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Abstract

We consider a variant of the online semi-definite programming problem: The decision space
consists of positive semi-definite matrices with bounded diagonal entries and bounded Γ-
trace norm, which is a generalization of the trace norm defined by a positive definite matrix
Γ. To solve this problem, we propose a follow-the-regularized-leader algorithm with a novel
regularizer, which is a generalisation of the log-determinant function parameterized by the
matrix Γ. Then we apply our algorithm to online binary matrix completion (OBMC)
with side information and online similarity prediction with side information, and improve
mistake bounds by logarithmic factors. In particular, for OBMC our mistake bound is
optimal.

Keywords: Online semi-definite programming, Log-determinant, Sparse loss matrix, Side
information, Online binary matrix completion

1. Introduction

Online binary matrix completion (OBMC) is a natural formulation of online matrix com-
pletion, extensively studied in machine learning community (Herbster et al., 2016, 2020;
Zhang et al., 2018; Beckerleg and Thompson, 2020). Intuitively, the OBMC problem is to
predict a given entry of an unknown m × n binary matrix. More precisely, the problem is
formulated as a repeated game between the algorithm and the adversarial environment as
described below: On each round t, (i) the environment presents an entry (it, jt) ∈ [m]× [n],
(ii) the algorithm predicts ŷt ∈ {−1, 1}, and then (iii) the environment reveals the true value
yt ∈ {−1, 1}. The goal of the algorithm is to minimise the number of mistakes

∑T
t=1 Iŷt ̸=yt .

Recently, Herbster et al. generalise the problem by considering side information avail-
able (Herbster et al., 2020). The side information brings some information about the
target matrix, or more generally, about a comparator matrix U that is hopefully a good
approximation to the target matrix. To be more specific, assume that U = Rm×n can be
factorized into U = PQ⊤ for some matrices P ∈ Rn×d and Q ∈ Rm×d for some d ≥ 1 such
that ∥Pi∥ = ∥Qj∥ = 1 for all i and j, where Pi is the i-th row vector of P (interpreted as a
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linear classifier associated with row i of U) andQj is the j-th row vector ofQ (interpreted as
a feature vector associated with column j of U). In other words, zt = ytUit,jt can be viewed
as the margin of the labeled instance (Qjt , yt) with respect to a hyperplane Pit , from which
we can define the hinge loss as [1−zt/γ]+ for a given margin parameter γ > 0, where [x]+ is
x if x > 0 and 0 otherwise. Note that the hinge loss represents the quality of predictiveness
of the comparator matrix U . Moreover, side information is formally represented as a pair
of symmetric and positive definite matrices M ∈ Rm×m and N ∈ Rn×n, and its quality is
measured by the sum of trace norms D = Tr(P⊤MP ) + Tr(Q⊤NQ). Note that Herbster
et al. introduce a notion of quasi-dimension of a comparator U , defined as the minimum
of D over all factorizations P and Q such that U = γPQ⊤. But it turns out that we do
not need the notion in this paper. Then, they prove a mistake bound given by the total
hinge loss of U with an additional term expressed in terms of γ, m, n, and D. In particular,
for the realizable case where the total hinge loss of U is zero, the bound is of the form
O(D ln(m+n)/γ2). They consider a simple realizable case where U has a (k, l)-biclustered
structure (see Appendix for details) and some information about the structure is given to
the algorithm as the side information. Then, they show that the mistake bounds becomes
O(kl ln(m+n)). Unfortunately, however, there still remains a logarithmic gap from a lower
bound of Ω(kl) (Herbster et al., 2016).

In this paper, we obtain a mistake bound of O(D/γ2) in the realizable case, which
improves the bound of Herbster et al.’s by a logarithmic factor and thus implies an optimal
O(kl) mistake bounds when U has a (k, l)-biclustered structure. The basic idea is to
reduce the OBMC problem with side information to a variant of an online semi-definite
programming (OSDP) problem, where the loss matrices are sparse and the decision space
consists of symmetric and positive semi-definite matrices W such that its Γ-trace norm
Tr(ΓWΓ) and diagonal entries Wi,i are both bounded, where Γ is a symmetric and positive
definite matrix transformed from the side information (M ,N) through our reduction. Note
that the standard OSDP problems studied in the literature correspond to the case where Γ =
E. Then we employ a standard follow-the-regularised-leader (FTRL) framework (see, e.g.,
(Cesa-Bianchi and Lugosi, 2006; Shalev-Shwartz, 2012; Hazan et al., 2016b)) for designing
and analyzing our algorithm for the generalized OSDP problem. Note that to obtain a good
algorithm we choose a specialized regulariser as stated later.

