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Appendix A. Mathematical framework of multiple instance learning

Let us consider a set X of bags (WSIs) (xi)1≤i≤n such that each bag xi is constituted of
a set of ki instances (tiles) {xi,1, xi,2, · · · , xi,ki} where instances are from a domain D. In
particular, bags can have a variable number of instances, or can share the same number of
instances and, in that case, ∀i, j, ki = kj .

In its most general formulation, a MIL model m can be written as a combination of 3
modules:

1. An instance-embedder fθ1 : D → E embedding instances into a space E

2. A pooling operator gθ2 :
∏
E → F processing a set (of arbitrary size) of instance

embeddings into a bag embedding

3. A bag classifier hθ3 : F → Y projecting a bag embedding

such that

∀xi ∈ X,m(xi) = gθ3

(
hθ2
(
fθ1(xi,1), fθ1(xi,2), · · · , fθ1(xi,ki)

))
∈ Y
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Examples of pooling functions are:

mean : xi 7→
1

ki

ki∑
k=1

xi,k

max : xi 7→ max{x1, . . . , xki}

log-sum-exp (Ramon and De Raedt, 2000) : xi 7→
1

M
log
( ki∑
k=1

exp(M × xi,k)
)

attention (Ilse et al., 2018) : xi 7→
ki∑
k=1

exp
(
w> tanh(V x>i,k)

)∑ki
j=1 exp

(
w> tanh(V x>j )

) · xi,k
gated-attention (Ilse et al., 2018) : xi 7→

ki∑
k=1

exp
(
w>(tanh(V x>i,k)� sigm(Ux>i,k))

)∑ki
j=1 exp

(
w>(tanh(V x>j )� sigm(Ux>j )

) · xi,k
where a ∈ N∗, r ∈ R∗, M ∈ R+, V ∈ RL×dim(H), U ∈ RL×dim(H), w ∈ RL×1, L ∈ N∗
are parameters, � is the elementwise multiplication, and sigm is the elementwise sigmoid
function. The max operator can also be substituted or combined with the min operator.
The log-sum-exp is also known as the softplus function and is considered as a smooth
approximation to the max function. Attention-based approaches (Ilse et al., 2018) leverage
an attention module formalized with a one hidden layer perceptron, that computes one
score per input instance embedding which are then normalized such that they sum to 1, as
to accommodate a potentially varying number of instances. All of these functions output
a vector (or bag embedding) with the same shape as the ki input vectors. It is possible to
combine them in many ways such as to obtain output vectors of higher dimensions e.g. by
using concatenation, summation, average or sequential combinations of themselves. These
operators can be used for instance-based or embedding-based multiple instance learning.

Appendix B. Implementation details of the experimental validation

B.1 Epithelial classification on CRCHistoPhenotype

All methods shared the same training parameters as follows:

• The instance embedding model fθ1 (Table 1) proposed in Sirinukunwattana et al.
(2016) and used in Ilse et al. (2018) was employed.

• Loss function was binary cross-entropy

• Optimizer was the Adam (Kingma and Ba, 2014) with default momentum values β
of 0.9 and 0.999, learning rate of 1e−4, weight decay of 5e−4, batch size of 1 for 100
epochs.

• Data augmentation consisted in the next functions in that order:

1. Random vertical and horizontal flip.

2. Random rotation.
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3. H&E color augmentation (Ruifrok et al., 2001): H&E histopathological slides
are originally uncoloured. The two stains Haematoxylin and Eosin are applied
which respectively color nuclei and cytoplasm. Therefore, the true color space
of H&E slides is made of the two vectors H and E rather than R, G, and B.
Each tile was deconvoluted in the HE space using scikit-learn (Pedregosa et al.,
2011) v0.24.2 (behavior changes depending on the version for the considered
functions) with H vector value of H = [0.650, 0.704, 0.286]> and E value of E =
[0.071, 0.994, 0.112]>. Then, two independent random gaussian variables with
mean 1 and standard deviation of 3 were sampled, and multiplied to H and E.
These product of these multiplications were used to convert the tile from the (H,
E, residual) space back to the RGB space.

