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Abstract

Digitized histopathology slides contain a wealth of information, only a fraction of which
is being used in clinical routine. Deep learning can extract subtle visual features from
digitized slides and thus can infer clinically relevant endpoints from raw image data. While
classification and regression methods are well established in this domain, end-to-end predic-
tion of patient survival still remains a comparably novel approach. To account for different
follow-up times and censored data, previous approaches have largely used discretized sur-
vival data. Here, we demonstrate and validate EE-Surv, a powerful yet algorithmically
simple method to predict survival directly from whole slide images which we validate in
colorectal and gastric cancer, two clinically relevant and markedly different tumor types.
We experimentally show that this method yields a highly significant prediction of sur-
vival and enables explainability of predictions. This method is publicly available under an
open-source license and can be applied to any type of disease.

Keywords: Deep Learning, Digitized Histopathology Images, Convolutional Neural Net-
work, Survival Prediction, Transfer Learning

1. Introduction

For virtually every patient with a malignant tumor, histopathological tissue slides stained
with hematoxylin and eosin (H&E) are available. These slides are increasingly being dig-
itized in clinical routine, yielding gigapixel images which are accessible for computational
analysis. In recent years, deep learning applications on histopathology images resulted in a
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high performance in classical tasks such as tissue segmentation, object detection and quality
control. In addition deep learning has been used for more challenging “end-to-end” tasks
such as disease subtyping and mutation detection [4, 7, 8, 12, 14]. In particular, end-to-end
prognostication of survival is of high clinical relevance in treatment selection and follow-up
of cancer patients. Unlike for simple classification tasks, there is no standard method avail-
able for prediction of survival from histopathology images. Some previous studies have used
deep learning for tissue segmentation and using the results to fit survival prediction mod-
els [16]; other studies have used deep dearning to predict discretized survival from whole
slide images [24] and some recent studies have aimed at specific tumor types (colorectal
cancer [25], brain cancer [18], liver cancer [22] and mesothelioma [5]). Additionally, most
of the proposed algorithms for survival prediction from histopathological images utilise a
high number of preprocessing steps, like clustering the extracted tiles [28, 26], generating
regions of interest (ROI) [1]. However, to date, these approaches remain insular and there
is no validated consensus method for survival prediction from raw histology slides. In any
survival analysis, there are two main quantities. The survival function S(t), which is the
probability of survival beyond time t and the hazard function h(t) which is the probability
of an event occurring in the time interval. Cox Proportional Hazards model consists of two
main parts; the baseline hazard function and the risk function. So in general, while the
survival function describes the absence of an interested event, the hazard function indicates
the occurrence of the event. In this study, we aimed to develop and validate a simple,
versatile and efficient method for survival prediction directly from histopathology images.
We present EE-Surv and applied this method to colorectal and gastric cancer, two clinically
relevant but markedly distinct tumor types. We demonstrate a high end-to-end prediction
performance as well as explainability and algorithmic efficiency of our method which can
be applied to any tumor type.

2. Methods
2.1. Data Sets

In this study, we used digitized diagnostic whole slide images of two cohorts (N=413 patients
with colorectal cancer, TCGA-CRC [11] and N=362 patients with gastric cancer, TCGA-
STAD [2]) from The Cancer Genome Atlas Program (TCGA). Suppl. Figure 1 shows the
summary of these data sets. We excluded all patients for which survival data or slides were
not available. Each patient in these cohorts has a record of time and an event indicator ( 0 ;
1, in the following time, 0 : event did not happen, 1: event happened). In both cohorts, we
evaluate the predictive performance of EE-Surve by three-fold patient-level cross-validation,
ensuring that no data from a patient in the training set was ever part of the test set in the
same cross-validation run.

2.2. EE-Surv

EE-Surv is an End-To-End deep learning model to predict survival directly from histopathol-
ogy whole slide images (WSIs) with a minimum amount of pre- and post processing. Figure
1 illustrates the general workflow of EE-Surv. The pre- and post-processing are a standard
approach in the field which has been previously used in classification problems [5], thereby
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keeping EE-Surv as simple as possible. All source codes for preprocessing are available
at https://github.com/KatherLab/preProcessing and all source codes for EE-Surv are
available at https://github.com/KatherLab/Survival.

2.3. Image pre-processing

Due to the large size of WSIs, it has been discussed in previous studies that tessellation
of WSIs and generating smaller tiles is a useful initial step [15, 23, 20]. In our EE-Surv
model the input is normalised; smaller tiles of 512512 % 3 are resized to the shape required
by our model for training. Tiles are extracted from the whole slides without using any
manual annotations. Normalization of the extracted tiles reduces the possibility of having
bias among patients from different studies and/or slide-readers [13, 9]. Specifically, we used
the Macenko method [19] which converts the RGB color vector to its corresponding optical
density (OD) values and uses these values to extract the metrics of the stain vector and the
saturation of the stains [17].

