Proceedings of Machine Learning Research 153:202-216, 2021 Proceedings of the 15th ICGI

Query Learning Algorithm for Symbolic Weighted Finite

Automata
Kaito Suzuki KAITO_SUZUKIQSHINO.ECEL. TOHOKU.AC.JP
Diptarama Hendrian DIPTARAMA@TOHOKU.AC.JP
Ryo Yoshinaka RYOSHINAKA@QTOHOKU.AC.JP
Ayumi Shinohara AYUMIS@QTOHOKU.AC.JP

Graduate School of Information Sciences, Tohoku University, Sendai, Japan

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

We propose a query learning algorithm for an extension of weighted finite automata (WFAs),
named symbolic weighted finite automata (SWFAs), which can handle strings over infinite
alphabets more efficiently. Based on the idea of symbolic finite automata, SWFAs gen-
eralize WFAs by allowing transitions to be functions from a possibly infinite alphabet to
weights. Our algorithm can learn SWFAs if functions in transitions are also learnable by
queries. We also investigate minimization and equivalence checking for SWFAs.
Keywords: query learning, exact concept learning, weighted finite automata, symbolic
finite automata

1. Introduction

In this paper, we present a query learning algorithm for symbolic weighted finite automata
(SWFAs), along with algorithms for minimizing and checking equivalence of them. SWFAs
can be seen as the unification of two notable extensions of classical finite automata (FAs),
weighted finite automata (WFAs) and symbolic finite automata (SFAs). WFAs are finite
automata to represent formal power series on a semiring, which are functions from a set
of strings over a finite alphabet to a semiring. SFAs are an extension of FAs, where each
transition edge is labeled with a predicate, which represents a possibly infinite subset of
the alphabet compactly. By combining them, SWFAs can represent power series as with
WFAs while dealing with a large or infinite alphabet efficiently as well as SFAs. Transition
edges of an SWFA are labeled by functions from the alphabet to a semiring instead of pred-
icates. Because of their generality, SWFAs have been considered in several recent studies.
Herrmann and Vogler (2016) introduced SWFAs with data storage and investigated their
expressiveness for some types of data storage. Alur et al. (2017) considered SWFAs with
nesting operations and parallel execution, and proposed an efficient evaluation algorithm for
them. Jaksic et al. (2018a,b); Waga (2019) used SWFAs to develop underlying algorithms
for runtime verification of cyber-physical systems. However, the learning of SWFAs has not
been studied yet.

The problem of learning FAs has been studied for a long time. Angluin (1987) proposed
the first algorithm L, which learns deterministic FAs with an oracle, called a minimally
adequate teacher (MAT), which answers membership queries (MQs) and equivalence queries
(EQs) from the learner. Bergadano and Varricchio (1996) extended L* for learning WFAs

© 2021 K. Suzuki, D. Hendrian, R. Yoshinaka & A. Shinohara.

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

and Bisht et al. (2006) improved the complexity of the algorithm. The learning of SFAs
under the MAT model has also been studied. Drews and D’Antoni (2017) showed that
deterministic SFAs can be learned if partitions of X are inferable from finite examples.
Argyros and D’Antoni (2018) proposed a more powerful algorithm that learns deterministic
SFAs under the assumption that predicates on transition edges are also MAT learnable.
This work was extended for learning non-deterministic SFAs by Chubachi et al. (2019).

This paper proposes a query learning algorithm for SWFAs by combining Bisht et al.
and Argyros and D’Antoni. We prove that SWFAs are exactly learnable under the MAT
model if functions on transition edges are also MAT learnable. The query complexity of our
algorithm is polynomial in the minimal number of states to represent the target power series,
the length of the longest counterexample against EQs, and the number of queries required to
learn functions on transition edges. We also show that minimization and equivalence check-
ing for SWFAs can be achieved in polynomial time in the number of states of given SWFAs.

After preparing required mathematical notions in Section 2, we give a formal definition
and important properties of SWFAs in Section 3. Our proposed query learning algorithm is
given in Section 4, whose correctness and query complexity are shown in Section 5. Section 6
concludes this paper.

2. Preliminaries

2.1. Notation

The set of all strings over an alphabet X is denoted by ¥*. The empty string is denoted by e.
The set of all functions from X to Y is denoted by YX.

We consider possibly infinite matrices throughout this paper. A matrix over Y whose
rows and columns are indexed by sets P and S, respectively, is identified with a function
from P x S to Y. The element of a matrix A € Y*5 indexed by p € P and s € S is
denoted by Alp, s]. A vector may be seen as a special case of a matrix whose column index
set is a singleton S = {s}, where we often drop s and simply refer to the element A[p, s]
by A[p] regarding A € Y. A pair (P, S’) of subsets P’ C P and S’ C S is called a mask
and the (P’,S")-sub-block of A € Y*9 with row index set P’ and column index set S’
is denoted as A(pr gy € Y% Particularly when P’ = P and S is a singleton set {s},
the matrix A(p () is often denoted by A[-, s] and is called the column vector of A indexed
by s € S. The row vector of A indexed by p € P is symmetrically defined and denoted
by A[p,-]. The transpose of A € YP*9 denoted by AT € Y*F exchanges the rows and
columns of A. We often express a matrix as a table ordering the row and column indices
arbitrarily.