The FTRL approach to solving the standard OSDP problems have been widely utilised
for various problems of online matrix prediction, such as online gambling (Abernethy, 2010;
Hazan et al., 2016a), online collaborative filtering (Shamir and Shalev-Shwartz, 2011; Cesa-
Bianchi and Shamir, 2011; Koltchinskii et al., 2011), online similarity prediction (Gentile
et al., 2013), and especially a non-binary version of online matrix completion with no side
information (Hazan et al., 2016a; Moridomi et al., 2018). Note that for these problems the
performance of the algorithm is now measured by the regret, defined as the cumulative loss
of the algorithm minus the cumulative loss of the best fixed comparator matrix in hindsight.
Let us briefly review the last-mentioned results about non-binary online matrix completion
with no side information. In the seminal paper of Hazan et al. (Hazan et al., 2016a), they
first propose a reduction from the problem to a standard OSDP problem, which is similar to
but quite different from our reduction presented in this paper, and then they give an FTRL-
based algorithm with an entropic regularizer for the reduced OSDP problem, resulting in
a sub-optimal regret bound though. On the other hand, Moridomi et al. (Moridomi et al.,
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2018) observe that the loss matrices obtained in the reduction are sparse, and by following
the result of (Christiano, 2014) they find out that the log-determinant regularizer performs
better, resulting in a better regret bound.

Now let us return to the OBMC problem with side information. It seems that Herbster
et al. (Herbster et al., 2020) implicitly reduce the problem to another variant of OSDP
problem where the decision space is less restricted than ours, and employ an FTRL-based
algorithm with an entropic regularizer for the reduced OSDP problem. Note that they do
not give a regret analysis for their OSDP problem in a general form but give it only for
the particular OSDP problem instance obtained from the reduction. We believe that the
sub-optimality of their mistake bound is mainly due to the choice of entropic regularizer.
On the other hand, our reduction yields sparse loss matrices and thus it is highly expected
that the log-determinant regularizer performs better.

For our OSDP problem, we first examine a standard log-determinant regularizerR(W ) =
− ln det(W + ϵE), but we have not succeeded to obtain a good regret bound. Next we try a
natural and apparently straightforward reduction to a standard OSDP problem, for which
a regret bound is known, and derive a regret bound for our OSDP problem from the known
bound. Unfortunately, as seen in the later section, this approach also fails. This is due to
the fact that the reduction does not preserve the sparsity of loss matrices and the bound
of the diagonal entries of decision matrices. Finally we try a specialized log-determinant
regularizer R(W ) = − ln det(ΓWΓ + ϵE) and succeed to derive a better regret bound.
Therefore, we not only demonstrate the power of log-determinant regularizer, which has
not been well explored as the standard entropic or Frobenius-norm regularizer; but also
suggest to use the appropriate regularizer depending on side information as well as on the
decision space. Note that to derive the bound we carefully follow the analysis of Moridomi
et al. (Moridomi et al., 2018) with non-trivial generalizations.

Our main contribution is summarised as follows:

1. Firstly, we establish a generalized OSDP problem parameterized by a symmetric and
positive definite matrix Γ, and give an FTRL-based algorithm with a specialized
log-determinant regularizer with a regret bound. Note that our result recovers the
previously known bound (Moridomi et al., 2018) in the case where Γ is the identity
matrix.

2. We apply the result above to the online OBMC problem with side information and the
online similarity prediction with side information, and improve the previously known
mistake bounds by logarithmic factors for the both problems. In particular, for the
former problem, our mistake bound is optimal.

This paper is organized as follows. In section 2, we formally describe the problem for-
mulation of the generalised OSDP and give a naive reduction to the standard OSDP, which
yields a worse regret bound. The main algorithm with its regret bound for the generalised
OSDP is given in section 3. In section 4 we apply our algorithm to the OBMC problem with
side information and give a mistake bound. Moreover, we show that the mistake bound is
optimal in the realizable case where the comparator matrix has a biclustered structure. In
the appendix, we describe some of proofs for our main proposition. We give the definition
and application to the (k, l)-biclustered structural comparator matrix in the OMBC prob-
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lem, the online similarity problem with side information, necessary Lemmata, and proofs
in supplementary material

2. Preliminaries

For a positive integer N , let [N ] denote the set {1, 2, . . . , N}. Let SN×N , SN×N
+ and SN×N

++

denote the sets of N × N symmetric matrices, symmetric positive semi-definite matrices
and symmetric strictly positive definite matrices, respectively. We define E as the identity
matrix. For an m × n matrix X ∈ Rm×n and (i, j) ∈ [m] × [n], let Xi, Xi,j and vec(X)
denote the i-th row vector of X, the (i, j) entry of X, and the vector of mn dimension
obtained by arranging all entries Xi,j of X in some order. For matrices X,Y ∈ Rm×n,
X • Y = Tr(X⊤Y ) = vec(X)⊤vec(Y ) denotes the Frobenius inner product of them. For
X ∈ SN×N

+ , we denote by Tr(X) =
∑N

i=1 |λi(X)| =
∑N

i=1Xi,i the trace norm of X, where

λi(X) is the i-th largest eigenvalue of X. Furthermore, for Γ ∈ SN×N
++ , we define the Γ-trace

norm of X as Tr(ΓXΓ). For a vector x, the p-norm x is denoted by ∥x∥p.