2.4. Model training

Transfer learning is an established solution to save computational time and power and its
high performance in histopathology has been shown in various studies [4]. Here, we used
a ResNet-50 [10] which is pre-trained on ImageNet [6]. The original output layer has been
replaced by a layer with single output and the linear activation function. Since the number
of extracted tiles per slide varies among patients, we randomly selected 250 tiles per WSI
and assigned the following time and event of the WSI to each tile. We split each cohort
into 3 parts and using k-fold cross validation techniques evaluated the performance of the
designed model [3]. The most important part of training EE-Surv is the Cox proportional
Hazard loss function which we used to optimize the parameters of network while training.
The fully connected layer of the modified network results in a risk prediction for each input
image. These risks are used in Cox proportional hazards layer to minimize the negative
partial log likelihood and via backpropagation optimize the model weights, biases and the
convolutional kernels [18, 27].

2.5. Post-processing and statistical analysis

After training the model and generating the risk scores for each tile, we aggregate the
scores (calculate average of the scores) to generate one risk score per patient. For statistical
analysis, we use patient-level scores and split the patients at the median, generating a high-
risk and a low-risk group. We use Kaplan-Meier curves to visualize survival differences,
test statistical significance with a log-rank test and with a univariate and multivariate Cox
proportional hazard model, the latter including tumor stage and age. In addition, we used
the tile-wise prediction scores to generate slide-level heatmaps and selected high scoring
tiles for a reader study.
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3. Results

3.1. Deep learning can predict survival in colorectal cancer

We trained EE-Surv to predict survival in a multicentric cohort of colorectal cancer patients
(TCGA-CRC) in a cross-validated way. When stratifying the patient prediction scores at
the median, we found that high predicted risk scores corresponded to a poor survival (Figure
2) with a highly statistically significant difference between high and low scoring patients
(log rank p-value = 0.0021). In addition, we fitted a univariate Cox proportional hazard
model, demonstrating a hazard ratio (HR) of 0.5038 (0.3227, 0.7864) for prediction of death
by patients with a low predicted risk score. This was again highly significant (p = 0.00255,
Suppl. Table 1(a)). To rule out confounding factors we combined the EE-Surv based
predicted risk score with two powerful conventional risk factors, patient age and tumor
stage. Again, this multivariable model showed that EE-Surv can significantly predict risk
of death (p = 0.00265, Suppl. Table 1(b)).

3.2. Deep learning can predict survival in gastric cancer

Compared to colorectal cancer, gastric cancer can have a much more heterogeneous histo-
logical appearance. We assessed the prognostic performance of EE-Surv in a large cohort
of gastric cancer patients (TCGA-STAD). Again, we found that a high predicted risk score
was associated with a significantly shorter survival (log rank p-value = 0.0074), which was
reproducible in a univariate Cox proportional hazard model (HR for death in low-scoring
patients of 0.635 [0.4541, 0.888], p = 0.00795, Suppl. Table 2(a)). In a multivariable Cox
proportional hazard model that included EE-Surv score, age and tumor stage, the risk pre-
diction by age and stage were highly significant (p < 0.001 for either, Suppl. Table 2(b)).
However, while EE-Surv reached a HR of 0.7342 (0.5093, 1.058), this effect was found not
to be significant (p = 0.0978) in multivariable analysis.

4. Discussion

In this study, we presented and evaluated EE-Surv, an algorithmically simple yet powerful
end-to-end risk prediction tool for digital pathology. Unlike some previous methods, EE-
Surv does not require dichotomization of outcomes and includes censored patients in training
by using a Cox proportional hazard model loss function. Although we use a resnet50
model as the backbone of EE-Surv, other deep convolutional neural networks and other
architectures such as vision transformers can be used with EE-Surv. All of our source codes
are publicly available, allowing reproduction and extension of our methods. Crucially, EE-
Surv enables the selection of highly predictive tiles which are associated with survival. In
this study, we manually reviewed highly predictive tiles as selected by EE-Surv, confirming
the presence of plausible patterns. We showed that without being explicitly trained on
image features with known association to risk of death (Suppl. Figure 2), EE-Surv learns
to detect these features.Future studies should focus on external validation of our findings
in additional patient cohorts and other clinical scenarios. Furthermore, before real-world
use of our methods, clinical trials evaluating the usage and the clinical consequences of
our proposed algorithm are required. From a technical standpoint, different aggregation
methods for pooling tile-level predictions on the level of patients could conceivably further
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boost performance, although simple aggregation functions have been shown to perform
on par with highly parametrized models [21]. Finally, the necessity of tesselating gigapixel
images in histopathology into smaller image tiles is due to the memory limitation of graphics
processing unit (GPU) memory. The broad availability of GPU devices with enough memory
to train directly on WSI could eliminate this preprocessing step in the future.
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Figure 1: General Workflow of EE-Surv. The simple workflow of EE-Surv starts with tes-
sellation of the whole slide images into smaller tiles. Then the extracted tiles are
normalized to have the same color distribution to remove the possible biases. The
modified pretrained ResNet-50 is used to train the network and this will result in
a risk score per tile. The average risk score over the all tiles selected per patient,
is used as a final risk score for each patient.
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Figure 2: General Kaplan Meier plots for a) TCGA-CRC b) TCGA-STAD. We calculated
the median of generated risk scores for each cohort and based on the median