When Y is a semiring, the multiplication AB € YP*9 of two matrices A € Y*? and
B € Y9*5 is defined by (AB)[p, s] = >_qgeq Alp.q|Blg, s] for all p € P and s € S provided
that Q is finite. When Y is a field, the rank of A € Y7*5 is defined in the usual way and
denoted by rank(A). A mask (P, 5') is called a basis if rank(A(pr gy) = rank(A). The basis
(P',8") is minimal if |P'| = |S'| = rank(A). A mask (P, S’) is non-singular when A p: g

is non-singular. That is, there is a unique matrix called the inverse A(_Pl/) of A(pr gy such

that A(P/,S/)A_l

(P8 = I, where [is an identity matrix. A minimal basis is always non-

203

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

singular since a matrix A(ps gy is non-singular if and only if [P'| = |S'| = rank(A(pr g)).
However, the reverse is not always true.

2.2. Learning under Minimally Adequate Teacher

Query learning is an active learning model, where an algorithm actively asks queries to
the teacher and constructs a representation of the target function from a domain X to
a codomain Y using the teacher’s answers. The most famous setting of query learning
is learning under a minimally adequate teacher (MAT), proposed by Angluin (1987). In
this model, the MAT can answer two types of queries concerning an unknown function f,:
membership queries (MQs) and equivalence queries (EQs). For an MQ, the MAT receives
w € X and returns f.(w). For an EQ, the MAT receives a hypothesis H that represents a
function fy € YX. The MAT returns “yes” if f, = fz. Otherwise, the MAT returns ¢ € X
such that f.(c) # fu(c) as a counterexample.

3. Symbolic Weighted Finite Automata

Symbolic weighted finite automata (SWFAs) combine symbolic finite automata (SFAs) and
weighted finite automata (WFAs) to represent formal power series over a possibly infinite
alphabet. SFAs are defined over a Boolean algebra, which has predicates (or guards), finite
descriptions to represent possibly infinite subsets of the alphabet. SFAs use predicates
as labels of transition edges. Likewise, SWFAs have edges labeled by finitely describable
functions, called guard functions, in a fixed class G from the alphabet 3 to a semiring S.

Definition 1 (Symbolic Weighted Finite Automata, SWFAs) A symbolic weighted
finite automaton (SWFA) A over G is a tuple (G, Q,a, 3,A), where G C S* is a class of
guard functions from ¥ to S, Q is a finite set of states, a € S is a vector of initial weights,
B € S@ is a vector of final weights, and A € G*? is a transition relation. For any = € 3, the
transition relation for z is represented by a matrix A, € S®*Q, ie., A.q,¢'] = Alg, ¢'](x)
for all (¢,q¢') € Q. A, can be extended for strings w € ¥* as Ay, = Ay Ay, ... Ay, where
w = x1To...x; with x; € X. The formal power series f4 represented by A is defined by
fa(w) = aTA,B for all w € ¥* and called G-recognizable. We allow a special SWFA with
no states, which represents the zero constant series, called the zero SWFA.

If S is the two-element Boolean algebra, SWFAs coincide with SFAs. For the class gvla of
all guard functions from a finite alphabet ¥ to a semiring S, SWFAs over GV are exactly
WFASs, except that usually the transition relations of WFAs are described by enumeration.
That is, the transition relation of a WFA is |X| matrices in SY*<.

Figure 1 shows toy examples of a WFA and an SWFA representing the same power
series f: {—1,0,1}* — Q, where Q is the set of rational numbers. The SWFA is readily
applicable for extending the alphabet to the integer set with no change.

3.1. Basic Properties of SWFAs

In the following of this paper, we assume the codomain of the power series in concern is
a field F. This restriction has brought fruitful positive results on WFAs including their
efficient learnability (Bergadano and Varricchio, 1996; Bisht et al., 2006). In addition, we

204

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

z €Y | weight

rz € X | weight

>
0 1 T 1
q1/1/2 N i »q2/1/0 q1/1/2 2 »q2/1/0
2 /
T €X | weight z €Y | weight x €% | weight x €Y | weight
-1 1 -1 -1 T x? T 2z +1
0 0 ' 0 1
1 1 Q3/O/1 1 3 Q3/0/1
(a) WFA (b) SWFA

Figure 1: (a) An example WFA on ¥ = {—1,0,1}. Each circle represents a state ¢, in
which the triple shows ¢, a[g|, and B[q]. The table labeling each edge from ¢ to
q shows A.[q, '] for each x € . (b) An example SWFA representing the same
power series as (a). The label on each edge from ¢ to ¢’ is the assigned guard
function from ¥ to Q. We omit edges whose functions always return zero.

assume that any guard function class G is closed under linear combination throughout this
paper. This assumption may be seen as the weighted counterpart of the Boolean closure
property of predicates in the context of SFAs. Under the assumption, we observe that some
basic properties of WFAs over fields also hold for SWFAs.

Definition 2 The matrix Hy associated to a formal power series f: ¥* — F is an infinite
matrix with rows and columns indexed by strings in ¥* such that Hy¢[p, s| = f(ps) for all
p,s € X*.

