applied to extract state vectors from the tree struc-
ture, and each node is abstracted into a parameterized action. Next, the reward function
is designed based on a range of evaluation metrics of imbalanced classification. Finally, a
popular deep reinforcement learning algorithm called Multi-Pass DQN is employed to find
an optimal decision tree building policy. The experiments on more than 15 imbalanced
data sets indicate that our method outperforms the state-of-the-art methods.

Keywords: Decision tree; Imbalanced classification; Deep reinforcement learning; Tree-
based convolution.

1. Introduction

For the last few years, machine learning methods are widely applied to practical issues and
attain tremendous success. However, the data collected from some domains such as abnor-
mal detection (Qin et al., 2020; Chen et al., 2020), disease diagnosis (Khalilia et al., 2011;
Yildirim, 2017), risk behavior recognition (Chen et al., 2019; Chi et al., 2020), and so on
usually is imbalanced, which is one of the thorniest tasks in the application. More impor-
tantly, the minority class is often more significant than the majority class. For example,
the instances that belong to one class (e.g., cancer patient) can be 1000 times less than that
in another class (e.g., healthy people) and the algorithm is to detect the minority one (i.e.,
cancer patient). Most machine learning algorithms are not proposed for the consideration
of data skew. Therefore, though achieving sufficiently excellent performance on balanced
data sets, they fail when faced with an imbalanced situation.

Numerous algorithms have been proposed for imbalanced data classification during the
past two decades. They usually can be divided into two groups: the data level and the
algorithmic level. The main idea of the former is to rebalance the distribution of data by
different resampling techniques such as random undersampling (RUS), random oversampling
(ROS), synthetic minority oversampling (SMOTE) (Chawla et al., 2002), and so on. In
contrast, the latter group tries to adjust the original algorithms by assigning weights or
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costs towards different classes or samples, reducing the bias caused by sample size between
classes. This paper focuses on the decision tree (DT), which is one of the simplest machine
learning algorithms and intuitively interpretable. Generally, the building of a decision tree
can be considered a greedy algorithm. At each decision node, a locally best attribute is
selected to split the data into child nodes. This process is repeated until a leaf node is
reached, where further splitting is not possible. One of the most popular splitting criteria
is Information Gain (IG) (Quinlan, 1986), an impurity-based splitting criterion. DT based
on IG performs quite well for balanced data sets where the class distribution is uniform.
However, as the prior probability of class is used to calculate a node’s impurity degree,
on an imbalanced dataset, IG becomes biased towards the majority class, which is also
called skew sensitive. To improve standard DT performance in imbalanced classification
domains, several splitting criteria are proposed to build DTs, such as Hellinger Distance
(Cieslak and Chawla, 2008), Inter-node Hellinger Distance (Akash et al., 2019), and Class
Confidence Proportion (Liu et al., 2010). Besides these, to deal with the class imbalance
problem in Lazy DT building process, two skew insensitive split criteria based on Hellinger
distance and K-L divergence are proposed in (Su and Cao, 2019). Furthermore, there are
also some new ways to construct the DT model that do not belong to heuristic methods. For
example, Pyeatt (2003) proposed a reinforcement learning approach to automatically search
for splitting strategies in the global search space based on the evaluation of long-term payoff
and Blake and Ntoutsi (2018) applied this method to data streams with concept drifts.

Unlike the methods mentioned above, this paper proposes a decision tree building
method for imbalanced binary classification based on deep reinforcement learning (DRL).
First, the decision tree building process is considered as a multi-step game that can be
modeled as a Markov decision process (MDP) in deep reinforcement learning. Then, the
tree-based convolution (Mou et al., 2016) is employed to extract state vector from tree
structure and abstract each node into a parameterized action. Next, the reward function
is designed based on a range of evaluation metrics of imbalanced classification. Finally, a
popular DRL algorithm called Multi-Pass DQN (MP-DQN) (Bester et al., 2019) is used to
find an optimal DT building policy. To verify our proposed method’s performance, exper-
iments on 18 data sets are conducted and compared them with the decision tree methods
(Cieslak and Chawla, 2008; Akash et al., 2019; Liu et al., 2010). The results show that our
method achieves the most excellent performance on imbalanced issues.