2.1. Generalised OSDP problem with bounded Γ-trace norm

Our generalised OSDP problem with respect to a matrix Γ ∈ SN×N
++ is specified by a pair

(K,L), where

K = {W ∈ SN×N
+ : Tr(ΓWΓ) ≤ τ, ∀i ∈ [N ], |Wi,i| ≤ β} (1)

is called the decision space, and

L = {L ∈ SN×N : ∥vec(L)∥1 ≤ g} (2)

is called the loss space, where τ > 0, β > 0 and g > 0 are parameters. The generalised
OSDP problem (K,L) is a repeated game between the algorithm and the adversary as
described below: On each round t ∈ [T ],

1. The algorithm chooses a matrix Wt ∈ K,

2. The adversary gives a loss matrix Lt ∈ L, and

3. The algorithm incurs a loss given by Wt •Lt.

The goal of the algorithm is to minimise the following regret

RegretOSDP(T,K,L) =
T∑
t=1

Wt •Lt − min
W∈K

T∑
t=1

W •Lt. (3)

Note that the standard OSDP problem corresponds to the special case where Γ = E.
Since the decision space is convex and the loss function is linear, the problem is cate-

gorized in online linear optimization and thus we can employ a standard FTRL algorithm,
as Moridomi et al. (Moridomi et al., 2018) did for the standard OSDP problem. Given a
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convex function R : K → R as the regularizer, the FTRL algorithm produces a matrix Wt

in each round t according to

Wt = argmin
W∈K

(
R(W ) + η

t−1∑
s=1

Ls •W

)
. (4)

In particular, Moridomi et al. choose the log-determinant regularizer defined as

R(W ) = − ln det(W + ϵE), (5)

where ϵ > 0 is a parameter and derive the following regret bound for the standard OSDP
problem.

Theorem 1 ((Moridomi et al., 2018)) For the standard OSDP problem (K,L) with Γ =
E, The FTRL algorithm with the log-determinant regularizer achieves

RegretOSDP(T,K,L) = O(g
√

τβT ). (6)

2.2. A naive reduction

There is a natural reduction to a standard OSDP problem (K̃, L̃) where

K̃ = {W ∈ SN×N
+ : Tr(W ) ≤ τ, ∀i ∈ [N ],Wi,i ≤ β′}, L̃ = {L ∈ SN×N : ∥vec(L)∥1 ≤ g′}

for some parameters β′ > 0 and g′ > 0. The reduction consists of two transformations: One
is to transform the decision matrix W̃t ∈ K̃ produced from an algorithm for the standard
OSDP problem to the decision matrix Wt = Γ−1W̃tΓ

−1 and the other is to transform the
loss matrices Lt ∈ L chosen by the adversary to L̃t = Γ−1LtΓ

−1, which is fed to the algo-
rithm for the standard OSDP problem. Note that the loss is preserved under this reduction,
that is, Wt • Lt = Tr(WtLt) = Tr(Γ−1W̃tΓ

−1ΓL̃tΓ) = Tr(W̃tL̃t) = W̃t • L̃t. Moreover,

the Γ-trace norm of Wt is the trace norm of W̃t, i.e., Tr(ΓWtΓ) = Tr(W̃t). Therefore, if
β′ and g′ are large enough so that ΓWΓi,i ≤ β′ for any W ∈ K and ∥vec(Γ−1LΓ−1)∥1 ≤ g′

for any L ∈ L, we have that RegretOSDP(T,K,L) ≤ RegretOSDP(T, K̃, L̃). Moreover, using
the FTRL algorithm with the log-determinant regularizer for the standard OSDP problem,
we immediately have

RegretOSDP(T,K,L) = O(g′
√

τβ′T ).

by Theorem 1.
In the following part, we give lower bounds on β′ and g′ by showing an example, which

implies that the above reduction yields a worse regret bound.

Example 1 Define Γ ∈ SN×N
++ as

Γ =


N −1 · · · −1
−1 N · · · −1
...

...
. . .

...
−1 −1 · · · N

 with Γ−1 =


2

N+1
1

N+1 · · · 1
N+1

1
N+1

2
N+1 · · · 1

N+1
...

...
. . .

...
1

N+1
1

N+1 · · · 2
N+1





Liu Moridomi Hatano Takimoto

and let τ = N3 + N2 − N , β = 1 and g = 1 so that E ∈ K and L ∈ L with Li,j = 1 if
(i, j) = (1, 1) and 0 otherwise.

Then, with a simple calculation we get |ΓEΓ|i,i = N2 + N − 1 for all i ∈ [N ] and
∥vec(Γ−1LΓ−1)∥1 = 1, which implies that we need β′ ≥ N2 + N − 1 and g′ ≥ 1. In
other words, the regret bound obtained by the naive reduction above is not smaller than
the order of N

√
τT . On the other hand, using our algorithm described in the next sec-

tion, we have a regret bound of O(
√
τT ) for this example problem, which comes from

ρ = maxi,j |(Γ−1Γ−1)i,j | ≤ 1. So our algorithm is significantly better than the naive re-
duction method.