Fliess’s theorem (1974) can be seen as a weighted counterpart of the Myhill-Nerode
theorem (Nerode, 1958), which also holds for SWFAs.

Theorem 3 The rank of the matriz Hy associated to f: X* — F is finite if and only if f
is G-recognizable for some G. In that case, there exists an SWFA A over G with rank(Hf)
states representing f and no SWFA with fewer states can represent f.

The proof in Balle and Mohri (2015) works regardless of whether X is finite or infinite.

Hereafter, we fix the G-recognizable power series f in concern and we often drop the
subscript f from H; if there is no risk of confusion.

When (P, S) is a minimal basis of H and the alphabet is finite, one can construct a
WFA representing f from Hpg) and H(p, g) for all z € X, where H(p, g)[p, s] = f(pws)
for all p € P and s € S (Bisht et al., 2006). We will establish the parallel result on SWFAs
in Proposition 5.

Definition 4 For a non-singular mask (P, S), the SWFA based on (P, S) is defined to
be A(P,S) = (ngaanBaA)v where Q =P, al = H({e},S)H&%S)a 18 = H(P,{e}) and A, =

Hp,sHpg forallz €%,

205

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

One may wonder whether functions in A defined above belong to G. We will show it is
indeed the case in the following propositions.

Proposition 5 Let (P,S) be a minimal basis. Then, Apg) correctly represents f. More-
over, all guard functions in A of Aps) are in G.

Proof By Theorem 3, there is an SWFA A’ = (G,Q’, o/, 3, A’) with |P| (= |9]) states
representing f, i.e., f(w) = a'TA! @' for all w € ¥*. Define matrices Up € FI'*?" and Vg €
F@*S by Uplp, -] = a’TA; for all p € P and Vg[-, s] = AL3 for all s € S, respectively. Then
we have Hpg) = UpVs and Hp, s) = UpA!l Vg for z € X. Since Hps) is non-singular,
Up and Vg are also non-singular. From the definition of Apg), Hip,s) = AzHpg) =
A,UpVg. Thus, Al = U;leUp. This fact can be extended to strings w € ¥* as Al =
UJZIAU,UP. Since H{q,5) = a'TVg and Hp () = UpB', we have T =a'Up and B =
UJSI,B. Therefore, f(w) = «'TA,, B = aTUPUEIAwUPUEI,B = a'A,B. Additionally,
Al = U;lAIUp shows that every guard function in A can be represented by a linear
transformation of those in A’. Thus, all guard functions in A are in G. |

Proposition 6 guarantees that the guard functions in the transition relation constructed
in Definition 4 indeed belong to G, by extending the property shown in Proposition 5 to
the case that (P, S) is a non-singular mask.

Proposition 6 If (P,S) is non-singular, all guard functions of Aps) are in G.

Proof Let (P’,S’) be a minimal basis that expands (P, S), i.e., P’ 2 P and S’ O S. For
the SWFA Apr gy = (G,Q,/, 8, A’), we have for all 2 € X,

A?BH(P’,S’) == H(P’,.’E,S’) 5

which can be rewritten as

/ /
A/(RP);E A/(P,ﬁ)w Hpps) Hipg | _ [Hews) Hepus
Nop, Bop,)\ Hes Hes Hipos) Hipes)

where P = P'\ P and § = 5’ \ S. Thus A/RP)QEH(P,S) + A7

((Pvﬁ)mH(ﬁ’S) = H(P,:v,S) and

—1 ~1
A, = H(P,w,S)H(P,S) - (A,(P,P)ZH(P,S) + A,(Pvp)xH(P’S))H(P’S)

for all z € ¥. Therefore, all guard functions in A can be represented by a linear transfor-
mation of those of A’. That is, they belong to G. |

3.2. Minimization and Equivalence Checking for SWFAs

In this subsection, we consider minimization and equivalence checking for SWFAs. Mini-
mization (also called standardization) is the problem to minimize the number of states of a
given SWFA. Equivalence checking is the problem to check whether given two SWFAs are
equivalent or not. Our algorithms assume that G admits a zero-checking procedure.

206

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Up triangular matrix
1 2 2 1 1 2 2 1 1 2 2 1
0o 1 3 0 —) 0 1 3 0 —> 0 1 3 0
91 92 g3 g4 0 g2—2g1 g3—2g91 ga— 0 0 g3—2g1—3(92—291) 94—

Up[p,-|A

Figure 2: Gaussian elimination dealing with guard functions

Assumption 7 For a given g € G, there is a procedure that decides whether g(x) =0 for
all x € . If not, it finds a witness x € X such that g(x) # 0.