value, splitted the patients into higher and lower risk groups.
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Supplementary Figures

Main Data Set Used for Training Used for Cox Maodel

TCGA-CRC

© TceasTAD
— — e

140

L R T

1 2 3 4 Cancer Stage
Cancer Stage

= e
o N &
o o o
BoH

o o N

o © o

(= -]
o o
Number of Patients
B o
o o

Number of Patients
B
=]

¥
o

(=]

o

Survival Probability
Survival Probability

Time (months) 7 Time (months)

Suppl. Figure 1: Data set Description. a) shows the number of the patients in the original
data set, number of patients, who has all information required for the
training (tiles, time and event of interest) and finally number of patients
which contain all required data for multivariate cox regression (age and
stage of cancer). b) Histogram of the final data set, for the stage of cancer.
c¢) shows the general survival plot for both cohorts.
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Suppl. Figure 2:

Explainability of the EE-Surv. a) An example heatmap from the TCGA-
CRC cohort. In this heatmap, the red color correlated with the high
risk score value and the blue color shows the low risk score value. b)
Shows the 5 tiles with the highest prediction score for death from the 5
highest scoring patients(rows) for TCGA-CRC. c) Shows the 5 tiles with
the highest prediction score for death from the 5 highest scoring patients
(rows) for TCGA-STAD.
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5. Supplementary Tables

(a)

Coxph (formula = Surv(time, event) groups

Coeff Exp (Coeff) | Lower 0.95 | Upper 0.95 | z Pr(> |z])

(GLI"S;EE) -0.6856 | 0.5038 0.3227 0.7864 -3.017 | 0.00255™
Concordance = 0.599 (se = 0.029 )
Likelihood ratio test = 9.41, p = 0.002
(b)
coxph(formula = Surv(time, event) age + stage + groups)

Coeff Exp (Coeff) | Lower 0.95 | Upper 0.95 | z Pr(> |z|)
Age 0.0414 1.0423 1.0226 1.0625 4.252 2.12¢~05"**
Stage 0.8405 2.3176 1.7821 3.0141 6.270 3.62¢7 107
gi(:‘:;ff) -0.7093 0.4919 0.3098 0.7813 -3.005 0.00265**

Concordance = 0.745 (se = 0.035)

Likelihood ratio test = 62.27, p = 2e-13

Suppl. Table 1: Cox Proportional hazards model using a) Univariate Cox Regression b)
Multivariate Cox Regression using age, stage of cancer and the groups

calculated based on the generated scores for TCGA-CRC cohort.
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(a)

Coxph (formula = Surv(time, event) groups

Coeff Exp (Coeff) | Lower 0.95 | Upper 0.95 | z Pr(> |z|)

g;lvlf;) 04541 | 0.635 0.4541 0.888 2654 | 0.00795**
Concordance = 0.558 (se = 0.023)
Likelihood ratio test = 7.16, p = 0.007
(b)
coxph(formula = Surv(time, event) age + stage -+ groups)

Coeff Exp (Coeff) | Lower 0.95 | Upper 0.95 | z Pr(> |z|)
Age 0.0339 1.0345 1.0156 1.054 3.600 3.18e~ 04"
Stage 0.6586 1.9321 1.5074 2.476 5.201 1.986- 7"
&r(‘;vlvff’) -0.3089 | 0.7342 0.5093 1.058 1.656 | 0.097811"

Concordance = 0.668 (se = 0.027 )

Likelihood ratio test = 42.12 , p = 4e-09

Suppl. Table 2: Cox Proportional hazards model using a) Univariate Cox Regression b)
Multivariate Cox Regression using age, stage of cancer and the groups
calculated based on the generated scores for TCGA-STAD cohort.
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