1. Supplementary material

Lemma 1 (Lemma 14 in Appendix) Let G_1 and G_2 be two zero mean Gaussian distributions with covariance matrix $\Gamma \Sigma \Gamma$ and $\Gamma \Theta \Gamma$. Furthermore Σ and Θ are positive definite matrices. If there exists (i, j) such that

$$|\mathbf{\Sigma}_{i,j} - \mathbf{\Theta}_{i,j}| \ge \delta(\mathbf{\Sigma}_{i,i} + \mathbf{\Theta}_{i,i} + \mathbf{\Sigma}_{j,j} + \mathbf{\Theta}_{j,j}), \tag{1}$$

then the total variation distance between G_1 and G_2 is at least $\frac{1}{12e^{1/4}}\delta$.

Proof Given $\phi_1(u)$ and $\phi_2(u)$ as characteristic function of G_1 and G_2 respectively. Due to Lemma 2 in (Moridomi et al., 2018), we have

$$\int_{x} |G_1(x) - G_2(x)| dx \ge \max_{u \in \mathbb{R}^N} |\phi_1(u) - \phi_2(u)|,$$
(2)

so we only need to show the lower bound of $\max_{u \in \mathbb{R}^N} |\phi_1(u) - \phi_2(u)|$.

Then we set that characteristic function of G_1 and G_2 are $\phi_1(u) = e^{\frac{-1}{2}u^T \Gamma^T \Sigma \Gamma u}$ and $\phi_2(u) = e^{\frac{-1}{2}u^T \Gamma^T \Theta \Gamma u}$ respectively. Set that $\alpha_1 = (\Gamma v)^T \Sigma (\Gamma v)$, $\alpha_2 = (\Gamma v)^T \Theta (\Gamma v)$ and $\Gamma u = \frac{\Gamma v}{\sqrt{\alpha_1 + \alpha_2}}$. Moreover we denote that $\bar{v} = \Gamma v$, for any $\bar{v} \in \mathbb{R}^V$, there exists $v \in \mathbb{R}^V$. $\bar{u} = \Gamma u$ in the same way.

We need only give the lower bound of $\max_{u \in \mathbb{R}^N} |\phi_1(u) - \phi_2(u)|$. Next we have that

$$\max_{u \in \mathbb{R}^{N}} |\phi_{1}(u) - \phi_{2}(u)|
= \max_{u \in \mathbb{R}^{N}} \left| e^{\frac{-1}{2}u^{T} \mathbf{\Gamma} \mathbf{\Sigma} \mathbf{\Gamma} u} - e^{\frac{-1}{2}u^{T} \mathbf{\Gamma} \mathbf{\Theta} \mathbf{\Gamma} u} \right|
= \max_{u \in \mathbb{R}^{V}} \left| e^{\frac{-1}{2} (\mathbf{\Gamma} u)^{T} \mathbf{\Sigma} (\mathbf{\Gamma} u)} - e^{\frac{-1}{2} (\mathbf{\Gamma} u)^{T} \mathbf{\Theta} (\mathbf{\Gamma} u)} \right|
\geq \max_{\overline{v} \in \mathbb{R}^{N}} \left| e^{\frac{-\alpha_{1}}{2(\alpha_{1} + \alpha_{2})}} - e^{\frac{-\alpha_{2}}{2(\alpha_{1} + \alpha_{2})}} \right|
\geq \max_{\overline{v} \in \mathbb{R}^{N}} \left| \frac{1}{2e^{1/4}} \frac{\alpha_{1} - \alpha_{2}}{\alpha_{1} + \alpha_{2}} \right|.$$
(3)

Then second inequality is due to Lemma 5, since $\min\{\frac{\alpha_1}{\alpha_1+\alpha_2}, \frac{\alpha_2}{\alpha_1+\alpha_2}\} \in (0, \frac{1}{2}]$.