This requirement corresponds to the emptiness checking in the context of SFAs (Ar-
gyros and D’Antoni, 2018; Chubachi et al., 2019). Under the assumption, we present
a minimization procedure for SWFAs inspired by Schiitzenberger’s algorithm for WFAs
(1961). The minimization procedure for SWFAs consists of two phases: First we obtain a
minimal basis (P, S) for a given SWFA; Second, we construct a minimized SWFA based on
(P, S) and H(P,S)-

Suppose an SWFA A = (G,Q, a, 3, A) representing f4 is given as an input. The first
phase is shown in Algorithm 1. For two sets P and S of strings, define matrices Up € FF*@
and Vg € F@*5 by Uplp,] = aTAp for all p € P and Vg[-,s] = A3 for all s € S,
respectively. When Up and Vg are bases of Uy+ and Vy«, respectively, (P, .S) will be a basis
of Hy,, since Us+Vs+ = Hy,. Starting from P = {e}, our procedure constructs such P by
expanding P and increasing the rank of Up in the loop of Line 2. Of course when |P| = |Q],
we cannot expand P any further. Otherwise, to execute Line 4, we first consider the matrix
[UL (Up[p,-]A)T]T, which concatenates Up and Up|p,-]A, for each p € P. As shown in
the example in Figure 2, Gaussian elimination process dealing with guard functions makes
the first |P| 4 1 columns of the concatenated matrix a triangular matrix, which includes a
guard function only at the lower-right corner. Then, we check whether the guard function
g at the lower-right corner of the triangular matrix always outputs 0 or not. If g(xz) = 0
for all z € 3, the finding in Line 4 fails. If not, we can get x € ¥ such that g(z) # 0 by
Assumption 7. It means we have succeeded in finding p € P and = € 3 such that Up|p, |A,
is linearly independent of Up. Then, we extend P by px. We construct S and Vg with the
desired property by the symmetric procedure. The obtained mask (P, S) is a basis, but not
necessarily minimal. By removing elements of P and S as much as possible while keeping
the rank of the matrix Hp g), we obtain a minimal basis.

The second phase constructs a minimized SWFA from the minimal basis. By Propo-
sition 5, it is enough to show that the SWFA A(pg) in Definition 4 is computablp. The
only possible difficulty is in the construction of the transition relation, named A™" here,

for which AMn = Hp,, S)H(_}}’ s) must hold for all z € ¥. One can compute the matrix

Hipas) € GP*S defined by Hpa,s) [p,s] = aTApAASB. We then have Hpa g [p, s](z) =

Hp,zs) forall z € ¥, p € P and s € S. Thus, AMin — H(P7A7S)H(_Pl75) has the desired

property1 .

1. The matrices A and Hp a,s) are over G, which is not necessarily a semiring, whereas the others are
over F. We can naturally apply the definition of multiplication of two matrices over a semiring to these
cases, since G is closed under linear combination.

207

© 00 N O ok W N

e e
N B O

= e
[SL B N

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Algorithm 1: Computing a minimal basis from an SWFA

Input: an SWFA A = (G,Q, a, 3, A)

Output: a minimal basis (P, 5)

initialize P < {e}, S < {€};

repeat

Uplp,] < aTA, for all p € P;

find p € P and = € ¥ such that Up|p,-]A, is linearly independent of Up;
P+ PU{pz};

until finding in Line 4 fails;

repeat

V[, s] <= AgB for all s € S,

find s € S and = € ¥ such that A,Vg]-, s] is linearly independent of Vg;
S« SuU{xs};

until finding in Line 9 fails;

Hpgs) < UpVs;

P < P\ P’ for a maximal P’ C P such that rank(Hpg)) = rank(Hp\ pr 5));
S < 8\ 8 for a maximal S’ C S such that rank(Hpg)) = rank(H(p g\ s);
return (P, S);

Theorem 8 Let L and E be the time complexities of computing a linear combination and
zero-checking of a guard function, respectively. One can minimize an arbitrary SWFA in
O(|Q|(L|QJ? + E)) time, where |Q| is the number of states of the SWFA.

Proof The finding at Lines 4 and 9 of Algorithm 1 involves Gaussian elimination dealing
with guard functions and a zero-checking on G. The former requires O(L|Q|?) and the latter
requires F time. Thus, the entire procedure requires O(|Q|(L|Q|? + E)) time since these
lines are executed at most |@Q| times. [|

When G is 6" we have L, E € O(|2|) and the time complexity O(|%||Q|?) coincides with
that of Schiitzenberger’s algorithm for minimizing WFAs (1961).
The equivalence checking between SWFAs is immediately derived.

Corollary 9 One can decide whether two SWFAs A; and As represent the same power
series in O((|Qa, | + Q) (L(1Qa, | + 1Qu,])? + E)) time.

Proof One can construct in linear time the “difference SWFA” A with |Q 4, |+|Q 4, | states
that represents fa4 = fa, — fa,- Two SWFAs A; and Ay are equivalent if and only if the
basis of Hy, obtained by Algorithm 1 is empty. [|

Again, when G is G%f, the time complexity becomes O(|Z|(|Q4,| + |@4,])?), which co-
incides with the time complexity of Cortes et al.’s algorithm for equivalence checking for
WFAs (2007). Note that if A; and Ay are not equivalent, there must be strings p € P and
s € S of the obtained minimal basis (P, S) such that Hp g)[p, s|] # 0, for which ps witnesses
the difference of f4, and f4,. This gives a counterexample to an EQ on SWFAs.