3. Algorithm for the generalised OSDP problem

Throughout this section, we consider the generalised OSDP problem (K,L) specified by (1)
and (2). for some Γ ∈ SN×N

++ , and parameters τ > 0, β > 0 and g > 0. We use the FTRL
algorithm (4) with the following regularizer.

R(W ) = − ln det(ΓWΓ+ ϵE), (7)

which we call the Γ-calibrated log-determinant regularizer, where ϵ > 0 is a parameter. The
next theorem gives a regret bound of our algorithm.

Theorem 2 (Main Theorem) Let ρ = maxi,j |(Γ−1Γ−1)i,j |. Then, the FTRL algorithm
with the Γ-calibrated log-determinant regularizer achieves

RegretOSDP(T,K,L) = O

(
g2(β + ρϵ)2Tη +

τ

ϵη

)
.

In particular, letting η =
√

τ
g2(β+ρϵ)2ϵT

and ϵ = β/ρ, we have

RegretOSDP(T,K,L) = O
(
g
√

βρτT
)
. (8)

Note that we can recover the same regret bound of Theorem 1 by letting Γ = E.
The proof is based on the analysis of strong convexity of our regularizer with respect to

loss space.

Definition 3 For a decision space K and a real number s ≥ 0, a regularizer R : K → R
is said to be s-strongly convex with respect to the loss space L if for any α ∈ [0, 1], any
X,Y ∈ K and any L ∈ L, the following holds

R(αX + (1− α)Y ) ≤ αR(X) + (1− α)R(Y )− s

2
α(1− α)|L • (X − Y )|2. (9)

This is equivalent to the following condition: for any X,Y ∈ K and L ∈ L,

R(X) ≥ R(Y ) +∇R(Y ) • (X − Y ) +
s

2
|L • (X − Y )|2. (10)
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Note that the notion of strong convexity defined above is quite different from the standard
one: Usually, the strong convexity is defined with respect to some norm ∥ · ∥, but now it is
defined with respect to the loss space. Moridomi et al. (Moridomi et al., 2018) give a regret
bound of the FTRL with a strongly convex regularizer for any OSDP problem in a general
form.

Lemma 4 (Moridomi et al., 2018) Let R : K → R be an s-strongly convex regularizer with
respect to a decision space L for a decision space K. Then the FTRL with the regularizer
R applied to (K,L) achieves

RegretOSDP(T,K,L) ≤ H0

η
+

η

s
T, (11)

where H0 = maxW ,W ′∈K(R(W )−R(W ′)).

Due to the lemma above, it suffices to analyze the strong convexity of our Γ-calibrated
log-determinant regularizer with respect to our loss space (2). We give the result in the
next proposition.

Proposition 5 (Main proposition) The Γ-calibrated log-determinant regularizer R(W ) =
− ln det(ΓWΓ+ ϵE) is s-strongly convex with respect to L for K with s = 1/(1152

√
e(β +

ρϵ)2g2), where ρ = maxi,j |(Γ−1Γ−1)i,j |.

The proof is given in Appendix A.
Proof sketch of Theorem 2: According to Lemma 4 and main proposition, we only

need to bound H0. With simple calculation we can bound H0 ≤ τ
ϵ from the definition of

R. A detailed derivation is found in supplementary material. So the theorem follows. Note
that the regret bound obtained is apparently irrelevant to the size of matrix N .

4. Application to OBMC with side information

In this section, we show that the OBMC with side information can be reduced to our
OSDP problem (K,L). The reduction is twofold: Firstly reduce it to an online matrix pre-
diction(OMP) problem with side information and then further reduce it to the generalised
OSDP problem.

We first define the problem of OBMC with side information formally with some necessary
notations.

4.1. The problem statement

We basically follow the problem statement by Herbster et al. (Herbster et al., 2020) with
some simplification.

Let m and n be natural numbers. Assume that matrices M ∈ Sm×m
++ and N ∈ Sn×n

++ are
given to the algorithm. We call the pair (M ,N) the side information.

The problem is a repeated game between the algorithm and the adversary, which is
described as follows: On each round t,

1. the adversary presents (it, jt) ∈ [m]× [n],
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2. the algorithm produces ŷt ∈ {−1,+1},

3. the adversary reveals yt ∈ {−1, 1}.

The goal of the algorithm is to minimize the number of mistakes M =
∑T

t=1 Iyt ̸=ŷt . In
particular, we want to give a mistake bound in terms of the side information (M ,N), so
that the bound is small when the side information is useful in some sense.

Let the sequence from the adversary be denoted by S = ((i1, j1), y1), . . . , ((iT , jT ), yT ) ⊆
([m]× [n]× {−1, 1})T .

The problem can be interpreted as the prediction of given entries (it, jt) of an unknown
target matrix. But we do not assume the existence of such a matrix, that is, it can happen
yt ̸= yt′ even if (it, jt) = (it′ , jt′).

