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Abstract

Whole slide images (WSIs) are high-resolution digitized images of tissue samples, stored in-
cluding different magnification levels. WSIs datasets often include only global annotations,
available thanks to pathology reports. Global annotations refer to global findings in the
high-resolution image and do not include information about the location of the regions of
interest or the magnification levels used to identify a finding. This fact can limit the training
of machine learning models, as WSIs are usually very large and each magnification level
includes different information about the tissue. This paper presents a Multi-Scale Task
Multiple Instance Learning (MuSTMIL) method, allowing to better exploit data paired
with global labels and to combine contextual and detailed information identified at sev-
eral magnification levels. The method is based on a multiple instance learning framework
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and on a multi-task network, that combines features from several magnification levels and
produces multiple predictions (a global one and one for each magnification level involved).
MuSTMIL is evaluated on colon cancer images, on binary and multilabel classification.
MuSTMIL shows an improvement in performance in comparison to both single scale and
another multi-scale multiple instance learning algorithm, demonstrating that MuSTMIL
can help to better deal with global labels targeting full and multi-scale images.

Keywords: Multi-Scale Multiple Instance Learning, Multiple Instance Learning, Multi-
scale approach, Computational pathology.

1. Introduction

Histopathology is the gold standard for diagnosing many diseases, such as cancer (Aeffner
et al., 2017).

Computational pathology involves the automatic analysis of digitized histopathology
images, called whole slide images (WSIs). WSIs format includes several magnification
levels of the samples, each one stored with a different spatial resolution. Each level allows
visualizing different tissue patterns and morphologies (e.g. glands in low magnification levels
(5x), single cells in the higher magnification levels (20x-40x)). Pathologists usually analyze
the contextual information of the tissue at low magnification levels, identifying regions of
interest and then zooming through them to analyze the tissue details and to confirm the
disease findings at lower levels. The combination of contextual and details information,
identified at several magnification levels, leads to the global diagnosis of the image.

Training machine learning algorithms for the automatic analysis of digital pathology
images is still an open challenge (Cheplygina et al., 2019), also due to the limited availability
of large datasets with local annotations and due to the multi-scale structure of the images.

Convolutional Neural Networks (CNNs) are currently the state-of-the-art for compu-
tational pathology tasks such as classification of WSIs (Jimenez-del Toro et al., 2017).
CNNs usually require many locally (pixel-wise) annotated samples to train models effec-
tively (Komura and Ishikawa, 2018). Local annotations are not always available, as their
collection is an expensive and time-consuming process that usually requires the involvement
of pathologists. Most publicly available datasets (Courtiol et al., 2018) do not include local
annotations but many are paired with medical reports, which are inherently high-level text
descriptions of the image content. Pathologists can analyze reports and extract informa-
tion that can be used as a global (weak) label for the image. Global labels refer to the
whole image and do not include any information regarding the regions of interest used for
performing the diagnosis and about the magnification levels used for the diagnosis (Karimi
et al., 2020). CNNs do not easily handle the multi-scale structure of the WSIs, since they
are not scale-equivariant by design (Marcos et al., 2018). A scale-equivariant transforma-
tion is a transformation that, when the input is scaled of a factor f , produces an output
scaled of a factor f (Lenc and Vedaldi, 2015; Tensmeyer and Martinez, 2016). When a scale
transformation is applied to CNN input data, its effect on the CNN output is unpredictable.
Therefore, abnormalities must be identified in the proper range of magnification levels.