The rest of this paper is organized as follows: The second section introduces the research
decision tree of imbalanced data classification and deep reinforcement learning applications
on imbalanced classification problems. The details of our proposed method will be described
in the third section. The fourth section shows the experimental results and evaluates the
performance of our method compared with other methods. Conclusions and future work
will be discussed in section five.

2. Related Work

2.1. Decision Tree for Imbalanced Classification

In 2008, Cieslak and Chawla (2008) proposed the Hellinger Distance Decision Tree (HDDT),
which employs the Hellinger distance instead of information gain as the splitting criterion.
Hellinger distance which is one kind of f-divergence can measure the similarity of two dis-
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tributions. Because the normalized frequencies of all partitions are used instead of class
probability, the Hellinger distance is skew insensitive, making the HDDT perform better
than other decision tree methods based on information gain on imbalanced data sets. How-
ever, as HDDT tries to make pure leaves by capturing deviation between class conditionals
which leads to smaller coverage, it performs poorly for more balanced class distribution.
Besides, Liu et al. (2010) hold that some rules with high confidence generated by traditional
decision tree algorithm may not be essential to split and lead to bias towards the majority
classes. They introduced the Class Confidence Proportion(CCP) to replace the entropy to
address this problem. By embedding CCP in information gain, the Class Confidence Pro-
portion Decision Tree (CCPDT) is proposed. Thanks to the CCP not taking the class priors
into account, CCPDT is also insensitive to data imbalance. However, when the information
gain values of two splits are equal, CCPDT employs Hellinger distance to make a final bid
for victory, which leads to poor performance like HDDT on more balanced data sets. In
2019, Akash et al. (2019) proposed the Inter-node Hellinger Decision Tree (iHD) and its
weighted variant iHDw. iHD and iHDw utilize square Hellinger distance to evaluate class
distributions’ dissimilarity between parents and children instead of all partitions to generate
mutually exclusive regions. Based on iHD, iHDw introduces the class’s instance propor-
tion to calculate the weight for the distance between parent and children, contributing to
attaining purer child nodes.

2.2. Deep Reinforcement Learning

Deep reinforcement learning (DRL), which is the combination of reinforcement learning
(RL) and deep learning, has attracted much attention from researchers and is mainly ap-
plied to address sequential decision-making problems. Inspired by the learning behaviors of
animals, RL controls agents interact with the environment and get the rewards used to train
the agent. Generally, RL problem is modeled as a Markov Decision Process (MDP) that can
be represented as (5, A, R,T,~), where S and A indicate the state space and action space
respectively, T is the state transition probability, R denotes rewards from the environment
and -y is the discount factor that used to calculate expected return. A complete interaction
in RL can be described as follow: an agent firstly observes a state s; from the environment
at time step t, after taking an action ay, it gets a reward r¢, and the environment tran-
sits to the next state s;y; according to the probability p = P (s441|S = s, A = a;). DRL
aims to learn a policy network 7 to control the agent to maximize total reward during the
interaction with environments. Thus according to different learning forms, DRL can be di-
vided into three paradigms. The first is policy-based methods such as Policy Gradient (PG)
(Mnih et al., 2015) and Proximal Policy Optimization (PPO) (Schulman et al., 2017). The
second is value-based methods that contain Deep Q Network (DQN) (Mnih et al., 2015) and
its variants Double DQN (van Hasselt et al., 2016), Dueling DQN (Wang et al., 2016), etc.
The last but no less paradigm is actor-critic methods, including standard Actor-Critic (AC)
(Thomas and Brunskill, 2017), Advantage Actor-Critic (A2C), and Asynchronous Advan-
tage Actor-Critic (A3C) (Mnih et al., 2016), etc. Besides, from the perspective of action
space, DRL can also be classified as discrete actions space methods, continuous actions
space methods, and parameterized actions space methods. One of the most famous contin-
uous action methods is Deep Deterministic Policy Gradient (DDPG) (Lillicrap et al., 2016),
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while Parameterized DQN (P-DQN) (Xiong et al., 2018) and Multi-Pass DQN (MP-DQN)
(Bester et al., 2019) belong to parameterized actions space methods. This paper considers
the action space of decision building as the parameterized action space paradigm.