To apply the FTRL framework to the problem, we consider a convex surrogate loss
function, instead of 0-1 loss. In particular, we define the hinge loss function hγ : R → R as

hγ(x) =

{
0 if γ ≤ x,

1− x/γ otherwise,

for a given margin parameter γ > 0. Now we consider any matrices P ∈ Rm×d and
Q ∈ Rn×d for some d so that PQ⊤ ∈ Rm×n can be interpreted as a comparator matrix for
the sequence S. We define the hinge loss of the sequence S with respect to the pair (P ,Q)
and γ as

hloss(S, (P ,Q), γ) =

T∑
t=1

hγ

(
ytPitQ

⊤
jt

∥Pit∥2∥Qjt∥2

)
. (12)

The hinge loss measures how well the comparator matrix PQ⊤ predicts the true label yt. In
what follows, we assume without loss of generality that each row of P and Q is normalised,
that is, ∥Pi∥2 = ∥Qj∥2 = 1 for every (i, j) ∈ [m] × [n]. Moreover, we sometimes call the
pair (P ,Q) as the comparator matrix.

Now we define the notion of the quasi-dimension of a comparator matrix which measures
the usefulness of the side information. Specifically, the quasi-dimension of a comparator
matrix (P ,Q) with respect to the side information (M ,N) is defined as

DM ,N (P ,Q) = αMTr
(
P⊤MP

)
+ αNTr

(
Q⊤NQ

)
,

where αM = maxi∈[m](M
−1)i,i and αN = maxj∈[n](N

−1)j,j . Note that if M and N are
the identity matrices, then the quasi-dimension is m+ n for any comparator matrix, which
corresponds to the case where the side information is vacuous. On the other hand, if the
rows of P and/or the columns of Q are correlated and M and/or N capture the correlation
well, then the quasi-dimension will be smaller.

Note that the notion of quasi-dimension is defined in a different way in Herbster et al.
(2020).
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4.2. Reduction from OBMC with side information to an online matrix
prediction (OMP)

First we describe an OMP problem, to which our problem is reduced. The problem is
specified by a decision space X ⊆ [−1, 1]m×n and a margin parameter γ > 0, and again it
is formulated as a repeated game: On each round t ∈ [T ],

1. the algorithm chooses a matrix Xt ∈ Rm×n,

2. the adversary gives a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1}, and

3. the algorithm suffers a loss given by hγ(ytXt,(it,jt)).

The goal of the algorithm is to minimise the regret:

RegretOMP(T,X ,X∗) =

T∑
t=1

hγ(ytXt,(it,jt))− min
X∗∈X

T∑
t=1

hγ(ytX
∗
it,jt),

Note that unlike the standard setting of online prediction, we do not require Xt ∈ X .
For any matrix A ∈ Rk×l, we define

Ā = diag

(
1

∥A1∥2
, · · · , 1

∥Ak∥2

)
A.

That is, Ā is a matrix obtained from A by normalising all row vectors.
Below we show that the OBMC problem with side information (M ,N) can be reduced

to the OMP problem with the following decision space:

X = {P̄ Q̄⊤ : PQ⊤ ∈ Rm×n,DM ,N (P̄ , Q̄) ≤ D̂},

where D̂ is an arbitrary parameter. Below we give the reduction. Assume that we have an
algorithm A for the OMP problem (X , γ).

Run the algorithm A and receive the first prediction matrix X1 from A. Then, in each
round t ∈ [T ],

1. observe an index pair (it, jt) ∈ [m]× [n],

2. predict ŷt = sgn(Xt,(it,jt)),

3. observe a true label yt ∈ {−1, 1},

4. if ŷt = yt then Xt+1 = Xt, and if ŷt ̸= yt, then feed (it, jt, yt) to A to let it proceed
and receive Xt+1.

Note that we run the algorithm A in the mistake-driven manner, and hence A runs for
M =

∑T
t=1 Iŷt ̸=yt rounds, where M is the number of mistakes of the reduction algorithm

above.
The next lemma shows the performance of the reduction.
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Lemma 6 Let RegretOMP(M,X ,X∗) denote the regret of the algorithm A in the reduction
above for a competitor matrix X∗ ∈ X , where M =

∑T
t=1 I(ŷt ̸= yt). Then,

M ≤ inf
P̄ Q̄T∈X

(RegretOMP(M,X , P̄ Q̄T ) + hloss(S, (P ,Q), γ))

≤ RegretOMP(M,X ) + hloss(S, γ),
(13)

where we define
hloss(S, γ) = min

P̄ Q̄T∈X
hloss(S, (P ,Q), γ). (14)

Remark 7 If M and N are identity matrices, then we have DM ,N (P̄ , Q̄) = m + n, and
thus the decision space is an unconstrained set X = {P̄ Q̄⊤ : PQ⊤ ∈ Rm×n}.