Recently, new methods were proposed in computational pathology to face the lack of
local annotations (such as Multiple Instance Learning, MIL) and to face the lack of informa-
tion about the magnification levels used (such as approaches to combine multi-scale images
in CNNs’ training), however, few studies target the combination of the two approaches.
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MIL (Hashimoto et al., 2020; Campanella et al., 2019; Lu et al., 2020; Mercan et al., 2017;
Sudharshan et al., 2019; Wang et al., 2019) includes weakly-supervised algorithms that al-
low facing the lack of information about the regions of interest. WSI classification can be
formulated as a MIL problem, where a WSI represents a bag Xn that includes P patches
and the information available on the data concerns the entire WSI. Approaches to combine
multi-scale images in CNN training can involve architectures where each magnification has
its own branch to extract and combine features (Hashimoto et al., 2020; Jain and Mas-
soud, 2020; Yang et al., 2019; Marini et al., 2021), U-Net based networks (Bozkurt et al.,
2018; van Rijthoven et al., 2021) and CNNs where the convolution layers include multiple
receptive fields (Li et al., 2019; Lai and Deng, 2017). These approaches allow to face the
lack of information regarding the magnification levels involved in the diagnosis, combin-
ing contextual and detailed information identified at several magnification levels. Few and
only recent approaches combine MIL and multi-scale images, such as (Hashimoto et al.,
2020), where the authors present a Multi-Scale Multiple Instance Learning (MSMIL) CNN.
In this case, the CNN combines features from multi-scale patches in a MIL framework to
obtain a global prediction for the WSI, showing a performance improvement over a CNN
trained with patches from a single magnification level. However, the models present two
main drawbacks: it does not provide outcomes at single magnification levels, different from
what pathologists concretely do, and it requires several training phases, one for each of the
single magnification levels and a training phase to combine the levels.

The MuSTMIL method described in this paper allows facing the lack of pixel-wise an-
notations and different spatial resolutions in CNN training, producing multiple predictions
in a single training phase. MuSTMIL CNN has multiple scale branches as input (one for
each magnification level) and produces multi-task predictions as output: one for each mag-
nification level and a global prediction combining several levels. Differently from previous
works (Hashimoto et al., 2020), the multiple outputs of the model allow to optimize the
entire model better and take advantage of the combination of contextual and detailed infor-
mation, since the global prediction influences and is influenced by the single-scale predictions
like in a diagnostic process.

The method proposed in this paper is applied to the binary and multilabel classifi-
cation of colon (colorectal) cancer, the fourth most commonly diagnosed cancer in the
world (Benson et al., 2018). The diagnosis of the disease involves the detection of cancerous
polyps (Ferlitsch et al., 2017), small agglomerations of cells, located on the colon border and
the detection of glands. The visualization of low and medium magnifications allows identi-
fying the glands. The dataset analyzed in this article includes WSIs with the corresponding
global diagnosis. The diagnosis can include one or several colon tissue findings, among five
classes: cancer, high-grade dysplasia (hgd), low-grade dysplasia (lgd), hyperplastic polyp
and normal glands. The proposed MuSTMIL method outperforms both a Single-Scale
Multiple Instance Learning (SSMIL) method and a baseline MSMIL method in binary and
multilabel problems producing only global predictions in colon image classification.

2. Methods

This paper proposes a MuSTMIL CNN that combine multi-scale images adopting a MIL
framework to classify colon cancer WSIs. Figure 1 shows an overview of the CNN ar-
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Multi-scale branch
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MULTI-SCALE TASK MULTIPLE INSTANCE LEARNING CNN

SCALE BRANCH S|S|

Figure 1: Overview of the MuSTMIL CNN. The magnification levels are noted as s, the
combined magnification levels as ms. Xs is a bag. ConvL is the convolutional
layer block (shared among the branches). Fs is the feature vector, ILs the in-
termediate fully-connected layer, Hs the embedding vector, zs the output of the
attention network. Cls is the classifier, preds the class prediction.