4. Random crop of a 128 pixel-wide region.

5. Channel-wise standard scaling with RGB mean and standard deviation extracted
from the training set.

Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25

Table 1: Tile embedding model fθ1 from Sirinukunwattana et al. (2016) used in the
CRCHistoPhenotype experiment.

For SparseConvMIL, the position of the center of each tile was used to build the sparse
maps before applying spatial data augmentation consisting of random flips, rotations, and
per axis scaling as detailed in section B. The sparse-input CNN was made of 2 convolu-
tional layers of 12 channels, filter size 3, stride 1, activated with ReLU. An adaptive global
average pooling layer converted the second layer sparse signal into a dense signal. The
implementations of other methods are detailed in Table 2 and (Ilse et al., 2018).

All approaches are trained end-to-end. The 100 power fields were split into 55, 20,
24 samples for respectively the training, validation and testing set. The validation set
is used to select the snapshot with least validation error for inference on the testing set.
The training/testing process was performed 5 times for each method to derive confidence
intervals.

B.2 Subtype classification on The Cancer Genome Atlas

All benchmarked methods used a ResNet34 architecture (He et al., 2016) pre-trained on
Imagenet (Deng et al., 2009) as the instance embedding fθ1 . To obtain embeddings instead
of the probabilities output of ResNet34, the last classifier layer was removed, resulting in 512
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Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25
9 max or
9 mean or
9 attention module or
9 Sparse-input CNN
10 Fully connected 1 output neuron, Sigmoid

Layer ID Layer type Layer parameters

1 Conv Filter width 4, stride 1, padding 0, ReLU
2 Maxpool Filter width 2, stride 2
3 Conv Filter width 3, stride 1, padding 0, ReLU
4 Maxpool Filter width 2, stride 2
5 Fully connected 512 neurons, ReLU
6 Dropout 0.25
7 Fully connected 512 neurons, ReLU
8 Dropout 0.25
9 Fully connected 1 output neuron, Sigmoid
10 Max-MIL/Mean-MIL

Table 2: Complete models from the CRCHistoPhenotype experiment. The top table
displays architectures for embedding-level approaches, while the bottom row displays archi-
tectures for instance-level approaches.

output channels per tile instead of 1 probability. All benchmarked approaches shared the
same MIL classifier hθ3 which was made of one 512-neurons ReLU activated fully connected
layer followed by a 32-output fully connected layer (there are 32 classes). During training,
200 randomly cropped 128×128 pixel tiles were randomly sampled within each WSI. Hyper-
parameters were shared across all benchmarked approaches and were:

• Loss function was binary cross-entropy.

• Optimizer was the Adaptive Momentum (Kingma and Ba, 2014) with default mo-
mentum values, learning rate of 1e−4, weight decay of 1e−4, batch size of 10 (or 2000
taking into account the number of tiles per WSI) for 200 epochs.

• Due to significant imbalance in the class distribution, oversampling was employed
during training with frequencies equal to the inverse of the class counts.

• Data augmentation was the same as in the CRCHistoPhenotype experiment (see sub-
section B.1).
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Project ID Description Location # WSI

TCGA-ACC Adrenocortical carcinoma Adrenal gland 96
TCGA-BLCA Bladder Urothelial Carcinoma Bladder 298
TCGA-BRCA Brain Lower Grade Glioma Breast 1052
TCGA-CESC Breast invasive carcinoma Cervix 190
TCGA-CHOL Cervical squamous cell carcinoma and en-

docervical adenocarcinoma
Bile ducts 46

TCGA-COAD Cholangiocarcinoma Colon 508
TCGA-DLBC Colon adenocarcinoma Lymph nodes 39
TCGA-ESCA Esophageal carcinoma Esophagus 130
TCGA-GBM Glioblastoma multiforme Brain 647
TCGA-HNSC Head and Neck squamous cell carcinoma Head and Neck 412
TCGA-KICH Kidney Chromophobe Kidney 104
TCGA-KIRC Kidney renal clear cell carcinoma Kidney 773
TCGA-KIRP Kidney renal papillary cell carcinoma Kidney 242
TCGA-LGG Liver hepatocellular carcinoma Brain 509
TCGA-LIHC Lung adenocarcinoma Liver 287
TCGA-LUAD Lung squamous cell carcinoma Lung 514
TCGA-LUSC Lymphoid Neoplasm Diffuse Large B-cell