Proof Let P and Q be arbitrary matrices such that P̄ Q̄⊤ ∈ X . Since I(sgn(x) ̸= y) ≤
hγ(yx) for any x ∈ R and y ∈ {−1, 1}, we have

M =

T∑
t=1

I(ŷt ̸= yt) ≤
∑

{t:ŷt ̸=yt}

hγ(ytXt,(it,jt))

= RegretOMP(M,X , P̄ Q̄⊤) +
∑

{t:ŷt ̸=yt}

hγ(yt(P̄ Q̄⊤)it,jt)

≤ RegretOMP(M,X , P̄ Q̄⊤) +

T∑
t=1

hγ(yt(P̄ Q̄⊤)it,jt)

= RegretOMP(M,X , P̄ Q̄⊤) + hloss(S, (P ,Q), γ),

where the second equality follows from the definition of regret, and the third equality
follows from the fact that (P̄ Q̄⊤)i,j = PiQ

⊤
j /(∥Pi∥2∥Qj∥2). Since the choice of P and Q

is arbitrary, we get the first inequality of the lemma.
Now, let P and Q be the matrices that attain (14). Then, the inequality above implies

that

M ≤ RegretOMP(M,X , P̄ Q̄⊤) + hloss(S, γ) ≤ sup
X∗∈X

RegretOMP(M,X ,X∗) + hloss(S, γ),

which proves the second inequality of the lemma.

4.3. Reduction from OMP to the generalised OSDP problem

A similar technique is used in (Herbster et al., 2016) and (Hazan et al., 2016a). For side
information matrix M ,N we define a matrix Γ for our generalised OSDP as follows:

Γ =

[√
αMM 0
0

√
αNN

]
. (15)



generalised log-determinant regularizer and its applications

Next we define the decision space K. Let N = m + n, and for any matrices P and Q
such that PQ⊤ ∈ Rm×n, we define

WP ,Q =

[
P̄
Q̄

] [
P̄⊤ Q̄⊤] = [P̄ P̄⊤ P̄ Q̄⊤

Q̄P̄⊤ Q̄Q̄⊤

]
.

Note that WP ,Q is an N ×N symmetric and positive semi-definite matrix with its upper
right m × n component matrix P̄ Q̄⊤ is a decision matrix for the OMP problem. So,
intuitively, WP ,Q can be viewed as a positive semi-definite embedding of P̄ Q̄⊤ ∈ X . Next,
we need to find a decision space as a convex set K ∈ SN×N

++ which satisfies

K ⊇ {WP ,Q : P̄ Q̄⊤ ∈ X}.

Due to the following Lemma:

Lemma 8 (Lemma 8 (Herbster et al., 2020)) Given side information matrices M,N ∈
SN×N
++ , we define Γ as in Equation (15). Then we obtain that

Tr(ΓWP,QΓ) = αMTr
(
P̄⊤MP̄

)
+ αNTr

(
Q̄⊤NQ̄

)
, (16)

we can choose K as follows:

K = {W ∈ SN×N
++ : ∀i ∈ [n],Wi,i ≤ 1 ∧ Tr(ΓWΓ) ≤ D̂} ⊇ {WP ,Q : P̄ Q̄⊤ ∈ X}. (17)

Then, we define the loss matrix class L. For any (i, j) ∈ [m] × [n], let Z⟨i, j⟩ ∈ SN×N
+

be a matrix such that the (i,m + j)-th and (m + j, i)-th components are 1 and the other
components are 0. More formally,

Z⟨i, j⟩ = 1

2

(
eie

⊤
m+j + em+je

⊤
i

)
,

where ek is the k-th basis vector of RN . Note that when we focus on its upper right m× n
component matrix, then only the (i, j)-th component is 1. Then, L is

L = {cZ⟨i, j⟩ : c ∈ {−1/γ, 1/γ}, i ∈ [m], j ∈ [n]} . (18)

Now we are ready to describe the reduction from the OMP problem for X to the OSDP
problem (K,L). Let A be an algorithm for the OSDP problem.

Run the algorithm A and receive the first prediction matrix W1 ∈ K from A.
In each round t,

1. let Xt be the upper right m× n component matrix of Wt.
// Xt,(i,j) = Wt •Z⟨i, j⟩

2. observe a triple (it, jt, yt) ∈ [m]× [n]× {−1, 1},

3. suffer loss ℓt(Wt) where ℓt : W 7→ hγ(yt(W •Z⟨it, jt⟩)),

4. let Lt = ∇W ℓt(Wt) =

{
−yt

γ Z⟨it, jt⟩ if ytXt,(i,j) ≤ γ

0 otherwise
,
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5. feed Lt to the algorithm A to let it proceed and receive Wt+1.

Since the loss function ℓt is convex, a standard linearization argument ((Shalev-Shwartz,
2012)) gives

ℓt(Wt)− ℓt(W
∗) ≤ Wt •Lt −W ∗ •Lt

for anyW ∗ ∈ K. Moreover, since ℓt(Wt) = hγ(ytXt,(it,jt)) and ℓt(WP ,Q) = hγ(yt(P̄ Q̄⊤)it,jt),
the following lemma immediately follows.