2.3. DRL for Imbalanced Classification

In recent years, there are many excellent pieces of research about DRL focus on imbalanced
classification. The recent work (Tan et al., 2018) introduces that the maximum likelihood in
supervised machine learning is a particular case of a policy optimization framework. There-
fore, Hu et al. (2019) put forward a new data manipulation method that can automatically
handle different schemes(e.g., Augmentation & Weighting) by different parameter settings
of reward function in DRL. Besides, Peng et al. (2019) viewed the data selected process as
MDP and trained a data sampler via DRL. Unlike classical DRL architectures, they used a
GRU unit to remember the sampling sequence information and directly applied imbalanced
evaluation metrics (e.g., f-measures) as reward functions. However, Lin et al. (2020) directly
considered the classification problem as a guessing game divided into a sequential MDP.
They utilized an imbalanced ratio as a reward function that guides the agent to learn the
optimal classification policy for imbalanced data. Unlike the methods mentioned above, in
this paper, we think of the process of building a decision tree as an MDP and applying
imbalanced evaluation metrics as reward functions similar to (Peng et al., 2019).

3. Method

Before the introduction of our method, some notations need to be explained, depicted in
Table 1. State, action and reward are three vital elements when the decision tree building
process is viewed as an MDP. In our method’s framework, as shown in Fig 1, the state s
in time step ¢t can be extracted by a tree-based convolution layer embedding in the actor-
network of MP-DQN. After selecting the k-th attribute with maximal q value, the agent
acts an action containing a discrete attribute id and a threshold value. Because each node is
abstracted into a parameterized action, the environment easily updates the tree T to Ti41.
Moreover, according to classification results of tree T;; and evaluation metrics, a reward
function is designed. When state, action and reward are sure, a decision tree building policy
can be found via DRL algorithms.

3.1. State

In the binary classification scenario, we assume that all the attributes are continued. There-
fore each node in the decision tree can be represented as a real-value vector with two-part.
The first part is attribute code, and the other is a threshold value, depicted in Fig 2 (a).
To retain the structure information, the tree-based convolution layer contains a group of
fixed-depth feature detectors is used to extract features from the decision tree at each time
step, depicted in Fig 2 (b). After that, we will get a set of structural features that can
synthesize a new tree similar to the original shape and size. Like convolution in image
processing, a one-way pooling layer is utilized to pool all features to one vector.
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Figure 1: The framework of our method.

Table 1: Description of the notations.
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Notations Explanation

t A time step

K The number of attribute

T; The decision tree T' at time step ¢

S¢ A state s at time step ¢

T A reward r at time step ¢

X The value space of the k-th attribute

Xt The threshold vector at time step ¢

Tik The threshold value corresponds with k-th attribute at time step
t

Xe4k It is a vector where the k-th dimension is equal to x4, but
everything else is zero

qrk The q value corresponds with k-th attribute at k-th pass

Q: The q value vector at time step ¢

Qx The actor-network

Qq The g-network

Oy The parameters correspond with actor-network

The parameters correspond with g-network
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Figure 2: (a) the vector representation of the nodes of a decision tree. (b) the transforma-
tion process from decision tree to state vector.

3.2. Action

Parameterized action spaces (Masson et al., 2016) consist of a set of discrete actions, Ay =
[K] = {k1, k2, ks, kn} , where n is the number of actions and each k has a corresponding
m dimensional continues action-parameter xp € X C R™*, where the X} is the continues
action space of action k. This can be written as (1). We consider the continues attributes
in DT in binary classification. Thus the attributes can be represented as discrete action Ay
and the threshold values are the corresponding continues action-parameter x; € X C R.
Each node in DT corresponds with a action a = (k, zy).

A= U = (k, CX 1
ke[K]{ak (k,x1) |2p C© X} (1)

3.3. Reward

Intuitively we can apply the generated but incomplete decision tree to classify on the training
set at step t. Next, the predicted results Y; and the truth Y; are used to calculate a score
sc; based on arbitrary evaluation metrics, such as F-Measure and G-Mean. Finally the
reward 7 is easily obtained according to (2). That is to say, the positive 7, means action a;
improves the performance of the decision tree while negative reward r; decreases it. Note
that the scp is usually set to 0 or 0.5. The difference with (Peng et al., 2019) is that we
employ the decision tree to classify at every step t instead of the terminal. In other words,
if the initial scg is set to zero, the total reward R is equivalent to the evaluation score of
the final classifier. Similarly, setting scy at 0.5 is equivalent to adding a baseline.

