SUPPLEMENTARY MATERIAL

1. Supplementary material

Lemma 1 (Lemma 14 in Appendix) Let G and G2 be two zero mean Gaussian distri-
butions with covariance matrix TXT and T'OT'. Furthermore 3 and © are positive definite
matrices. If there exists (i,7) such that

1Xij — Oijl > 6(Bii + O + Xj5 + ©j5), (1)
then the total variation distance between G1 and Gs is at least 126%/45.

Proof Given ¢;(u) and ¢a(u) as characteristic function of G; and Gy respectively. Due to
Lemma 2 in (Moridomi et al., 2018), we have

[/ 161(@) = Gafa)lde > ma 1) = g @

so we only need to show the lower bound of max,cgn |¢1(u) — ¢o(u)].
Then we set that characteristic function of G and Gy are ¢1(u) = e W TTETu a4
pa(u) = ez u TTOru respectively. Set that a; = (Tv)TXZ(Tw), az = (Tw)TO(T'v) and
Tu = L. Moreover we denote that o = I'v, for any & € RY, there exists v € RY.

\/.041+Ot2
% = I'u in the same way.

We need only give the lower bound of max,cgpn |¢1(u) — ¢2(u)].
Next we have that

max |¢1(u) — da(u)|
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T T
= max eTu I'Tu €7u I'eru
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Then second inequality is due to Lemma 5, since mln{a1 oy alofOQ} € (0, %]

Due to assumption in the Lemma we obtain for some (i, 5) that

0(Bii + 0O + %5, +0;;) <[3i; — O]
1 - o (4)
= 5l(ei +ej) (Z—0O)(ei+e)) —€ (T~ Oe; — e (T~ O)ej
It implies that one of (e;+e;)” (2 —©)(e;+e;), e (X—O)e; and e] (X —©O)e; has absolute

value greater that 2 (2“ +0;;i+3;; +0;,).
Since X, © are str1ctly positive definite matrices, we have that for all v € {e; +¢j,e;,e;}

vI(E4+0)w <2(B+0); +2(E+0);,. (5)



and therefore we have that

1 a;—ao - 1 JI(Z-0)w - 5 (©)
max |—— max
seRN |2el/4 a1 + ag| T vefeite; eie;} | 2e1/4 0T (X + O)v| T 6el/4
|
Now we give the proof of the Main Theorem as follows:
Proof [Proof of Theorem 2] Due to Lemma 4 (in main part) we obtain that
H
Regretospp (T, K, L, W) < =04 QT. (7)
n s

Due to the main proposition in main part we know that s = 1/(1152(8 + pe)?y/eg?).
Thus we need only to show Hy < L. Given Wy and W1 is the minimizer and maximizer
of R respectively, then we obtain that

max (R(W) ~ R(W")) = R(W1) — R(W))
W, W'ek
= —Indet(TWiT + €¢E) + Indet(TW,I' + ¢E)
X(CW,T) + €
X(TWIT) + ¢

Xi(TW,T) .
<)\i<FW1].-(‘)) e T TwW) + 6) (8)
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Plugging s, we obtain that

Regretospp (T, K, £, W*) = O (gQ(ﬂ +peT+ n) . 9)

Lemma 2 (Lemma A.1 (Moridomi et al., 2018)) Let P and Q be probability distri-
butions over RY and ¢p(u) and ¢q(u) be their characteristic functions, respectively. Then

max [6p(u) — do(u)]| < / P(z) - Q(x)]dr, (10)

the right hand side is the total variation distance between any distribution () and P.



SUPPLEMENTARY MATERIAL

Lemma 3 (Lemma A.2 (Christiano, 2014)) Let P and Q be probability distributions
over RN with total variation distance 6. Then

H(aP + (1 -a)Q) < aH(P)+ (1 —-a)H(Q) — a(l — a)d?, (11)
where H(P) = E,p[ln P(x)].

Lemma 4 (Lemma A.3 (Moridomi et al., 2018)) For any probability distribution P
over RN with zero mean and covariance matriz X, its entropy is bounded by the log-
determinant of covariance matriz. That is

_H(P) < %ln(det(E)(%re)N). (12)

Lemma 5 (Lemma A.4 (Moridomi et al., 2018))
—1/4

2

—x _ 1l e
2

(1—2z), (13)
for 0 <z <1/2.

2. Definition of biclustered structure and ideal quasi dimension

As in Herbster et al. (2020), we define the class of (k,[)-biclustered structure matrices as
follows:

Definition 6 Form >k and n > 1, the class of (k,1)-binary biclustered matrices is defined
as

B ={U e {1, +1}" " :r € [K]",c€ ",V € {1, -1} Us j =V, ,,i € [m], j € [n]}.
Denote B™? = {R C {0,1}"™*? : |R;|l2 = 1,4 € [m],rank(R) = d}, for any matrix
U € B])" we can decompose U = RU*C" for some U* € {—1,+1}**! R € B™* and
C e B
Theorem 7 ((Herbster et al., 2020)) IfU € B*" define D3; n(U) as
4r.nU) =2Tr(RT M R)aps + 2Tr(CTNC)an + 2k + 21, (14)

where M, N are PD-Laplacian, as the minimum over all decompositions of U = RU*C'"
for some U* € {—1,+1}**!, R € B™* and C € B™'. Thus, for U € B]'}",

Dy n(U) <Dy n(U), (15)

i U s < L.