208

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

4. Learning Algorithm for Symbolic Weighted Finite Automata

This section presents a learning algorithm under the MAT model for G-recognizable power
series using SWFAs when G is closed under linear combination and satisfies Assumption 7.
We extend the existing learning algorithm for WFAs (Bisht et al., 2006) by embedding the
key idea of the SFA learning algorithm of Argyros and D’Antoni (2018).

Argyros and D’Antoni’s algorithm takes as input a MAT learning algorithm A for pred-
icates and uses instances A% to infer a predicate on the edge between two states ¢ and ¢'.
The learning algorithm plays the role of a MAT for those instances and answers queries from
them. Through communication with predicate learners, the learning algorithm constructs
its hypothesis. Following this idea, our algorithm also assumes that the class of guard func-
tions G admits a MAT learner A and uses its instances to construct the transition relation
of a hypothesis SWFA.

The pseudo-code of our algorithm is shown in Algorithms 2-5. Now, our learning target
power series is f,: ¥* — F. Our goal is to find a minimal basis (P,S) of Hy, and to
construct the SWFA A(pg), for which f4, ¢ = f« holds by Proposition 5. We call a triple
T = (P,S,H(ps)) an observation table.

Algorithm 2 shows the overall picture of our algorithm. First, our algorithm asks an
EQ to the MAT on the zero SWFA. If the MAT answers with a counterexample ¢ € ¥*, our
algorithm initializes the observation table 7 with P = {c} and S = {e¢}. We will expand
the mask to obtain a minimal basis, while keeping it non-singular.

To build a hypothesis, we follow the construction shown in Definition 4. Among compo-
nents of A(pg) = (G, Q, @, B, A), one can easily construct Q) = P, a' = H({E}’S)H(*P{S), and
B = H(p(q), since any finite sub-block of Hy, can be obtained by an appropriate number
of MQs. The remaining issue is how to compute A. We can get A, = H P@’S)H(_Pl’) for
concrete x € X using MQs, but computing guard functions in A is not trivial. For this
sake, we need the help of the guard function learner A. Algorithm 3 initializes all entries of
the transition relation A* of our hypothesis % by null and creates |Q|? instances A(%7) of
A for all state pairs (q,¢') € Q?, and then calls Algorithm 4.

To bring A™ closer to A, Algorithm 4 lets A@9) learn Alg,¢] by pretending to be a
MAT for them, though we do not know the exact goal A itself. Proposition 6 guarantees
that A is capable of learning Alg,¢'] € G. To avoid confusion between queries by A(%:4)
to our algorithm and those by our algorithm to the MAT, we use G-EQs and G-MQs for
equivalence queries and membership queries from the instances of A, respectively. The
answer to a G-MQ on z € ¥ from A@9) is just A,[g,¢']. Since Ay[g,] = Hg12.9H,
we require only |S| extra MQs given the observation table.

When A@9) asks a G-EQ on a hypothesis guard function g, our algorithm takes ¢ as the
(q,¢")-element of A7, To answer the G-EQ from A24) | we need to find a counterexample.
This will be done by processing the MAT’s answer to our EQ by Algorithm 5. Until then,
answering the G-EQ of A(%4) is suspended.

After building a hypothesis SWFA, our algorithm asks an EQ to the MAT on the
hypothesis. When the MAT replies with a counterexample ¢, Algorithm 5 starts a procedure
to fix the hypothesis. Following Rivest and Schapire (1993) and Bisht et al. (2006), our
algorithm finds a prefix ux of ¢, with v € ¥* and x € ¥, that satisfies the following

1
(P,5)

209

© o N, TR W N

[= I B N L

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

equations, where S = {s1, s2,..., sk} (Line 1 of Algorithm 5):

(MQ(’LLSl), MQ(USQ), ey MQ(usk)) = aTAgH(RS) N (1)
(MQ(uxsy1), MQ(uxs2), ..., MQ(uxsy)) # aTAuHIH(p,S) , (2)

where MQ(w) is just fi(w), but we emphasize the learner obtains the values by MQs. Such
a prefix uz always exists and can be found by binary search about the length |c| of ¢, which
requires O(|S|log |¢|) MQs. This suggests that the transition relation A* of our current
hypothesis has something wrong with the transition by x.

So, our algorithm computes A, = H(p,x,S)H(_éS) and compares it with A, If A, and

A7 disagree on the (g, ¢')-element, we give z to A29) ag a counterexample to the G-EQ from
A7) With the counterexample, our algorithm calls Algorithm 4 and restarts learning the
guard function of Alg, ¢'] using Aed) 1If A = A,, this means that the target power series
f« requires an SWFA with more states (Lemma 10). By processing the counterexample
properly, our algorithm expands the observation table 7~ (Lines 9-11 of Algorithm 5). Now,
our algorithm decides to reconstruct the hypothesis from scratch because the goal hypothesis
A(p,s) has changed. Along with this, all A instances are discarded.