Ty = 8Ct — SCi—1 (2)

3.4. Training Details

According to the form of action, we can easily apply the recent DRL algorithm with pa-
rameterized action spaces in our training, such as P-DQN and MP-DQN. Consider that MP-
DQN is more theoretical and has better performance than P-DQN, the former is adopted
by us.
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Algorithm 1

Require:
1: Data Set D, max nodes number N, max training episode M, exploration parameter ¢,
minibatch size B, replay buffer L, discount rate ~
Ensure:
2: form=0to M —1do
3:  Initialize full binary tree Tj
4 fort=0to N —-1do
5: Compute an action parameters and state vetor : xy, sy <— Qx (13; 6x)
6 Choose an action based e-greedy policy:

random sample probability €

a; = (k¢, ) such that ky = arggn%(@q (s¢,xe;0q)  probability 1 — €
€

where xey, = (0,0, ..., 24, 0, ..., 0)

7: Take action a¢, change T} into T34
Apply Ti+1 to classify on D and observe reward ry
Store transition (7%, at, ¢, Ty+1) into L

10: Sample B transitions (T}, ap, 7p, TbH)be[B} from L randomly
11: Set the target
T if Tyy1 is the terminal
Yo =

T + 'ym?x](@q (Sb41,%X€pt1k;0q) otherwise
ke[K

where spi1,Xpr1 = Qx (Th, Ox), X€by1k € Xp41
12: Perform a gradient descent step on Lq (6) and Ly (6x)

Ly (0q) = E (yp — Qq (b, Xeps; 9q))2

K
L. (6x)=FE (— ZQq (b, Xepp; 9q)>
k=1

13: if 7 < 0 then
14: Break
15: end if

16: end for
17: end for
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As indicated in Algorithm 1, we should first build a complete binary tree Ty with N
nodes and set a default attribute and a threshold value for each node. At the same time, the
parameters of actor-network and g-network 6y and 6 are initialized. After that, a complete
interaction can be described as the following steps: agent observes the state s;, representing
tree T} at time step t. It takes an action a; containing a discrete attribute k and a continues
threshold value x;. Next, the environment updates the attribute and threshold value of the
t-th node of tree T; into k and xp. Note that nodes are numbered according to the level
traversal of the tree. Last, the T} goes to T;41, which is viewed as a classifier on the training
set. Finally, the reward r; will be calculated based on the classification result according (2).
Like DQN, MP-DQN also uses an experience replay mechanism to decrease the temporal
correlations during the update and improve rare experience efficiency. Thus, the agent must
store the transition (s, a¢, 7, S¢+1) in the replay buffer and sample a batch of transitions
to update the actor-network g-network in each round of interaction. The interaction stops
when the agent receives a negative reward or traversed the last node of the tree.

4. Experiment

4.1. Data Sets

Table 2: Description of the data sets. #I, #F denote the number of instances, attributes

respectively
Data Sets #1 #F IR
ecoli-0-1-vs-2-3-5 244 7 9.17
ecoli-0-1-4-6-vs-5 187 6 13.0
ecoli-0-1-4-7-vs-2-3-5-6 336 7 10.59
ecoli-0-6-7-vs-5 220 6 10.0
ecoli2 336 7 5.46
haberman 306 3 2.78
new-thyroidl 215 5 5.14
new-thyroid2 215 5 5.14
vehicle3 846 18 3.0
winequality-red-4 1599 11 29.17
wisconsin 683 9 1.86
yeast-0-2-5-6-vs-3-7-8-9 1004 8 9.14
yeast1 1484 8 2.46
glassO 214 9 2.06
glass6 214 9 6.38
pima 768 8 1.87
africa recession 486 53 11.9
insurance 382154 10 5.1

Over 15 data sets from reality are described in TABLE 2, which contains the number
of instances and attributes. Besides, the imbalance ratio (IR) that measures the degree of
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imbalance between the classes of majority and minority is also provided. These data sets
are collected from three well-known public sources called UCI Machine Learning Repository
(Asuncion and Newman, 2007), KEEL Imbalanced Data Sets (Alcala-Fdez et al., 2011) as

well as Kaggle.

