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1 Considerations on CoRL2020 and the Pandemic
During the few months before the CoRL2020 deadline, we did not have a reach to our real robots,
due to the lockdown that followed the pandemic outbreak. This implied that we could not carry on
our experiments (in particular the data collection) on the real robotic platform. We were still able to
collect that data in simulation, using Mujoco, a simulated Shadow hand, and a set of diverse objects,
both synthetic (generated by us) and externally available realistic objects (i.e. the YCB objects).

Despite the limitations on the data collection, the main contributions of our paper still hold: the
proposed approach is mainly related to perception, and it is agnostic of the specific data source
that is used for training. All the networks and architecture used for self-supervision can be easily
adapted, if needed, to real world data. Our approach can be applied to data coming from a real robot
setup, provided that tactile data (of some form) can be collected, to learn touch features.

2 Dataset generation
Props Props are generated in Mujoco as entities of four different shapes: cube, sphere, cylin-
der, ellipsoid. Each shape is generated by setting either a height and/or a radius, sampling from
{0.030, 0.035, 0.040, 0.045, 0.050, 0.055}cm.

To generate deformable versions of these props we construct composite entities starting from simple
shapes: each soft prop is composed of several elements or sub-body, called capsules. Each capsule
is built by defining its dimensions (length and radius), and a soft prop is then characterized by the
number of capsules that will form the prop itself: the more capsules, the denser the prop; the bigger
the capsules, the bigger the prop.

As explained in the paper, we generated two sets of data including disjoint sets of
props. We chose random disjoint subsets and fixed the selections for repeatability.
The two sets are composed as follows, where each number correspond to an object’s
class: Set1 = [29, 4, 26, 30, 32, 37, 34, 40, 7, 10, 11, 31, 33, 27, 47, 2, 46, 18, 15, 28, 22, 16, 41, 20],
Set2 = [42, 8, 13, 25, 5, 17, 35, 14, 38, 1, 12, 43, 24, 6, 23, 36, 21, 19, 9, 39, 45, 3, 0, 44]. Each ob-
ject’s class is computed from a triplet of codes identifying the shape, the size and the rigidity (binary)
of each prop. There are on average 1700 instances for each class.

YCB objects YCB objects are imported as entities in Mujoco from the open source dataset. Each
object is imported with its standard size and it is proportionate to the Shadow hand model. We chose
a set of ten objects, following [1]: cracker box, sugar box, mustard bottle, potted meat can, banana,
pitcher base, bleach cleanser, mug, power drill, scissors.

In order to simplify the data acquisition, each object appears in a reachable position for the hand. In
this way, the MPO agent can more easily learn a policy that maximizes the contact points between
the fingertips and the different objects, without spending too much time to find the object in the
scene first. We explicitly chose to keep the setup as simple as possible, to keep the focus of this
work on the touch representations learned, rather than on the policy used to explore the space.
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We vary the rotation of each object around its vertical axis, and the tilt of the object from the vertical
axis. Rotations are sampled from the set of {0,±30,±60,±90,±120,±150} degree angles. Tilt
angles are sampled from the set {0,±15,±30} degrees.

Two disjoint subsets are generated also for YCB objects to perform the evaluation on unseen objects.
The two sets are as follows: Set1 = [banana, bleach, cracker box, driller, mug], Set2 = [mustard
bottle, pitcher, potted meat, scissors, sugar box]. There are on average 10000 instances of each
objects, presented with different orientations.

3 Tactile sensors

In simulation, each fingertip has a spatial touch sensor attached, with a spatial resolution of 4 × 4
and three channels: one for normal force and two for tangential forces (in Newtons). Thus, each
fingertip has 16 channels that can collide with other objects, and that can sense 3D forces during
such contacts. We simplify this by taking the absolute value and then summing across the spatial
dimensions, to obtain a single 3D force vector for each fingertip.

On our real Shadow Hand, fingertips are equipped with BioTac R© sensors [2, 3], which provide a
more complex array of tactile signals. Despite the difference with the simulated sensors, readings
from the pressure channel of each tactile sensor can be acquired and then normalized to match
the range of the simulated tactile sensors. In this way, it is possible to directly compare results in
simulation and on the real robot, without having to change the parameters of the task or learning
algorithm. On the other hand, these adjustments are not necessary, since our proposed learning
methods are totally agnostic and independent of the input dimensions and characteristics. Hence,
new representations can be easily trained from real world robot data.