Algorithm 2: SWFA Learning Algorithm

Input: a MAT learning algorithm A
Output: an SWFA representing the target power series
P+ {c} and S < {€} for the counterexample ¢ to the EQ on the zero SWFA;
initialize the observation table 7 = (P, S,H(pg)) using the MQ on ¢;
H < null;
loop

if H is null then H <« build_hypothesis(7); // Algorithm 3

ask an EQ on H;

if the MAT replies with a counterexample ¢ then

‘ H, T <+ process_counterexample(H, T, ¢); // Algorithm 5
else return H and terminate;

Algorithm 3: build_hypothesis

Input: 7 = (P, S, Hpg))
Output: a hypothesis SWFA
Q< Pial « HygsHpg); B Hip),

H <+ (G,Q, a, B, A™), where AM[q, ¢'] = null for all (¢,¢") € Q%
for (¢,¢') € Q% do

initialize the algorithm A(¢7);

H + update_transition(q, ¢/, A9 1, T); // Algorithm /
return #H;

210

o N OO Uk W N =

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Algorithm 4: update_transition

Input: ¢,¢,A@?) 3} = (G,Q,a,3,A™), T = (P, S, Hps))
Output: the updated hypothesis
repeat

A24) asks a G-MQ on z € X;

get H{g).2,5)[¢, -] by MQs on gzs for all s € S;

AJ}[QJ] A H({q},z,S)H(_;S);

answer the G-MQ by A;[q, ¢'];
until A®?) agks a G-EQ on a hypothesis guard function g;
Aflg, q'] + g;
return (G, Q, o, B, A™);

Algorithm 5: process_counterexample
Input: H = (G,Q,a,3,A™), T = (P, S, Hpys)), a counterexample c
Output: a hypothesis SWFA (or null if 7 is updated), the observation table
find a prefix uz of ¢, where u € ¥*, x € ¥, that satisfies Egs. (1) and (2);
get Hp, 5) by MQs on pzs for all p € P and s € S;

1 .
A H(P,x,S)H(Rs)v

for (¢,¢') € Q% do
if Aylg,q'] # A¥[q,¢] then
give z to Al%9) ag a counterexample to the G-EQ;
H «—update_transition(q, ¢, A@d) T); // Algorithm 4
if H is updated then return H, T;

© O g o A W N =

= e
N = O

P+ PU{u};

S" <« SU{ws;} where s; € S satisfies MQ(uas;) # o' AY.Hp g)[si];
expand Hpg) to Hpr g);

return null, (P, S", Hpr g1));

5. Correctness and Query Complexity

The following lemma ensures that our mask (P, S) is always kept non-singular and rank(Hp g))
is strictly increasing at Line 11 of Algorithm 5.

Lemma 10 (Bisht et al. (2006)) Suppose ux with u € ¥* and x € ¥ satisfies Eqs. (1)
and (2). If A¥ = A,, then rank(H(p ¢y) = rank(H(pg)) + 1 for P’ = P U {u} and
S =5 U{wsi}, where MQ(uxs;) # o AT H p o[si].

The proof by Bisht et al. requires no change for the case of SWFAs, since the lemma involves
only finitely many elements of 3.

By Lemma 10, our mask will finally converge to a minimal basis (P,.S), for which we
have f Aps) = f+. Then each A®4) will finally output the correct guard function.

In order to evaluate the query complexity of our algorithm, we first discuss how many
G-MQs and G-EQs each MAT learner A@d) may make. We write the class of all linear

211

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

combinations of guard functions in the transition relation A of a minimal SWFA represent-
ing fi by

gr. = Z agyAlg, q'] | agy € F for each (¢,q') € Q*y CgG.
(9,9")€Q?
Note that the class Gy, does not depend on the choice of the minimal SWFA, since any
minimal SWFAs representing the same power series can be converted into each other by
linear transformation as shown in the proof of Proposition 5. Let M and £ be the number
of G-MQs and G-EQs that A makes to learn guard functions in Gy, , respectively.

Theorem 11 Letn = rank(Hy,) and m be the length of the longest counterexample to EQs
returned by the MAT. Then, the proposed algorithm returns an SWFA representing fi using
A after raising at most O(n3€) EQs and O(n* M + n*E(n + logm)) MQs.

Proof At first, we claim that the observation table 7 = (P, S, Hp g)) cannot be extended
beyond n times. The table is extended on Line 11 of Algorithm 5 only when the condition
of Lemma 10 is satisfied, and hence the rank of the sub-block Hpg) is definitely increased.
By H(pg) < rank(Hy,) = n, the claim holds.

Whenever a counterexample to an EQ is given, we call Algorithm 5, except the first
EQ for initializing 7. To count the number of EQs, we count how many times Algorithm 5
is performed. Each call of Algorithm 5 ends in either Line 8 or Line 12. The former
happens only when a counterexample to an instance of A is found, which can happen at
most |Q|?€ < n?& times without extending 7. The latter extends 7 and it is performed at
most n times as shown before. Therefore, the algorithm builds a correct hypothesis after
making at most O(n3€) EQs.

After the first MQ for initializing 7, our algorithm makes MQs for (a) constructing o at
Line 1 of Algorithm 3, (b) answering G-MQs from instances of A at Line 3 of Algorithm 4,
(c) finding a critical prefix of a counterexample at Line 1 of Algorithm 5, (d) answering
G-EQs by instances of A at Line 2 of Algorithm 5. Note that computing 8 = Hp () at
Line 1 of Algorithm 3 requires no extra MQs, since H(p () is a sub-block of H(pgy. We
can construct Hps gy at Line 11 of Algorithm 5 using results of MQs in (c) and (d).