4.2. Evaluation Metrics

It is unreasonable to take the accuracy as the metric to evaluate classifier performance in
imbalanced classification. At present, the commonly used imbalanced classification evalua-
tion metrics include G-Mean and the area under the ROC curve (AUC) that are applied in
our experiments.

To make the experiment more convincing, we not only take 10-fold cross-validation but
also conduct a Friedman test and Nemenyi test. The null hypothesis of the Friedman test is
that all the methods are equivalent. Precisely, assuming there are £ methods, N data sets,
and average rank r; corresponding to each method m;, we should compute two essential
statistics x% and Fr that calculated as (3) and (4), then compare the value of Fp with
the critical value of given significance level «. If the null hypothesis is rejected, we need to
take a Nemenyi test for further comparison. For given significance level «, the critical value
CD can be calculated as (5) on the Nemenyi test. If the average rank difference between
the two methods is greater than C'D, it is believed that the two methods have different

performances.
12N (& k(k+1)°
2 - =7 E 2 Y\ )
X e+ 1) (H hi 1 ) ®)
_ 2
Fr= W=D (4)
N(k—-1)—-x%
k(k+1)
D =g\ ———
CD=q SN (5)
4.3. Result

The comparison of the six methods can be clearly seen in TABLE 3 and TABLE 4. We
conduct the experiments over sixteen data sets and make a Friedman test for validation.

The average ranking of G-Mean shows that our method has the best performance. To
further verify this conclusion’s reliability, Friedman’s x% statistic and Iman’s Fr statistic
are calculated as 26.54 and 7.11, respectively. With six methods and sixteen data sets,
Iman’s Fr statistic follows the F' distribution with degrees of freedom of 5 and 85. At the
95% confidence level, it is easy to say that Fp = 7.11 is greater than Fy o5 = 2.322. Thus we
should reject the null hypothesis that all the methods have the same performance. Next, we
compute the critical difference C'D, which is 1.434 on the Nemenyi test. It can be concluded
that our method surpasses all the other five at a 95% confidence level.

Similarly, Friedman’s x% statistic and Iman’s Fp statistic are 26.13 and 6.95 based on
AUC results. Obviously, Fr = 6.95 is grater than Fy o5 = 2.322, which means all methods
have different performances. Furthermore, according to the difference C'D, our method also
outperforms others.
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Table 3: G-Mean of six methods on eighteen data sets

Data Sets C4.5 HDDT CCPDT | iHD iHDw ours
ecoli-0-1-vs-2-3-5 | 0.848 0.866 0.860 0.854 0.848 0.965
ecoli-0-1-4-6-vs-5 | 0.892 0.788 0.793 0.793 0.892 0.913
ecoli-0-1-4-7-vs-2- | 0.686 0.759 0.603 0.783 0.783 0.783
3-5-6

ecoli-0-6-7-vs-5 0.819 0.897 0.919 0.655 0.756 0.926
ecoli2 0.856 0.865 0.903 0.870 0.836 0.889
haberman 0.520 0.542 0.507 0.515 0.511 0.515
new-thyroid1l 0.925 0.887 0.872 0.872 0.872 0.894
new-thyroid2 0.913 1.000 0.859 0.866 0.913 0.957
vehicle3 0.696 0.740 0.703 0.751 0.765 0.769
winequality-red-4 | 0.224 0.226 0.322 0.319 0.226 0.394
wisconsin 0.921 0.914 0.917 0.914 0.925 0.970
yeast-0-2-5-6-vs- 0.731 0.717 0.713 0.724 0.690 0.864
3-7-8-9

yeast1 0.615 0.598 0.645 0.607 0.619 0.654
glass0 0.827 0.737 0.739 0.739 0.728 0.826
glass6 0.830 0.830 0.830 0.823 0.816 0.880
pima 0.675 0.693 0.715 0.726 0.685 0.715
africa recession 0.526 0.458 0.455 0.521 0.367 0.667
insurance 0.614 0.614 0.628 0.593 0.593 0.792
Avg. G-Mean 0.729 0.730 0.721 0.718 0.713 0.799
Avg. Rank 3.444 3.722 3.667 3.889 4.667 1.611

4.4. Complexity and Hyper-parameters

For a dataset D, its size |D| only matters in the classification and evaluation stage which
complexity is O (| D| x log T'), where T is the height of DT. Besides, the number of attribute
of D only affects the input and output layer of g-network and output layer of actor-network.
The g-network and the second stage of actor-network are both kinds of multi-layer fully