Lemma 9 Let RegretOSDP(T,K,L,WP ,Q) =
∑T

t=1(Wt −WP ,Q) •Lt denote the regret of
the algorithm A in the reduction above for a competitor matrix WP ,Q and RegretOMP(T,X , P̄ Q̄⊤) =∑T

t=1(hγ(ytXt,(it,jt)) − hγ(yt(P̄ Q̄⊤)it,jt) denote the regret of the reduction algorithm for

P̄ Q̄⊤. Then,
RegretOMP(T,X , P̄ Q̄⊤) ≤ RegretOSDP(T,K,L,WP ,Q).

Combining Lemma 6 and Lemma 9, we have the following corollary.

Corollary 10 There exists an algorithm for the OBMC problem with side information with
the following mistake bounds.

M ≤ inf
P̄ Q̄⊤∈X

(RegretOSDP(M,K,L,WP ,Q) + hloss(S, (P ,Q), γ))

≤ RegretOSDP(M,K,L) + hloss(S, γ).

4.4. Application to matrix completion

According to the above two reductions, we can reduce OBMC with side information M and
N to a generalised OSDP problem (K,L) with bounded Γ-trace norm defined in (17) and
(18), where Γ is respect to side information matrices M and N , defined as in (15), hence
we can apply FTRL algorithm with the generalised log-determinant regularizer defined
in (7). Again, the generalised log-determinant regularizer becomes the regular form as
− ln det(W + ϵE), when the side information is vacuous.

Remark 11 Since the definition of Γ in Equation (15), we have that ρ = 1.

Thus we set β = 1, g = 1/γ, ϵ = ρ = 1,τ = D̂, and Γ is given as in Equation (15), then
utilise Theorem 2, so we get the following result

RegretOSDP(T,K,L,W ∗) = O

(
Tη

γ2
+

D̂
η

)
. (19)

Before stating our improved mistake bound, we give in Algorithm 1 the algorithm for
the OBMC problem with side information M ,N which is obtained by putting together the
two reductions with the FTRL algorithm (4).

Theorem 12 Running Algorithm 1 with parameter η =

√
γ2D̂/T , γ ∈ (0, 1] the hinge loss

of OBMC with side information is bounded as follows:

T∑
t=1

hγ(yt · ŷt)−
T∑
t=1

hγ(yt · (P̄ Q̄⊤)it,jt) ≤ O

√D̂T

γ2

 . (20)
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Algorithm 1 Online binary matrix completion with side information algorithm

1: Parameters: γ > 0, η > 0, side information matrices M ∈ Sm×m
++ and N ∈ Sn×n

++ . Quasi

dimension estimator 1 ≤ D̂. Γ is composed as in Equation (15), and decision set K is
given as (17).

2: Initialize ∀W ∈ K, set W1 = W .
3: for t = 1, 2, . . . , T do
4: Receive (it, jt) ∈ [m]× [n].
5: Let Zt =

1
2(eite

T
m+jt

+ em+jte
T
it
).

6: Predict ŷt = sgn(Wt •Zt) and receive yt ∈ {−1, 1}.
7: if ŷt ̸= yt then
8: Let Lt =

−yt
γ Zt and Wt+1 = argminW∈K − ln det(ΓWΓ+E) + η

∑t
s=1W •Ls.

9: else
10: Let Lt = 0 and Wt+1 = Wt.
11: end if
12: end for

Compared with (Herbster et al., 2020), our regret bound with hinge loss is improved with
ln(m+ n).

Meanwhile, according to our mistake-driven technique, the horizon T is set to be the
number of mistakes M, through the reduction, which is unknown in advance. Then, by
choosing η independent of M we can derive a good mistake bound due to above theorem.

Theorem 13 Algorithm 1 with η = cγ2 for some c > 0 achieves

M =
T∑
t=1

Iŷt ̸=yt = O

(
D̂
γ2

)
+ 2hloss(S, γ). (21)

Proof Combining Corollary 10 and the regret bound (19), we have

M = O

(
Mη

γ2
+

D̂
η

)
+ hloss(S, γ).

Choosing η = cγ2 for sufficiently small constant c, we get

M ≤ M

2
+O

(
D̂
γ2

)
+ hloss(S, γ),

from which (21) follows.

Again if the side information is vacuous, which means that M ,N are identity matrices,
from Remark 7 and Theorem 13, we can set that D̂ = m+n and obtain the mistake bound
as follows:

O

(
m+ n

γ2
+ 2hlossPQT∈Rm×n(S, (P ,Q), γ)

)
.
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In contrast, there is a case where side information matters non-trivially. For OBMC
with side information M ,N we can consider the comparator matrix U as the upper-right
block in an optimal matrix in decision set (17) for reduced generalised OSDP problem with
Γ-trace norm. Then by choosing special M ,N the class of comparator matrix U contains
meaningful structure, especially, if U contains (k × l)-biclustered structure(the details are
in Supplement material) then we obtain that D̂ ∈ O(k + l), which is strictly smaller than
O(m+ n).