The total number of MQs for (a) is at most n. Concerning (b), we make |S| MQs for
each G-MQ from an instance of A. Thus, the number of MQs per an instance of A is at most
O(nM) by |S| < n. Each time T is extended, we make |Q|?> < n? new instances of A, which
happens n times. Thus, O(n* M) MQs are asked for (b) till the algorithm outputs a correct
SWFA. For (c), we use O(nlogm) MQs to find a critical prefix of each counterexample with
binary search in Algorithm 5, which is called at most O(n3€) times, as we have argued for
counting EQs. Thus, in total O(n*€logm) MQs are asked for (c). The total number of
MQs for (d) is at most O(n°E), since we need |P| x |S| < n? MQs for constructing Hp,.s)
each time Algorithm 5 is called. All in all, the total number of MQs that our algorithm
makes is at most O(n*M + n*&(n + logm)). [|

We compare the query complexities of representative algorithms to learn relevant classes
of automata under the MAT model in Table 12. The query complexity of the proposed

2. M and € denote the numbers of G-MQs and G-EQs that predicate learners make in Argyros and
D’Antoni’s algorithm, respectively.

212

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Table 1: Query complexities of representative learning algorithms for relevant automata

’ ‘ Deterministic ‘ Weighted ‘
FA EQ O(n) O(n)
MQ O(n?|2| + nlogm) O(n?*Z] + n?logm)
(Rivest and Schapire, 1993) (Bisht et al., 2006)
SFA EQ 0(n3€) 0(n3¢€)
MQ O(n* M + n*Elogm) O(n*M + nE(n + logm))
(Argyros and D’Antoni, 2018) (Ours)

algorithm is higher than that of the one for learning WFAs with respect to n, which is
also true when extending FA to SFA. The important point is that the if M and £ do not
depend on alphabet size |X|, the number of MQs of our algorithm also does not depend |3
unlike that of WFAs. Therefore, our algorithm is suitable for learning power series over an
extremely large or infinite alphabet.

We show some examples of G and guard function learners.

Example 1 Guard functions in G¥ can be learned by || G-MQs and a G-EQ, ie.,
M = |¥| and £ = 1. When learning SWFAs over GV with such a guard function learner,
Algorithm 5 never calls Algorithm 4, because guard learners always raise the correct hy-
potheses. Then the number of required EQs goes down to O(n). Still our algorithm makes
more MQs than the WFA learner, where the same MQs are repeatedly made many times.
We can remove such redundant MQs using memorization and then the number of MQs of
our algorithm becomes as few as the WFA learner’s.

Example 2 Let GP°Y be the class of all polynomials over the set of rational numbers Q.
Then a trivial learning strategy for groly requires kK + 1 G-MQs and k£ + 1 G-EQs for a
target polynomial of degree k. Suppose that an SWFA representing f, has guard functions
of polynomials of degree at most k. Since the maximum degree of polynomials does not
increase by linear transformation, we have M =& =k + 1.

Example 3 Let GYV be the class of all guard functions ¢g: Z — F which partition the
integer set Z into finitely many intervals and assign an entity of F to each interval. That
is, g € G1V has a partition number k € N, k borders ay,as,...,a; € Z and k + 1 values
bo, b1,ba, ..., b € F such that a1 < ag < -+ < a and g(z) = b; if a; < z < a;41, assuming
that ag = —oo and agy1 = oo. Since identifying each border a; requires O(log |a;|) G-MQs,
to learn g requires in total O(Zf:1 log|a;|) G-MQs and O(k) G-EQs. Let A be the set of all
borders a; used in any of guard functions of an SWFA representing the target power series.
Then a linear combination of those guard functions may produce the function h € G4V with
borders A. Such h requires M = O(]A|loga) G-MQs and € = O(|A|) G-EQs to learn, where
a=max{|a| |a€ A}.

Example 4 We have shown that if G C F> is learnable, the class G’ of G-recognizable
series is also learnable. Here, we can consider SWFAs over G/ C F*", whose edges have
SWFAs over G as representations of guard functions. In this way, one can recursively
obtain learnable classes of more complex formal power series.

213

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

6. Conclusion and Future Work

We considered symbolic weighted finite automata (SWFAs), which unify SFAs and WFAs.
SWFAs can deal with a possibly infinite alphabet efficiently taking advantage of the struc-
ture of the alphabet. We proposed a new query learning algorithm for SWFAs by combining
the ones for SFAs and WFAs with a correctness proof and an upper bound for the number
of queries. We also confirmed that the minimization and equivalence checking for SWFAs
can be achieved efficiently, as with WFAs under some additional assumptions.

There are many potential applications of our algorithm as extensions of applications
using WFAs. An interesting application is extracting an SWFA from a recurrent neural
network (RNN) to obtain a faster surrogate. A prior work (Okudono et al., 2020) uses
WFAs for this purpose, but the range of applicable RNNs is limited by the size of the
alphabet. SWFAs and our algorithm are suitable to extract automata from RNNs over a
large or infinite alphabet. It is useful since RNNs with real-valued inputs are very common
for time series analysis. Such an application requires some devices for our algorithm to work
well with numerical errors. Even though our algorithm is in the context of exact concept
learning, we observed that using a small threshold to relax the equivalence checking actually
worked to some extent in small preliminary experiments. However, some additional devices
would be required for larger experiments.