=1
of hidden layer, S;_; is the size of the [ — 1th layer and S is the size of the Ith layer. The

first stage of actor-network is a tree-based convolution layer which is implemented by the
L

1D convolution and its complexity is O <Z (M x Kj % Cp Cz—1)>, where L is the number
I=1

of layer, Cj_; is the input chanels, C; is the output chanels, M is the size of feature map

and K is the kernel size. In our experiments, the hyper-parameters ¢ affects the agent’s
exploration of the action space. The initial value of ¢ is set to 1 and monotonically decreases
with the number of iterations, and its lower limit is set to 0.1. The agent’s exploration of
action spaces of different sizes (of attributes) can be controlled by adjusting the rate of €’s
descent. The discount factor is set to 0.9 that makes the agent pay more attention to future
rewards.

L
connected neural network, which complexity is O (Z (Si—1 % Sl)>, where L is the number
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Table 4: AUC of six methods on eighteen data sets

Data Sets C4.5 HDDT CCPDT | iHD iHDw ours
ecoli-0-1-vs-2-3-5 | 0.854 0.875 0.868 0.861 0.854 0.966
ecoli-0-1-4-6-vs-5 | 0.894 0.799 0.805 0.805 0.894 0.917
ecoli-0-1-4-7-vs-2- | 0.721 0.774 0.673 0.803 0.803 0.803
3-5-6

ecoli-0-6-7-vs-5 0.827 0.898 0.921 0.714 0.786 0.929
ecoli2 0.861 0.872 0.906 0.877 0.848 0.891
haberman 0.555 0.588 0.561 0.574 0.568 0.574
new-thyroid1l 0.925 0.892 0.875 0.875 0.875 0.900
new-thyroid2 0.917 1.000 0.867 0.875 0.917 0.958
vehicle3 0.705 0.750 0.714 0.754 0.768 0.770
winequality-red-4 | 0.503 0.512 0.544 0.537 0.514 0.570
wisconsin 0.922 0.916 0.919 0.916 0.925 0.970
yeast-0-2-5-6-vs- 0.759 0.750 0.745 0.749 0.726 0.864
3-7-8-9

yeast1 0.629 0.614 0.655 0.626 0.638 0.655
glass0 0.827 0.739 0.747 0.747 0.744 0.834
glass6 0.842 0.842 0.842 0.834 0.825 0.884
pima 0.677 0.695 0.715 0.727 0.686 0.715
africa recession 0.611 0.580 0.597 0.615 0.525 0.670
insurance 0.667 0.654 0.670 0.645 0.645 0.810
Avg. AUC 0.761 0.764 0.757 0.752 0.752 0.816
Avg. Rank 3.778 3.833 3.500 3.833 4.500 1.556

4.5. Discussion

There are two main properties of DT+DRL that make the combo appealing for imbalance
data setting. First, the reward function can be easy to design. For example, in Lin et al.
(2020), the reward function was desgined based on the imbalance ratio of datasets. Besides,
in our method, the reward function was desgined based on the evaluation metrics in imbal-
ance classification, which can guide the agent correctly during the training process. Second,
unlike other methods that use DRL to solve imbalance classification problem, our method
can shorten the length of Markov’s decision chain by introducing the decision tree structure
as a classifier. Because the maximum number of nodes in the decision tree can be specified
manually, the Markov decision chain is no longer dependent on the number of samples. The
same approach still be applicable to balance data, which only requires the use of accuracy
to replace the imbalanced classification evaluation metrics to modify the reward function.

5. Conclusion

This paper comes up with a new decision tree building method via deep reinforcement
learning for imbalanced binary classification. First, we apply the tree-based convolution to
extract the state information from a tree structure. Second, the attributes and thresholds
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are combined into a parameterized action. Third, the typical evaluation metrics of imbal-
anced classification are used to calculate the reward. Finally, we utilize a prevalent deep
reinforcement algorithm named Multi-Pass DQN to find an optimal DT building policy.
To compare the proposed method with that of the most advanced decision tree methods,
we conduct experiments on more than 15 imbalanced data sets. The experiment results
indicate that our method has better performance.
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