chitecture. The magnification levels are noted as s ∈ S (|S| representing the number of
magnification levels adopted). The CNN includes multiple scale branches (|S| branches,
{s1, . . . , s|S|}, one for each magnification level as input) and produces |S|+1 predictions
(|S| single-scale predictions and one multi-scale prediction) as output. Each scale branch
receives as input a WSI Xns, the corresponding label Yn and produces a prediction preds, for
the corresponding magnification level s. Each scale branch includes convolutional layers,
fully-connected layers, attention pooling layers and a classifier. The convolutional layers
(ConvL) are used to extract the features (Fs). The fully-connected layers include an in-
termediate layer (ILs), that produces smaller feature embeddings Hs from Fs, composed
of the patch embeddings {hp}s (p ∈ P, |P | representing the number of patches within a
WSI). The attention pooling layer (Lu et al., 2020) aggregates the embeddings into a new
array zs, using an attention neural network (ws and Vs are parameters of the network) that
learns a function to weight (as are the attention weights for each class) the embeddings
and produces and aggregated embedding zs = as ⊗Hs. The classifier receives input zs and
outputs the class prediction (preds), for a fixed magnification level. Each branch is trained
to optimize a Binary-Cross entropy loss function. The CNN also includes a multi-scale
branch that produces a multi-scale prediction by aggregating features from several scale
branches. Multi-scale concatenated embedding (hms = h0, h1, ..., hS) feeds the multi-scale
branch and another attention network (ams as attention weights), producing multi-scale ag-
gregated embeddings zms = ams⊗hms. The embeddings are used to feed a classifier (Clms)
that outputs the multi-scale global prediction predms. The multi-scale (global) branch is
trained to optimize a loss function (binary-cross entropy). The optimization process of the
network involves a loss function with multiple terms. The terms in the equation are the
multi-scale loss function (weighted with α) and the sum of the single-scale loss functions
(weighted with β). The role of α parameter is to weigh the multi-scale term in the loss
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function. The role of β parameter is to weigh the single-scale terms in the loss function.
This optimization leads to better performance also in the single-scale branches that benefit
from the multi-scale features.

Loss = α ∗ Lossms + β ∗ (
n∑

i=1

Losss) (1)

3. Experiments

Table 1: Overview of the dataset. WSIs are collected from two medical hospitals (Azienda
Ospedaliera per le Emergenze e Urgenze Cannizzaro, Catania, Italy, AOEC; and
Radboud University Medical Center, Nijmegen, Netherlands Radboudumc) and
are split in training, validation and testing partitions. Each WSIs can be labeled
with one or more of the five classes.

PARTITION/CLASS Cancer HGD LGD Hyperplastic Normal #WSIs

training 380 344 740 294 478 1826

validation 59 48 132 40 88 305

testing 85 48 65 26 0 192

total 524 440 937 360 566 2323

Dataset The MuSTMIL method is trained and evaluated on histopathology images of
colon biopsies, polypectomies and tissue resections acquired during colonoscopy. Table
1 summarizes dataset composition. WSIs are provided from two medical hospitals and
acquired with ethics approval. The dataset includes over 2’000 WSIs, scanned with an
Aperio and a 3DHistech scanners and stained with Hematoxylin and Eosin (H&E). All
images include a global diagnosis of the images provided by a pathologist and a small subset
comes with pixel-wise annotations used to compare CNN predictions. The diagnosis includes
one or more classes among cancer, high-grade dysplasia, low-grade dysplasia, hyperplastic
polyp and normal glands. The WSIs are analyzed at 5-10x magnifications, since pathologists
recognize these classes at low to medium magnifications. In Marini et al. (2021) the authors
trained a multi-scale CNN in the classification of colon images, showing that the model
benefits of the combination of images from 5-10x. The dataset is split into three partitions:
training (1’826 WSIs), validation (305 WSIs) and testing (192 WSIs pixel-wise annotated),
so that all images from a patient are included in the same partition. The test partition
includes only malignant images, since they are the ones pixel-wise annotated by pathologists.
Therefore, there are no images labeled as normal glands.

Pre-processing The image pre-processing involves the image splitting into a multi-scale
bag Xns including several Xs bags of patches, for each of the magnification levels involved.
WSIs are split into a grid of patches Xs for each magnification level s, starting from the
highest magnification level available Mm. Considering that the CNN input layer needs
patches of 224x224 in size (p), after the extraction patches are resized. Therefore, the size
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of the grid (ps) varies depending on the magnification level s, as shown in Marini et al.
(2021):

p : s = ps : Mm (2)

Patches coming from the same region are linked across magnification levels: the i-th
patch from bag X1, at lower magnification, includes the j-th patch from bag X2 within the
bag at higher magnification (Marini et al., 2021), as shown in the left side of 1. Considering
that bags with patches from lower magnification include fewer patches than those with
higher ones, the i-th patch at lower magnification can be linked with more patches at
higher magnification levels.