Moreover, we define the max-norm of a matrix U € R™*™ as follows:

[0 = min { e 1] 1,1} (10

Furthermore we define the quasi-dimension of a matrix U with M € STY™ and N €
ST at margin v as

DlynU)= _min ayTr(PTMQ)+anTr(Q NQ). (17)
PQT=HU
See section 4.1 from Herbster et al. (2020), if U is a (k,!)-biclustered structured ma-
trix, they show an example where Dy, (U) € O(k + 1) with ideal side information.
When exactly that there exists a sequence that y; = (PQ");, j, = Ui, j, where (P,Q) =
arg min D} U), and U satisfies the assumptions in Herbster et al. (2020), then we
P.Q “M,N

have that D € O(k + 1) with same side information.

3. Online similarity prediction with side information

In this section, we show the application of our reduction method and generalised log-
determinant regularizer to online similarity prediction with side information.

Let G = (V, E) be an undirected and connected graph with n = |V| vertices and m = |E|
edges. Assign vertices to K classes with a vector y = {y1,--- ,yn} where y; € {1,--- , K}.
For a matrix L, we denote L™ as pseudo-inverse matrix of L. The online similarity prediction
is defined as follows: On each round ¢, for a given pair of vertices (i, j:) algorithm needs
to predict whether they are in the same class denoted as @, ;,. If they are in the same class
then y;, 5, = 1, yi,j, = —1, otherwise. Our target is to give a bound of the prediction
mistakes M = Y1 | Lgi, ;. #vi, 5, -
Definition 8 The set of cut-edges in (G, y) is denoted as ®C(y) = {(i,j) € E : y; # v}
we abbreviate it to ®& and the cut-size is given as |®F(y)|. The set of cut-edges with respect
to class label k is denoted as <I>g(y) = {(i,j) € E : k € {yi,y;},yi # vy;}. Note that
25:1 |8 (y)| = 2|9%(y)|. Given A € R™™ such that A;; = Aj; = 1 if (i,7) € E(G) and
A;j =0, otherwise. D is denoted as diagonal matriz with Dy; is the degree of vertex i. We
define the Laplacian as L = D — A.

Definition 9 If G is identified with a resistive network such that each edge is a unit resistor,
then the effective resistance RlGj between pair (i,j) € V2 can be defined as Rfj = (e; —
e;) Lt (e; — €j), where e; is the i-th vector in the canonical basis of R™.

Gentile et al. (2013) gave a mistake bound in the following proposition:
Proposition 10 Let (G,y) be a labeled graph. If we run the Matrix Winnow with G as

input graph, we have the following mistake bound

MY =0 (|99 max RY.Inn (18)
(i)eve
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In our new reduction, we define the comparator matrix U € {1, —1 where if vertices
1,7 are in the same class then U;; = 1, and U;; = —1, otherwise. Firstly, we denote that
1 is a K-dimensional vector that all entries are 1. Due to (Gentile et al., 2013; Herbster
et al., 2020), we see that U is a (K, K)-biclustered n x n matrix where U* = 2Ix — 117,
and there exists R € B™* such that U = RU*R'. Define the side information matrices
M = N e R™ " as PD-Laplcian L, where L is the Laplacian matrix based on the graph
G.

Thus we have

}TLX’IL

(19)

where a; = maxi(j}_l)ii.
According to Herbster et al. (2020), we further obtain that % € O(1), more concisely we

can set that % = 3. Meanwhile given sparse matrix Z in the following equation
- 1 T T
Z(i,j) = §(€i€n+j + enije; )- (20)

Thus we give the following proposition for our reduction from a graph based online
similarity prediction to a generalised OSDP problem (K, £) with bounded I'-trace norm.

Proposition 11 Given an online similarity prediction problem with graph (G,vy), then we
can reduce this problem to a generalised OSDP problem (IC, L) with bounded T'-trace norm
such that

K= {X €S 1 | Xy < 1, Te(TXT) < 13}
L=A{cZ(i,j): c€{-1/v,1/v}i €[n],j € [n]},

where T' is defined as above, and D is arbitrary. In particular, we have that

T

M =Ty, sy, ,, < Regretogpp(M, K, £) (21)
t=1

According to Herbster et al. (2020), there exists P, Q such that U* = PQ", it implies
that the hinge loss hloss(S, ) = 0.

Remark 12 According to Theorem 3 and section 4.2 in (Herbster et al., 2020) if U obtains
the (K, K)-biclustered structure, i.e., there exists U*, such that U* = 2Ix — 117, and there
exists R € BY* such that U = RU*R", due to our Theorem 13 in main part, we have that

M<O (Tr(RTLR)aL) , (22)

where L is Laplacian of the corresponding graph G.



Remark 13 According to Herbster et al. (2020), we have that

T(R'LR)<2 ) |R;— Ry’
(3,7)EE

where 32 nep |1 B — R;||?> counts only when there is an edge between different classes. Due
to the definition of |®C|, we have that > ger 11— Rj||? = |99

Simultaneously, ar, = max;cp, L} so we obtain that ag, > e/ L e;, Vi € [n]. It implies
that 4o, > max; jycy2 Rfj. Thus we have that our new mistake bound improves the previous
bound a logarithmic factor and recovers the previous bound up to a constant factor.
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