4 Network and training implementation details

We train the self-supervised cross-modal representation for 300 000 iterations with a batch size of
16 where each sample has 200 time steps. We finetuned the model for few-shot classification for
50 000 steps. We perform gradient-descent on GPU with an Adam optimizer using a fixed learning
rate of 0.001 for CM-GEN and 0.0001 for all the other networks. The learning rate for few-shot
finetuning is fixed to 0.0001 for all feature types.

Vision encoding: 64× 64× 3 frames are processed through a convolutional encoder with residual
connections; we use 4 residual blocks with [8, 16, 32, 64] channels and ReLU activations. Each
residual block has 3 conv2D layers with 3 × 3 filters and 1 × 1 stride, followed by 3 × 3 pooling
layers with 2 × 2 stride. The resulting features are flattened and downsized to 128 dimensions
through a linear layer.

Touch and proprioception encoding: to process the concatenation of proprioception and touch we
use a four-layers MLP with [256, 256, 256, 128] channels respectively, and ReLUs nonlinearities.
The MLP embeddings are processed by an LSTM with size 128, and skip-connections.

L3-net: On top of the encoded multimodal pair 2-layer MLP with 256 channels (hidden layer size)
and a linear layer for binary classification output are used. ReLU activations are applied in the MLP.

CMDC: Similar to L3-net, 2-layer MLP with 256 channels with ReLU activations are utilized here.
A final linear layer computes the logits for the multi-class classification. The predicted distance
intervals are {[0], [1], [2− 3], [4− 5], [6− 200]}.
TCN and CMC: n-pairs implementation doesn’t require any extra layers.

CM-CPC and CM-CPC-H: For each time step a linear layer with embedding size of 128 is used to
predict future (or history). CM-CPC is trained to predict 20 steps ahead. CM-CPC-H is trained to
predict 20 steps into the future, the current frame, and 20 steps back into the history.

CM-GEN: The decoder network has 5 conv2D layers with [256, 128, 64, 32, 16] channels and 3× 3
filters. A 2× 2 bilinear resize operator followed by leaky ReLU is applied after each convolutional
layer. Finally a single conv2D layer with 3× 3 filter is utilized to generate the 64× 64× 3 image.

Few-shot classifier: This classifier is only utilized in few-shot finetuning stage. It is a 3-layers MLP,
with size [256, 256, c], where c is the number of classes for the relevant classification task.
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5 Supplementary experimental results

We report here other visualizations of our experimental results. The following tables show the
proposed methodology performance on few-shot classification of unseen objects. Table 1 and 2
show results of few-shot object classification on unseen objects that belong to the same dataset.
Table 3 shows the results of few-shot classification across the two datasets. Learned features are
trained on one of the sets, and evaluated on few-shot classification on the other set, using 1, 3, 5, 10,
25, 50 or 100 examples for each object’s class.

Fig. 1 reports all few-shot classification experiments on pose estimation on the YCB objects dataset.
Table 4 reports all accuracy scores for all objects and all methods for the 10-shots experiment.

Table 1: Evaluation on unseen objects - Props classification, from Set2 to Set1, and from Set2 to
Set1. The mean across these results is also reported. Darker colors indicate better scores.

Table 2: Evaluation on unseen objects - YCB objects classification, from Set1 to Set2, and from
Set2 to Set1. The mean across these results is also reported. Darker colors indicate better scores.

Table 3: Evaluation on unseen objects across datasets, from Props to YCB objects, and from YCB
objects to Props. he mean across these results is also reported. Darker colors indicate better scores.
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Table 4: Evaluation on 10-shots pose estimation of all ten YCB objects. Darker colors indicate
better scores.

Figure 1: Pose estimation accuracy of YCB objects for {1, 3, 5, 10, 25, 50, 100}-shot classification.
Larger area is better.

1-shot 3-shot

5-shot 10-shot

25-shot 100-shot
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