Experimental setup MuSTMIL, SSMIL and MSMIL CNNs have the same backbone
architecture and are trained multiple times using the same strategy to set the hyperparam-
eters to avoid overfitting and to face the class imbalance. The backbone architecture is a
ResNet34 (pre-trained on ImageNet), used as a feature extractor (frozen during the train-
ing). It produces feature vectors of size 512 for each input patch. Each model is trained
five times to limit the non-deterministic effect of the stochastic gradient descent used to
optimize the model using the chosen hyperparameters. The average and standard deviation
of the models are reported. The hyperparameters are chosen with a grid search (Chicco,
2017), aimed at finding the optimal configuration of the CNN hyperparameters (i.e. the
configuration that allows the CNN to have the lowest loss function on the validation par-
tition data). The hyperparameters involved in the grid search are the number of epochs
(five epochs), the optimizer (Adam), the learning rate (10−3), the decay rate (10−4), the
number of nodes within the intermediate fully-connected layers (128) and the value of α
and β of the loss function (α=1 and β=1). Overfitting and class imbalance are limited by
adopting a class-wise data augmentation method that uses three operations: rotations, flip-
ping and colour augmentation. The augmentation is implemented with the Albumentations
library (Buslaev et al., 2018).

4. Results

MuSTMIL outperforms a Single-Scale MIL (SSMIL) and a baseline Multi-Scale MIL method
(MSMIL), on a binary and a multilabel classification problems. SSMIL is a CNN with the
same backbone, trained with patches from a single magnification level. Baseline MSMIL
CNN is based on Hashimoto et al. (2020) and produces only a global WSI prediction. Single-
scale branches of the baseline method are trained with patches from a single level and then
are combined; in order to guarantee a better comparison with the MuSTMIL proposed in
this paper, the implementation of the method includes colour augmentation instead of the
domain-adversarial network proposed by the authors to address colour variability. Table 2
summarizes the results for all the methods.

The binary problem involves the classification of high-risk classes (cancer and high-
grade dysplasia) and low-risk classes (low-grade dysplasia, hyperplastic polyps and normal
glands). The performance is evaluated using accuracy and F1-score. MuSTMIL outperforms
the SSMIL and the baseline MSMIL, considering both the multi-scale branch and each of
the single-scale branches. The multi-scale branch and the single-scale branch trained with
patches from 5x reaches the highest performance.
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Table 2: Performance of MuSTMIL CNN, for the binary (left) and the multilabel (right)
problems. SSMIL is the Single-Scale Multiple Instance Learning CNN, Hashimoto
et al. (2020) MSMIL is the baseline Multi-Scale Multiple Instance Learning and
MuSTMIL the Multi-Scale Task Multiple Instance Learning CNN. MuSTMIL
global prediction is the multi-scale output, while MuSTMIL sx branch is the out-
put of the single-scale branches of our CNN. Networks performance are assessed
using accuracy and F1-score.

MAGNIFICATION
binary problem multilabel problem

accuracy F1-score micro-accuracy micro F1-score

SSMIL 5x 0.836 ± 0.022 0.860 ± 0.022 0.815 ± 0.025 0.587 ± 0.064

SSMIL 10x 0.832 ± 0.028 0.866 ± 0.029 0.824 ± 0.025 0.597 ± 0.076

Hashimoto et al. (2020) MSMIL 0.849 ± 0.022 0.876 ± 0.025 0.840 ± 0.015 0.673 ± 0.018

MuSTMIL global prediction 0.870 ± 0.011 0.893 ± 0.010 0.857 ± 0.006 0.682 ± 0.008

MuSTMIL 5x prediction 0.868 ± 0.010 0.892 ± 0.009 0.863 ± 0.009 0.683 ± 0.015

MuSTMIL 10x prediction 0.857 ± 0.018 0.866 ± 0.027 0.855 ± 0.020 0.680 ± 0.038

The multilabel problem involves the classification of the five classes: cancer, high-grade
dysplasia, low-grade dysplasia, hyperplastic polyps and normal glands. The performance
is evaluated using micro-accuracy and micro F1-score. MuSTMIL outperforms the SSMIL
and the baseline MSMIL, considering both the multi-scale branch and each of the single-
scale branches. The single-scale branch trained with patches from 5x reaches the highest
performance.