Due to assumption in the Lemma we obtain for some (i, j) that

$$\delta(\boldsymbol{\Sigma}_{i,i} + \boldsymbol{\Theta}_{i,i} + \boldsymbol{\Sigma}_{j,j} + \boldsymbol{\Theta}_{j,j}) \leq |\boldsymbol{\Sigma}_{i,j} - \boldsymbol{\Theta}_{i,j}| = \frac{1}{2} |(\boldsymbol{e}_i + \boldsymbol{e}_j)^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta})(\boldsymbol{e}_i + \boldsymbol{e}_j) - \boldsymbol{e}_i^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta})\boldsymbol{e}_i - \boldsymbol{e}_j^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta})\boldsymbol{e}_j|$$
(4)

It implies that one of $(\boldsymbol{e}_i + \boldsymbol{e}_j)^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta}) (\boldsymbol{e}_i + \boldsymbol{e}_j), \boldsymbol{e}_i^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta}) \boldsymbol{e}_i$ and $\boldsymbol{e}_j^T (\boldsymbol{\Sigma} - \boldsymbol{\Theta}) \boldsymbol{e}_j$ has absolute value greater that $\frac{2\delta}{3} (\boldsymbol{\Sigma}_{i,i} + \boldsymbol{\Theta}_{i,i} + \boldsymbol{\Sigma}_{j,j} + \boldsymbol{\Theta}_{j,j}).$

Since Σ , Θ are strictly positive definite matrices, we have that for all $v \in \{e_i + e_j, e_i, e_j\}$

$$v^{T}(\mathbf{\Sigma} + \mathbf{\Theta})v \leq 2(\mathbf{\Sigma} + \mathbf{\Theta})_{i,i} + 2(\mathbf{\Sigma} + \mathbf{\Theta})_{j,j}.$$
(5)

and therefore we have that

$$\max_{\bar{v}\in\mathbb{R}^N} \left| \frac{1}{2e^{1/4}} \frac{\alpha_1 - \alpha_2}{\alpha_1 + \alpha_2} \right| \ge \max_{\bar{v}\in\{\boldsymbol{e}_i + \boldsymbol{e}_j, \boldsymbol{e}_i, \boldsymbol{e}_j\}} \left| \frac{1}{2e^{1/4}} \frac{v^T(\boldsymbol{\Sigma} - \boldsymbol{\Theta})v}{v^T(\boldsymbol{\Sigma} + \boldsymbol{\Theta})v} \right| \ge \frac{\delta}{6e^{1/4}} \tag{6}$$

Now we give the proof of the Main Theorem as follows: **Proof** [Proof of Theorem 2] Due to Lemma 4 (in main part) we obtain that

$$\operatorname{Regret}_{OSDP}(T, \mathcal{K}, \mathcal{L}, \boldsymbol{W}^*) \leq \frac{H_0}{\eta} + \frac{\eta}{s}T.$$
(7)

Due to the main proposition in main part we know that $s = 1/(1152(\beta + \rho\epsilon)^2\sqrt{eg^2})$.

Thus we need only to show $H_0 \leq \frac{\tau}{\epsilon}$. Given W_0 and W_1 is the minimizer and maximizer of R respectively, then we obtain that

$$\max_{\boldsymbol{W},\boldsymbol{W}'\in\mathcal{K}} (R(\boldsymbol{W}) - R(\boldsymbol{W}')) = R(\boldsymbol{W}_{1}) - R(\boldsymbol{W}_{0})$$

$$= -\ln \det(\boldsymbol{\Gamma}\boldsymbol{W}_{1}\boldsymbol{\Gamma} + \epsilon\boldsymbol{E}) + \ln \det(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma} + \epsilon\boldsymbol{E})$$

$$= \sum_{i=1}^{N} \ln \frac{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma}) + \epsilon}{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{1}\boldsymbol{\Gamma}) + \epsilon}$$

$$= \sum_{i=1}^{N} \ln \left(\frac{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma})}{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{1}\boldsymbol{\Gamma}) + \epsilon} + \frac{\epsilon}{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{1}\boldsymbol{\Gamma}) + \epsilon}\right)$$

$$\leq \sum_{i=1}^{N} \ln \left(\frac{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma})}{\epsilon} + 1\right)$$

$$\leq \sum_{i=1}^{N} \frac{\lambda_{i}(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma})}{\epsilon} = \frac{\operatorname{Tr}(\boldsymbol{\Gamma}\boldsymbol{W}_{0}\boldsymbol{\Gamma})}{\epsilon} \leq \frac{\tau}{\epsilon}.$$
(8)