Note that in the realizable case, our mistake bound becomes O
(

D̂
γ2

)
, which improves

the previous bound O
(

D̂
γ2 ln(m+ n)

)
in (Herbster et al., 2020), removing the logarithmic

factor ln(m + n). Furthermore, this bound matches the previously known lower bound of
Herbster et.al. (Herbster et al., 2016). When U contains (k, l)-biclustered structure (k ≥ l),
γ can be set as γ = 1√

l
and our regret bound becomes O(kl). On the other hand, the lower

bound of Herbster et.al. is Ω(kl). Thus, the mistake bound of Theorem 13 is optimal.

5. Conclusion

In this paper, on the one hand, we define a generalised OSDP problem with bounded Γ-
trace norm. To solve this problem, we involve FTRL with the generalised log-determinant
regularizer and achieve regret bound as O(g

√
βτρT ). On the other hand, we utilise our result

to OBMC with side information particularly. We reduce OBMC with side information to our
new OSDP with bounded Γ-trace norm and obtain a tighter mistake bound than previous
work by removing logarithmic factor.
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Appendix A. Proof of Main Proposition

Before we prove this theorem, we need to involve some Lemmata and notations.
The negative entropy function over the set of probability distribution P over RN is

defined as H(P ) = Ex∼P [ln(P (x))]. The total variation distance between probability dis-
tribution P and Q over RN is defined as 1

2

∫
x |P (x)−Q(x)|dx. The characteristic function

of a probability distribution P over RN is defined as ϕ(u) = Ex∼P [e
iuT x] where i is the

imaginary unit.

Lemma 14 Let G1 and G2 be two zero mean Gaussian distributions with covariance matrix
ΓΣΓ and ΓΘΓ. Furthermore Σ and Θ are positive definite matrices. If there exists (i, j)
such that

|Σi,j −Θi,j | ≥ δ(Σi,i +Θi,i +Σj,j +Θj,j), (22)
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then the total variation distance between G1 and G2 is at least 1
12e1/4

δ.

Proof is in supplementary material.

Lemma 15 Let X,Y ∈ SN×N
+ be such that

|Xi,j − Yi,j | ≥ δ(Xi,i + Yi,i +Xj,j + Yj,j), (23)

and Γ is a symmetric strictly positive definite matrix. Then the following inequality holds
that

− ln det(αΓXΓ+ (1− α)ΓY Γ)

≤ −α ln det(ΓXΓ)− (1− α) ln det(ΓY Γ)− α(1− α)

2

δ2

72e1/2
.

(24)

Proof Let G1 and G2 be zero mean Gaussian distributions with covariance matrix ΓΣΓ =
ΓXΓ and ΓΘΓ = ΓY Γ. In matrix total variation distance between G1 and G2 is at least

δ
12e1/4

, since assumption of this Lemma and result in Lemma 14. We denote that δ̃ = δ
12e1/4

.
Consider the entropy of the following probability distribution of v with probability α that
v ∼ G1 and v ∼ G2 otherwise. Its covariance matrix is αΓΣΓ+(1−α)ΓΘΓ. Due to Lemma
A.2 and Lemma A.3 (Moridomi et al., 2018) (see in supplementary material) we obtain that

− ln det(αΓΣΓ+ (1− α)ΓΘΓ)

≤ 2H(αG1 + (1− α)G2) + ln(2πe)V

≤ 2αH(G1) + 2(1− α)H(G2) + ln(2πe)V − α(1− α)δ̃2

= −α ln det(ΓΣΓ)− (1− α) ln det(ΓΘΓ)− α(1− α)δ̃2.

Lemma 16 (Lemma 5.4 (Moridomi et al., 2018)) Let X,Y ∈ SN×N
++ be such that for

all i ∈ [N ] |Xi,i| ≤ β
′
and |Yi,i| ≤ β

′
Then for any L ∈ L = {L ∈ SN×N

+ : ∥vec(L)∥1 ≤ g}
there exists that

|Xi,j − Yi,j | ≥
|L • (X − Y )|

4β′g
(Xi,i + Yi,i +Xj,j + Yj,j). (25)

Proposition 17 (Main proposition in main part) The generalised log-determinant reg-
ularizer R(X) = − ln det(ΓXΓ + ϵE) is s-strongly convex with respect to L for K with
s = 1/(1152

√
e(β + ρϵ)2g2). Here E is identity matrix.

Proof Firstly we know that ΓXΓ+ ϵE = Γ(X + Γ−1ϵEΓ−1)Γ.
Applying the Lemma 16 to X + Γ−1ϵEΓ−1 and Y + Γ−1ϵEΓ−1 for X,Y ∈ K where

maxi,j |(X + Γ−1ϵEΓ−1)i,j | ≤ maxi,j |Xi,j | + ϵρ, we have that β
′
= β + ϵρ, where ρ =

maxi,j |(Γ−1Γ−1)i,j |. According to Lemma 15 and Definition 3 we have this proposition.
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