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Lemma 1 (Lemma 14 in Appendix) Let G1 and G2 be two zero mean Gaussian distri-
butions with covariance matrix ΓΣΓ and ΓΘΓ. Furthermore Σ and Θ are positive definite
matrices. If there exists (i, j) such that

|Σi,j −Θi,j | ≥ δ(Σi,i +Θi,i +Σj,j +Θj,j), (1)

then the total variation distance between G1 and G2 is at least 1
12e1/4

δ.

Proof Given ϕ1(u) and ϕ2(u) as characteristic function of G1 and G2 respectively. Due to
Lemma 2 in (Moridomi et al., 2018), we have∫

x
|G1(x)−G2(x)|dx ≥ max

u∈RN
|ϕ1(u)− ϕ2(u)|, (2)

so we only need to show the lower bound of maxu∈RN |ϕ1(u)− ϕ2(u)|.
Then we set that characteristic function of G1 and G2 are ϕ1(u) = e

−1
2
uTΓTΣΓu and

ϕ2(u) = e
−1
2
uTΓTΘΓu respectively. Set that α1 = (Γv)TΣ(Γv), α2 = (Γv)TΘ(Γv) and

Γu = Γv√
α1+α2

. Moreover we denote that v̄ = Γv, for any v̄ ∈ RV , there exists v ∈ RV .

ū = Γu in the same way.
We need only give the lower bound of maxu∈RN |ϕ1(u)− ϕ2(u)|.
Next we have that

max
u∈RN

|ϕ1(u)− ϕ2(u)|

= max
u∈RN

∣∣∣e−1
2
uTΓΣΓu − e

−1
2
uTΓΘΓu

∣∣∣
= max

u∈RV

∣∣∣e−1
2
(Γu)TΣ(Γu) − e

−1
2
(Γu)TΘ(Γu)

∣∣∣
≥ max

v̄∈RN

∣∣∣∣e −α1
2(α1+α2) − e

−α2
2(α1+α2)

∣∣∣∣
≥ max

v̄∈RN

∣∣∣∣ 1

2e1/4
α1 − α2

α1 + α2

∣∣∣∣ .

(3)

Then second inequality is due to Lemma 5, since min{ α1
α1+α2

, α2
α1+α2

} ∈ (0, 12 ].
Due to assumption in the Lemma we obtain for some (i, j) that

δ(Σi,i +Θi,i +Σj,j +Θj,j) ≤ |Σi,j −Θi,j |

=
1

2
|(ei + ej)

T (Σ−Θ)(ei + ej)− eTi (Σ−Θ)ei − eTj (Σ−Θ)ej |
(4)

It implies that one of (ei+ej)
T (Σ−Θ)(ei+ej), e

T
i (Σ−Θ)ei and eTj (Σ−Θ)ej has absolute

value greater that 2δ
3 (Σi,i +Θi,i +Σj,j +Θj,j).

Since Σ,Θ are strictly positive definite matrices, we have that for all v ∈ {ei+ej , ei,ej}

vT (Σ+Θ)v ≤ 2(Σ+Θ)i,i + 2(Σ+Θ)j,j . (5)



and therefore we have that

max
v̄∈RN

∣∣∣∣ 1

2e1/4
α1 − α2

α1 + α2

∣∣∣∣ ≥ max
v̄∈{ei+ej ,ei,ej}

∣∣∣∣ 1

2e1/4
vT (Σ−Θ)v

vT (Σ+Θ)v

∣∣∣∣ ≥ δ

6e1/4
(6)

Now we give the proof of the Main Theorem as follows:
Proof [Proof of Theorem 2] Due to Lemma 4 (in main part) we obtain that

RegretOSDP(T,K,L,W ∗) ≤ H0

η
+

η

s
T. (7)

Due to the main proposition in main part we know that s = 1/(1152(β + ρϵ)2
√
eg2).

Thus we need only to show H0 ≤ τ
ϵ . Given W0 and W1 is the minimizer and maximizer

of R respectively, then we obtain that

max
W ,W ′∈K

(R(W )−R(W
′
)) = R(W1)−R(W0)

= − ln det(ΓW1Γ+ ϵE) + ln det(ΓW0Γ+ ϵE)

=
N∑
i=1

ln
λi(ΓW0Γ) + ϵ

λi(ΓW1Γ) + ϵ

=

N∑
i=1

ln

(
λi(ΓW0Γ)

λi(ΓW1Γ) + ϵ
+

ϵ

λi(ΓW1Γ) + ϵ

)

≤
N∑
i=1

ln

(
λi(ΓW0Γ)

ϵ
+ 1

)

≤
N∑
i=1

λi(ΓW0Γ)

ϵ
=

Tr(ΓW0Γ)

ϵ
≤ τ

ϵ
.