Plugging s, we obtain that

$$\operatorname{Regret}_{OSDP}(T, \mathcal{K}, \mathcal{L}, \boldsymbol{W}^*) = O\left(g^2(\beta + \rho\epsilon)^2 T\eta + \frac{\tau}{\epsilon\eta}\right).$$
(9)

Lemma 2 (Lemma A.1 (Moridomi et al., 2018)) Let P and Q be probability distributions over \mathbb{R}^N and $\phi_P(u)$ and $\phi_Q(u)$ be their characteristic functions, respectively. Then

$$\max_{u \in \mathbb{R}^N} |\phi_P(u) - \phi_Q(u)| \le \int_x |P(x) - Q(x)| dx, \tag{10}$$

the right hand side is the total variation distance between any distribution Q and P.

Lemma 3 (Lemma A.2 (Christiano, 2014)) Let P and Q be probability distributions over \mathbb{R}^N with total variation distance δ . Then

$$H(\alpha P + (1 - \alpha)Q) \le \alpha H(P) + (1 - \alpha)H(Q) - \alpha(1 - \alpha)\delta^2,$$
(11)

where $H(P) = \mathbb{E}_{x \sim P}[\ln P(x)].$

Lemma 4 (Lemma A.3 (Moridomi et al., 2018)) For any probability distribution P over \mathbb{R}^N with zero mean and covariance matrix Σ , its entropy is bounded by the log-determinant of covariance matrix. That is

$$-H(P) \le \frac{1}{2} \ln(\det(\Sigma)(2\pi e)^N).$$
(12)

Lemma 5 (Lemma A.4 (Moridomi et al., 2018))

$$e^{\frac{-x}{2}} - e^{-\frac{1-x}{2}} \ge \frac{e^{-1/4}}{2}(1-2x),$$
 (13)

for $0 \le x \le 1/2$.

2. Definition of biclustered structure and ideal quasi dimension

As in Herbster et al. (2020), we define the class of (k, l)-biclustered structure matrices as follows:

Definition 6 For $m \ge k$ and $n \ge l$, the class of (k, l)-binary biclustered matrices is defined as

$$\mathbb{B}_{k,l}^{m \times n} = \{ \boldsymbol{U} \in \{-1,+1\}^{m \times n} : \boldsymbol{r} \in [k]^m, \boldsymbol{c} \in [l]^n, \boldsymbol{V} \in \{1,-1\}^{k \times l}, \boldsymbol{U}_{i,j} = \boldsymbol{V}_{r_i,c_j}, i \in [m], j \in [n] \}$$

Denote $\mathcal{B}^{m,d} = \{ \mathbf{R} \subset \{0,1\}^{m \times d} : \|\mathbf{R}_i\|_2 = 1, i \in [m], \operatorname{rank}(\mathbf{R}) = d \}$, for any matrix $\mathbf{U} \in \mathbb{B}_{k,l}^{m,n}$ we can decompose $\mathbf{U} = \mathbf{R}\mathbf{U}^*\mathbf{C}^\top$ for some $\mathbf{U}^* \in \{-1,+1\}^{k \times l}, \mathbf{R} \in \mathcal{B}^{m,k}$ and $\mathbf{C} \in \mathcal{B}^{n,l}$.