Lymphoma
Lung 511

TCGA-MESO Mesothelioma Mesothelium 55
TCGA-OV Ovarian serous cystadenocarcinoma Ovary 477
TCGA-PAAD Pancreatic adenocarcinoma Pancreas 147
TCGA-PCPG Pheochromocytoma and Paraganglioma Adrenal gland 132
TCGA-PRAD Prostate adenocarcinoma Prostate 426
TCGA-READ Rectum adenocarcinoma Rectum 180
TCGA-SARC Sarcoma Soft tissues 292
TCGA-SKCM Skin Cutaneous Melanoma Skin 336
TCGA-STAD Stomach adenocarcinoma Stomach 383
TCGA-TGCT Testicular Germ Cell Tumors Testicular 138
TCGA-THCA Thymoma Thyroid 384
TCGA-THYM Thyroid carcinoma Thymus 105
TCGA-UCEC Uterine Carcinosarcoma Uterus 465
TCGA-UCS Uterine Corpus Endometrial Carcinoma Uterus 60
TCGA-UVM Uveal Melanoma Skin 62

Total Vitually all solid cancer subtypes Pan-location 10000

Table 3: Distribution of cancer subtypes (classes), locations, and number of WSI in the
total cohort of 10000 slides involved in our experiments. The first column indicates the
official TCGA project ids which groups all cases from the same cancer subtype. The second
columns shows the location of each cancer subtype. The third displays the total number of
WSI for each cancer subtype. The last line indicates the total of the cohort.
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Cancer subtype (class) # training WSI

lymphoid neoplasm diffuse large b-cell lymphoma 17
cholangiocarcinoma 20
mesothelioma 24
uterine carcinosarcoma 26
uveal melanoma 27
adrenocortical carcinoma 42
kidney chromophobe 46
thymoma 46
esophageal carcinoma 57
pheochromocytoma and paraganglioma 58
testicular germ cell tumors 61
pancreatic adenocarcinoma 65
rectum adenocarcinoma 79
cervical squamous cell carcinoma and endocervical adenocarcinoma 83

Table 4: Number of training whole slide images for the 14 cancer subtypes (classes) with
less than 100 training samples. This table illustrates that some classes are heavily under-
represented in the training set, which can challenge the accurate and efficient learning of
features discriminative for subtype classification.

Additionally, SparseConvMIL and the graph-based approaches have the following data
augmentation directly performed on tiles coordinates as follows (no effect on other ap-
proaches):

• random vertical and horizontal coordinates flips

• random coordinates rotation with an angle uniformly sampled within [0, 2π]

• random zoom for both x and y axes by sampling one value per axis in range [0.7, 1.3]

All approaches were trained end-to-end. For each method, the training process lasted
approximately 1 week on 2 Nvidia V100. For fairness of comparisons, all approaches shared
the same tile embedding function and classifier function: the only varying method was the
pooling operator which can scale with the number of parameters for attention-based, graph-
based and sparse-convolutional-based approaches but not for non-parametric approaches of
max, mean and LSE.
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Figure 1: Illustration of SparseConvMIL specific data augmentation. 3 sparse maps are
represented in the first column, 1 per line. For each sparse map, 300 512 pixel wide tiles
were randomly sampled from the tissue section of WSI, and were spatially represented
as coordinates within sparse maps. Each sparse map was spatially data augmented with
random flips, rotations, scaling per axis and is displayed in the second column. Color for
tiles is used for tracking purposes.
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