5. Discussion

The results obtained show that MuSTMIL CNN benefits of the multiple scales for training
and the multi-task optimization of the CNN weights, obtaining higher performance com-
pared with a SSMIL and a baseline MSMIL (Hashimoto et al., 2020) producing only a
global prediction. Combining images from several magnification levels allows the model to
focus on different details and combine both contextual and detailed information leading to
the diagnosis. Figure 2 shows pixel-wise annotations made by a pathologist and attention
heatmaps of MuSTMIL, baseline MSMIL and SSMIL in multilabel problem. In the top
three rows, the attention maps produced by MuSTMIL better correspond to the pixel-wise
annotations, while in the last row the baseline MSMIL and SSMIL produce better attention
maps. With multi-scale images as input and multiple predictions as output the models pro-
duce attentions maps focused on more significant portions of the images, as shown in column
MuSTMIL of Figure 2. This fact can be explained considering that the multi-scale input
images and the training optimization of MuSTMIL allow the model to have feature repre-
sentation including contextual and detailed information from different magnification levels.
In the proposed MuSTMIL method, the multi-task loss function optimization includes a
multi-scale loss function and a loss function for each magnification level. Updates of single-
scale branch parameters are influenced not only by the backpropagation of the branch, but
also by the other branches since the multi-scale branch combines the features. Therefore,
gradients are backpropagated into both the multi-scale and the single-scale branches, influ-
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GROUND TRUTH MuSTMIL Baseline MSMIL SSMIL

A

B

C

D

DIAGNOSIS: HGD

DIAGNOSIS: CANCER

DIAGNOSIS: CANCER

DIAGNOSIS: HYPER

Figure 2: Comparison between pixel-wise annotations made by a pathologist with atten-
tion maps of MuSTMIL, Hashimoto et al. (2020) MSMIL and SSMIL compared:
cancer (red), hgd (green), lgd (yellow), hyperplastic polyp (blue), normal tis-
sue (orange). In rows 1-3, MuSTMIL obtains results qualitatively better than
the other methods, while in the last row MuSTMIL does not fully highlight the
relevant areas.

encing the predictions and the branch attention weights. The results obtained show that,
for the binary and multilabel classification tasks, MuSTMIL CNN outperforms SSMIL and
MSMIL CNNs for both accuracy and F1-score. The accuracy metric performance means
that the model produces more accurate predictions. The F1-score metric (combination of
recall and precision) performance means that the model produces a better combination of
false negatives (recall) and false positives (precision). This fact can be qualitatively ex-
plained by looking at the attention heatmaps in Figure 2. Both SSMIL and the baseline
MSMIL produce attention heatmaps focused on small regions, while the attention map of
MuSTMIL focuses on more significant regions. The SSMIL and the baseline MSMIL suf-
fer from the opposite problem, since they are more conservative in the attention, usually
focusing on small regions and producing more false negatives. The MuSTMIL method pro-
posed in this paper is more efficient by a computational point of view than the baseline
MSMIL, since it requires only one phase to combine n+1 magnification levels, while the
other method requires n+1 training phases (one training for each of the scales involved and
a training phase to combine the branches).

8



MICCAI COMPAY 2021

6. Conclusions

This paper introduces a novel Multi-Scale Task Multiple Instance Learning (MuSTMIL)
CNN to classify WSIs. The approach allows combining contextual and detailed information
from multiple magnification levels, it has multiple scale branches as input and produces
multiple single-scale and one multi-scale prediction. MuSTMIL outperforms a in binary
and in multilabel colon WSI classification a SSMIL CNN and one of the multi scale multiple
learning CNNs (Hashimoto et al., 2020) presented in literature for digital pathology, that
produce only one global prediction. We plan to test MuSTMIL on additional data, other
organs and with a larger number of scales. The code with the MuSTMIL implementation
is publicly available on Github (https://github.com/ilmaro8/MuSTMIL).
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