Theorem 7 ((Herbster et al., 2020)) If $U \in \mathbb{B}_{k,l}^{m \times n}$ define $\mathcal{D}_{M,N}^{o}(U)$ as

$$\mathcal{D}^{o}_{\boldsymbol{M},\boldsymbol{N}}(\boldsymbol{U}) = 2\mathrm{Tr}(\boldsymbol{R}^{\top}\boldsymbol{M}\boldsymbol{R})\alpha_{\boldsymbol{M}} + 2\mathrm{Tr}(\boldsymbol{C}^{\top}\boldsymbol{N}\boldsymbol{C})\alpha_{\boldsymbol{N}} + 2k + 2l, \qquad (14)$$

where M, N are PD-Laplacian, as the minimum over all decompositions of $U = RU^*C^\top$ for some $U^* \in \{-1, +1\}^{k \times l}, R \in \mathcal{B}^{m,k}$ and $C \in \mathcal{B}^{n,l}$. Thus, for $U \in \mathbb{B}_{k,l}^{m \times n}$,

$$\mathcal{D}_{\boldsymbol{M},\boldsymbol{N}}^{\gamma}(\boldsymbol{U}) \le \mathcal{D}_{\boldsymbol{M},\boldsymbol{N}}^{o}(\boldsymbol{U}), \tag{15}$$

if $\|\boldsymbol{U}\|_{\max} \leq \frac{1}{\gamma}$.

Moreover, we define the max-norm of a matrix $U \in \mathbb{R}^{m \times n}$ as follows:

$$\|\boldsymbol{U}\|_{\max} = \min_{\boldsymbol{P}\boldsymbol{Q}^{\top} = \boldsymbol{U}} \left\{ \max_{1 \le i \le m} \|\boldsymbol{P}_i\| \max_{1 \le j \le n} \|\boldsymbol{Q}_j\| \right\}.$$
 (16)

Furthermore we define the quasi-dimension of a matrix U with $M \in \mathbb{S}^{m \times m}_{++}$ and $N \in \mathbb{S}^{n \times n}_{++}$ at margin γ as

$$\mathcal{D}_{\boldsymbol{M},\boldsymbol{N}}^{\gamma}(\boldsymbol{U}) = \min_{\bar{\boldsymbol{P}}\bar{\boldsymbol{Q}}^{\top} = \gamma \boldsymbol{U}} \alpha_{\boldsymbol{M}} \operatorname{Tr}(\bar{\boldsymbol{P}}^{\top} \boldsymbol{M} \bar{\boldsymbol{Q}}) + \alpha_{\boldsymbol{N}} \operatorname{Tr}(\bar{\boldsymbol{Q}}^{\top} \boldsymbol{N} \bar{\boldsymbol{Q}}).$$
(17)

See section 4.1 from Herbster et al. (2020), if U is a (k, l)-biclustered structured matrix, they show an example where $\mathcal{D}^{o}_{M,N}(U) \in O(k+l)$ with ideal side information. When exactly that there exists a sequence that $y_t = (\bar{P}\bar{Q}^{\top})_{i_t,j_t} = U_{i_t,j_t}$ where $(\bar{P},\bar{Q}) = \arg\min_{P,Q} \mathcal{D}^{\gamma}_{M,N}(U)$, and U satisfies the assumptions in Herbster et al. (2020), then we have that $\hat{\mathcal{D}} \in O(k+l)$ with same side information.

3. Online similarity prediction with side information

In this section, we show the application of our reduction method and generalised logdeterminant regularizer to online similarity prediction with side information.

Let G = (V, E) be an undirected and connected graph with n = |V| vertices and m = |E|edges. Assign vertices to K classes with a vector $\boldsymbol{y} = \{y_1, \dots, y_n\}$ where $y_i \in \{1, \dots, K\}$. For a matrix \boldsymbol{L} , we denote \boldsymbol{L}^+ as pseudo-inverse matrix of \boldsymbol{L} . The online similarity prediction is defined as follows: On each round t, for a given pair of vertices (i_t, j_t) algorithm needs to predict whether they are in the same class denoted as \hat{y}_{i_t,j_t} . If they are in the same class then $y_{i_t,j_t} = 1$, $y_{i_t,j_t} = -1$, otherwise. Our target is to give a bound of the prediction mistakes $M = \sum_{t=1}^{T} \mathbb{I}_{\hat{y}_{i_t,j_t} \neq y_{i_t,j_t}}$.