(8)

Plugging s, we obtain that

RegretOSDP(T,K,L,W ∗) = O

(
g2(β + ρϵ)2Tη +

τ

ϵη

)
. (9)

Lemma 2 (Lemma A.1 (Moridomi et al., 2018)) Let P and Q be probability distri-
butions over RN and ϕP (u) and ϕQ(u) be their characteristic functions, respectively. Then

max
u∈RN

|ϕP (u)− ϕQ(u)| ≤
∫
x
|P (x)−Q(x)|dx, (10)

the right hand side is the total variation distance between any distribution Q and P.



Supplementary material

Lemma 3 (Lemma A.2 (Christiano, 2014)) Let P and Q be probability distributions
over RN with total variation distance δ. Then

H(αP + (1− α)Q) ≤ αH(P ) + (1− α)H(Q)− α(1− α)δ2, (11)

where H(P ) = Ex∼P [lnP (x)].

Lemma 4 (Lemma A.3 (Moridomi et al., 2018)) For any probability distribution P
over RN with zero mean and covariance matrix Σ, its entropy is bounded by the log-
determinant of covariance matrix. That is

−H(P ) ≤ 1

2
ln(det(Σ)(2πe)N ). (12)

Lemma 5 (Lemma A.4 (Moridomi et al., 2018))

e
−x
2 − e−

1−x
2 ≥ e−1/4

2
(1− 2x), (13)

for 0 ≤ x ≤ 1/2.

2. Definition of biclustered structure and ideal quasi dimension

As in Herbster et al. (2020), we define the class of (k, l)-biclustered structure matrices as
follows:

Definition 6 For m ≥ k and n ≥ l, the class of (k, l)-binary biclustered matrices is defined
as

Bm×n
k,l = {U ∈ {−1,+1}m×n : r ∈ [k]m, c ∈ [l]n,V ∈ {1,−1}k×l,Ui,j = Vri,cj , i ∈ [m], j ∈ [n]}.

Denote Bm,d = {R ⊂ {0, 1}m×d : ∥Ri∥2 = 1, i ∈ [m], rank(R) = d}, for any matrix
U ∈ Bm,n

k,l we can decompose U = RU∗C⊤ for some U∗ ∈ {−1,+1}k×l,R ∈ Bm,k and

C ∈ Bn,l.

Theorem 7 ((Herbster et al., 2020)) If U ∈ Bm×n
k,l define Do

M ,N (U) as

Do
M ,N (U) = 2Tr(R⊤MR)αM + 2Tr(C⊤NC)αN + 2k + 2l, (14)

where M ,N are PD-Laplacian, as the minimum over all decompositions of U = RU∗C⊤

for some U∗ ∈ {−1,+1}k×l,R ∈ Bm,k and C ∈ Bn,l. Thus, for U ∈ Bm×n
k,l ,

Dγ
M ,N (U) ≤ Do

M ,N (U), (15)

if ∥U∥max ≤ 1
γ .



Moreover, we define the max-norm of a matrix U ∈ Rm×n as follows:

∥U∥max = min
PQ⊤=U

{
max
1≤i≤m

∥Pi∥ max
1≤j≤n

∥Qj∥
}
. (16)

Furthermore we define the quasi-dimension of a matrix U with M ∈ Sm×m
++ and N ∈

Sn×n
++ at margin γ as

Dγ
M ,N (U) = min

P̄ Q̄⊤=γU
αMTr(P̄⊤MQ̄) + αNTr(Q̄⊤NQ̄). (17)

See section 4.1 from Herbster et al. (2020), if U is a (k, l)-biclustered structured ma-
trix, they show an example where Do

M ,N (U) ∈ O(k + l) with ideal side information.

When exactly that there exists a sequence that yt = (P̄ Q̄⊤)it,jt = Uit,jt where (P̄ , Q̄) =
argminP ,QDγ

M ,N (U), and U satisfies the assumptions in Herbster et al. (2020), then we

have that D̂ ∈ O(k + l) with same side information.

3. Online similarity prediction with side information

In this section, we show the application of our reduction method and generalised log-
determinant regularizer to online similarity prediction with side information.

Let G = (V,E) be an undirected and connected graph with n = |V | vertices andm = |E|
edges. Assign vertices to K classes with a vector y = {y1, · · · , yn} where yi ∈ {1, · · · ,K}.
For a matrix L, we denote L+ as pseudo-inverse matrix of L. The online similarity prediction
is defined as follows: On each round t, for a given pair of vertices (it, jt) algorithm needs
to predict whether they are in the same class denoted as ŷit,jt . If they are in the same class
then yit,jt = 1, yit,jt = −1, otherwise. Our target is to give a bound of the prediction

mistakes M =
∑T

t=1 Iŷit,jt ̸=yit,jt
.