As shown in some recent papers (Bollig et al., 2009; Chubachi et al., 2019), the theoretical
worst-case query complexity and the empirical performance are often different. Evaluating
the practical efficiency of the proposed algorithm by experiments is left for future work. We
estimate that depending on G and A, our algorithm can share a counterexample for multiple
G-EQs in Line 6 of Algorithm 5, which will improve the practical performance well.

Learning WFAs has been studied under different learning schemes, including spectral
learning (see Balle and Mohri, 2015, and references therein). Learning SWFAs under those
learning schemes is a hopeful research direction. On the other hand, there is a number
of automata models related to or extending SWFAs, including those mentioned in the
introduction of this paper. Designing algorithms for learning them will also be an interesting
future work.

Acknowledgments

The work is supported in part by JSPS KAKENHI Grant Numbers 18H04091, 18 K11449,
18K11150, 20H05703, and 21K11745.

References

Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Automata-based stream pro-
cessing. In 44th International Colloguium on Automata, Languages, and Programming,
ICALP 2017, volume 80 of LIPIcs, pages 112:1-112:15, 2017.

Dana Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87-106, 1987.

George Argyros and Loris D’Antoni. The learnability of symbolic automata. In 30th Inter-
national Conference on Computer Aided Verification, CAV 2018, pages 427445, 2018.

214

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Borja Balle and Mehryar Mohri. Learning weighted automata. In 6th International Con-
ference on Algebraic Informatics, CAI 2015, pages 1-21, 2015.

Francesco Bergadano and Stefano Varricchio. Learning behaviors of automata from multi-
plicity and equivalence queries. SIAM Journal on Computing, 25(6):1268-1280, 1996.

Laurence Bisht, Nader H. Bshouty, and Hanna Mazzawi. On optimal learning algorithms
for multiplicity automata. In 19th Annual Conference on Learning Theory, COLT 2006,
pages 184-198, 2006.

Benedikt Bollig, Peter Habermehl, Carsten Kern, and Martin Leucker. Angluin-style learn-
ing of NFA. In Proceedings of the 21st International Joint Conference on Artificial Intel-
ligence, IJCAI 2009, pages 1004-1009, 2009.

Kaizaburo Chubachi, Diptarama Hendrian, Ryo Yoshinaka, and Ayumi Shinohara. Query
learning algorithm for residual symbolic finite automata. In Proceedings Tenth Inter-
national Symposium on Games, Automata, Logics, and Formal Verification, GandALF
2019, pages 140-153, 2019.

Corinna Cortes, Mehryar Mohri, and Ashish Rastogi. Lp distance and equivalence of prob-
abilistic automata. International Journal of Foundations of Computer Science, 18(4):
761-779, 2007.

Samuel Drews and Loris D’Antoni. Learning symbolic automata. In 23rd International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS
2017, pages 173-189, 2017.

Michel Fliess. Matrices de Hankel. Journal de Mathématiques Pures et Appliquées, 53,
1974.

Luisa Herrmann and Heiko Vogler. Weighted symbolic automata with data storage. In 20th
International Conference on Developments in Language Theory , DLT 2016, volume 9840
of Lecture Notes in Computer Science, pages 203-215, 2016.

Stefan Jaksic, Ezio Bartocci, Radu Grosu, Thang Nguyen, and Dejan Nickovic. Quantitative
monitoring of STL with edit distance. Formal Methods in System Design, 53(1):83-112,
2018a.

Stefan Jaksic, Ezio Bartocci, Radu Grosu, and Dejan Nickovic. An algebraic framework
for runtime verification. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2233-2243, 2018b.

Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9:541-544, 1958.

Takamasa Okudono, Masaki Waga, Taro Sekiyama, and Ichiro Hasuo. Weighted automata
extraction from recurrent neural networks via regression on state spaces. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI 2020, pages 5306-5314, 2020.

215

QUERY LEARNING ALGORITHM FOR SYMBOLIC WEIGHTED FINITE AUTOMATA

Ronald L. Rivest and Robert E. Schapire. Inference of finite automata using homing se-
quences. Information and Computation, 103(2):299-347, 1993.

Marcel Paul Schiitzenberger. On the definition of a family of automata. Information and
Control, 4(2-3):245-270, 1961.

Masaki Waga. Online quantitative timed pattern matching with semiring-valued weighted
automata. In 17th International Conference on Formal Modeling and Analysis of Timed
Systems, FORMATS 2019, volume 11750 of Lecture Notes in Computer Science, pages
3-22, 2019.

216

	Introduction
	Preliminaries
	Notation
	Learning under Minimally Adequate Teacher

	Symbolic Weighted Finite Automata
	Basic Properties of SWFAs
	Minimization and Equivalence Checking for SWFAs

	Learning Algorithm for Symbolic Weighted Finite Automata
	Correctness and Query Complexity
	Conclusion and Future Work