Definition 8 The set of cut-edges in (G, \mathbf{y}) is denoted as $\Phi^G(\mathbf{y}) = \{(i, j) \in E : y_i \neq y_j\}$ we abbreviate it to Φ^G and the cut-size is given as $|\Phi^G(\mathbf{y})|$. The set of cut-edges with respect to class label k is denoted as $\Phi^G_k(\mathbf{y}) = \{(i, j) \in E : k \in \{y_i, y_j\}, y_i \neq y_j\}$. Note that $\sum_{s=1}^k |\Phi^G_s(\mathbf{y})| = 2|\Phi^G(\mathbf{y})|$. Given $\mathbf{A} \in \mathbb{R}^{n \times n}$ such that $\mathbf{A}_{ij} = \mathbf{A}_{ji} = 1$ if $(i, j) \in E(G)$ and $\mathbf{A}_{ij} = 0$, otherwise. **D** is denoted as diagonal matrix with \mathbf{D}_{ii} is the degree of vertex i. We define the Laplacian as $\mathbf{L} = \mathbf{D} - \mathbf{A}$.

Definition 9 If G is identified with a resistive network such that each edge is a unit resistor, then the effective resistance $R_{i,j}^G$ between pair $(i,j) \in V^2$ can be defined as $R_{i,j}^G = (e_i - e_j)L^+(e_i - e_j)$, where e_i is the *i*-th vector in the canonical basis of \mathbb{R}^n .

Gentile et al. (2013) gave a mistake bound in the following proposition:

Proposition 10 Let (G, y) be a labeled graph. If we run the Matrix Winnow with G as input graph, we have the following mistake bound

$$M^W = O\left(\left|\Phi^G\right| \max_{(i,j)\in V^2} R^G_{i,j} \ln n\right)$$
(18)

In our new reduction, we define the comparator matrix $U \in \{1, -1\}^{n \times n}$ where if vertices i, j are in the same class then $U_{ij} = 1$, and $U_{ij} = -1$, otherwise. Firstly, we denote that **1** is a K-dimensional vector that all entries are 1. Due to (Gentile et al., 2013; Herbster et al., 2020), we see that U is a (K, K)-biclustered $n \times n$ matrix where $U^* = 2I_K - \mathbf{11}^\top$, and there exists $\mathbf{R} \in \mathcal{B}^{n,k}$ such that $U = \mathbf{R}U^*\mathbf{R}^\top$. Define the side information matrices $\mathbf{M} = \mathbf{N} \in \mathbb{R}^{n \times n}$ as PD-Laplcian $\tilde{\mathbf{L}}$, where \mathbf{L} is the Laplacian matrix based on the graph G.

Thus we have

$$\Gamma = \begin{bmatrix} \sqrt{\alpha_{\tilde{L}} \tilde{L}} & 0\\ 0 & \sqrt{\alpha_{\tilde{L}} \tilde{L}} \end{bmatrix},$$
(19)

where $\alpha_{\tilde{L}} = \max_i (\tilde{L}^{-1})_{ii}$.

According to Herbster et al. (2020), we further obtain that $\frac{1}{\gamma} \in O(1)$, more concisely we can set that $\frac{1}{\gamma} = 3$. Meanwhile given sparse matrix \boldsymbol{Z} in the following equation

$$\boldsymbol{Z}\langle i,j\rangle = \frac{1}{2}(\boldsymbol{e}_{i}\boldsymbol{e}_{n+j}^{\top} + \boldsymbol{e}_{n+j}\boldsymbol{e}_{i}^{\top}).$$
(20)

Thus we give the following proposition for our reduction from a graph based online similarity prediction to a generalised OSDP problem $(\mathcal{K}, \mathcal{L})$ with bounded Γ -trace norm.