Definition 8 The set of cut-edges in (G,y) is denoted as ΦG(y) = {(i, j) ∈ E : yi ̸= yj}
we abbreviate it to ΦG and the cut-size is given as |ΦG(y)|. The set of cut-edges with respect
to class label k is denoted as ΦG

k (y) = {(i, j) ∈ E : k ∈ {yi, yj}, yi ̸= yj}. Note that∑k
s=1 |ΦG

s (y)| = 2|ΦG(y)|. Given A ∈ Rn×n such that Aij = Aji = 1 if (i, j) ∈ E(G) and
Aij = 0, otherwise. D is denoted as diagonal matrix with Dii is the degree of vertex i. We
define the Laplacian as L = D −A.

Definition 9 If G is identified with a resistive network such that each edge is a unit resistor,
then the effective resistance RG

i,j between pair (i, j) ∈ V 2 can be defined as RG
i,j = (ei −

ej)L
+(ei − ej), where ei is the i-th vector in the canonical basis of Rn.

Gentile et al. (2013) gave a mistake bound in the following proposition:

Proposition 10 Let (G,y) be a labeled graph. If we run the Matrix Winnow with G as
input graph, we have the following mistake bound

MW = O

(
|ΦG| max

(i,j)∈V 2
RG

i,j lnn

)
(18)
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In our new reduction, we define the comparator matrix U ∈ {1,−1}n×n where if vertices
i, j are in the same class then Uij = 1, and Uij = −1, otherwise. Firstly, we denote that
1 is a K-dimensional vector that all entries are 1. Due to (Gentile et al., 2013; Herbster
et al., 2020), we see that U is a (K,K)-biclustered n × n matrix where U∗ = 2IK − 11⊤,
and there exists R ∈ Bn,k such that U = RU∗R⊤. Define the side information matrices
M = N ∈ Rn×n as PD-Laplcian L̃, where L is the Laplacian matrix based on the graph
G.

Thus we have

Γ =

√α
L̃
L̃ 0

0
√

α
L̃
L̃

 , (19)

where αL̃ = maxi(L̃
−1)ii.

According to Herbster et al. (2020), we further obtain that 1
γ ∈ O(1), more concisely we

can set that 1
γ = 3. Meanwhile given sparse matrix Z in the following equation

Z⟨i, j⟩ = 1

2
(eie

⊤
n+j + en+je

⊤
i ). (20)

Thus we give the following proposition for our reduction from a graph based online
similarity prediction to a generalised OSDP problem (K,L) with bounded Γ-trace norm.

Proposition 11 Given an online similarity prediction problem with graph (G,y), then we
can reduce this problem to a generalised OSDP problem (K,L) with bounded Γ-trace norm
such that

K =
{
X ∈ Sn×n

++ : |Xii| ≤ 1,Tr(ΓXΓ) ≤ D̂
}

L = {cZ⟨i, j⟩ : c ∈ {−1/γ, 1/γ}, i ∈ [n], j ∈ [n]} ,

where Γ is defined as above, and D̂ is arbitrary. In particular, we have that

M =
T∑
t=1

Iŷit,jt ̸=yit,jt
≤ RegretOSDP(M,K,L) (21)

According to Herbster et al. (2020), there exists P̄ , Q̄ such that U∗ = P̄ Q̄⊤, it implies
that the hinge loss hloss(S, γ) = 0.

Remark 12 According to Theorem 3 and section 4.2 in (Herbster et al., 2020) if U obtains
the (K,K)-biclustered structure, i.e., there exists U∗, such that U∗ = 2IK −11⊤, and there
exists R ∈ Bn,k such that U = RU∗R⊤, due to our Theorem 13 in main part, we have that

M ≤ O
(
Tr(R⊤LR)αL

)
, (22)

where L is Laplacian of the corresponding graph G.



Remark 13 According to Herbster et al. (2020), we have that

Tr(R⊤LR) ≤ 2
∑

(i,j)∈E

∥Ri −Rj∥2,

where
∑

(i,j)∈E ∥Ri−Rj∥2 counts only when there is an edge between different classes. Due

to the definition of |ΦG|, we have that
∑

(i,j)∈E ∥Ri −Rj∥2 = |ΦG|.
Simultaneously, αL = maxi∈[n]L

+
ii so we obtain that αL ≥ e⊤i L

+ei,∀i ∈ [n]. It implies

that 4αL ≥ max(i,j)∈V 2 RG
i,j . Thus we have that our new mistake bound improves the previous

bound a logarithmic factor and recovers the previous bound up to a constant factor.
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