Proposition 11 Given an online similarity prediction problem with graph (G, \mathbf{y}) , then we can reduce this problem to a generalised OSDP problem $(\mathcal{K}, \mathcal{L})$ with bounded Γ -trace norm such that

$$\mathcal{K} = \left\{ \boldsymbol{X} \in \mathbb{S}_{++}^{n \times n} : |\boldsymbol{X}_{ii}| \le 1, \operatorname{Tr}(\boldsymbol{\Gamma}\boldsymbol{X}\boldsymbol{\Gamma}) \le \widehat{\mathcal{D}} \right\}$$
$$\mathcal{L} = \left\{ c\boldsymbol{Z}\langle i, j \rangle : c \in \{-1/\gamma, 1/\gamma\}, i \in [n], j \in [n] \right\},$$

where Γ is defined as above, and $\widehat{\mathcal{D}}$ is arbitrary. In particular, we have that

$$M = \sum_{t=1}^{T} \mathbb{I}_{\hat{y}_{i_t, j_t} \neq y_{i_t, j_t}} \leq \text{Regret}_{\text{OSDP}}(M, \mathcal{K}, \mathcal{L})$$
(21)

According to Herbster et al. (2020), there exists \bar{P}, \bar{Q} such that $U^* = \bar{P}\bar{Q}^{\top}$, it implies that the hinge loss $hloss(\mathcal{S}, \gamma) = 0$.

Remark 12 According to Theorem 3 and section 4.2 in (Herbster et al., 2020) if U obtains the (K, K)-biclustered structure, i.e., there exists U^* , such that $U^* = 2I_K - \mathbf{1}\mathbf{1}^\top$, and there exists $\mathbf{R} \in \mathcal{B}^{n,k}$ such that $U = \mathbf{R}U^*\mathbf{R}^\top$, due to our Theorem 13 in main part, we have that

$$M \le O\left(\operatorname{Tr}(\boldsymbol{R}^{\top}\boldsymbol{L}\boldsymbol{R})\alpha_{\boldsymbol{L}}\right),\tag{22}$$

where L is Laplacian of the corresponding graph G.

Remark 13 According to Herbster et al. (2020), we have that

$$\operatorname{Tr}(\boldsymbol{R}^{\top}\boldsymbol{L}\boldsymbol{R}) \leq 2 \sum_{(i,j)\in E} \|\boldsymbol{R}_i - \boldsymbol{R}_j\|^2,$$

where $\sum_{(i,j)\in E} \|\mathbf{R}_i - \mathbf{R}_j\|^2$ counts only when there is an edge between different classes. Due to the definition of $|\Phi^G|$, we have that $\sum_{(i,j)\in E} \|\mathbf{R}_i - \mathbf{R}_j\|^2 = |\Phi^G|$.

Simultaneously, $\alpha_{\boldsymbol{L}} = \max_{i \in [n]} \boldsymbol{L}_{ii}^+$ so we obtain that $\alpha_{\boldsymbol{L}} \geq \boldsymbol{e}_i^\top \boldsymbol{L}^+ \boldsymbol{e}_i, \forall i \in [n]$. It implies that $4\alpha_{\boldsymbol{L}} \geq \max_{(i,j) \in V^2} R_{i,j}^G$. Thus we have that our new mistake bound improves the previous bound a logarithmic factor and recovers the previous bound up to a constant factor.

References

- Paul Christiano. Online local learning via semidefinite programming. In Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 468–474. ACM, 2014.
- Claudio Gentile, Mark Herbster, and Stephen Pasteris. Online similarity prediction of networked data from known and unknown graphs. In *Conference on Learning Theory*, pages 662–695, 2013.
- Mark Herbster, Stephen Pasteris, and Lisa Tse. Online matrix completion with side information. Advances in Neural Information Processing Systems, 33, 2020.
- Ken-ichiro Moridomi, Kohei Hatano, and Eiji Takimoto. Online linear optimization with the log-determinant regularizer. *IEICE Transactions on Information and Systems*, 101 (6):1511–1520, 2018.