Proceedings of Machine Learning Research 153:81-91, 2021 Proceedings of the 15th ICGI

Grammar Interpretations and Learning TSL Online

Dakotah Lambert DAKOTAHLAMBERT@ACM.ORG
Department of Linguistics

Institute for Advanced Computational Science

Stony Brook University

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

The tier-based strictly local (TSL) languages are a class of formal languages that, alongside
the strictly piecewise class, effectively model some long-distance generalizations in natural
language (Heinz et al., 2011). Two learning algorithms for TSL already exist: one by Jardine
and Heinz (2016) and one by Jardine and McMullin (2017). The former is limited in that
it cannot learn all TSL patterns. The latter is restricted to a batch-learning environment.
We present a general algorithm without these limitations. In particular we show that
TSL is efficiently learnable online via reinterpretation of a strictly local grammar, and
this mechanism generalizes to the strictly piecewise class as well. However we note that
the known TSL learning algorithms are not robust in the face of interaction with other
constraints, posing a challenge for the utility of this class for phonotactics.

Keywords: computational linguistics, formal language theory, online learning, tier-based
strictly local languages

1. Introduction

The strictly local (SL) class known from McNaughton and Papert (1971) cannot account
for long-distance dependencies. Meanwhile the strictly piecewise (SP) class of Rogers et al.
(2010, see also Haines, 1969) can account for long-distance dependencies but cannot handle
local constraints. In 2011, Heinz et al. presented a new tier-based strictly local (TSL)
class of stringsets, generalizing SL to account for both local phenomena and certain types
of long-distance phenomena by relativizing adjacency over a subset of the alphabet. Much
like the traditional SL and SP classes, TSL is parameterized by the width k of the factors
to which a learner or acceptor attends. But there is another parameter. If the subset T
of the alphabet over which adjacency is relativized is known a priori, then the input data
can be preprocessed by deleting unnecessary symbols and the grammar inferred by any
of a number of strictly local learning algorithms, such as that of Garcia et al. (1990) or
that of Heinz (2010b). But learning T from data alone has proven difficult, especially in a
bounded-memory setting.

Since the introduction of the TSL class, it has been characterized model-, language-, and
automata-theoretically by Lambert and Rogers (2020), extended to an even richer class by
De Santo and Graf (2019), and shown to be batch-learnable in the style of Gold (1967) by
Jardine and Heinz (2016) for k of 2 and by Jardine and McMullin (2017) for arbitrary k.
But despite all this progress, no general online learning algorithm has yet been produced,
leaving the TSL class behind in an area where several other subregular classes flourish.

© 2021 D. Lambert.

LAMBERT

That changes now. Here we discuss an online learning algorithm in the style of Heinz
(2010b) that essentially combines the approaches taken in the earlier batch-learning algo-
rithms with a novel representation of the TSL grammar to accommodate online learning.
This development removes one argument against TSL descriptions of phonological patterns,
namely that human learners likely do not operate in batch. (Batch learning requires perfect
awareness of all prior input, which is implausible at best for human learners.)

Section 2 discusses background material. Then section 3 summarizes prior literature
on discovering the set of salient symbols and provides space- and time-complexity analyses
of the algorithms. Section 4 introduces a structure that can be gathered while determining
salience, which provides sufficient information to recover the grammar of forbidden factors
while avoiding unbounded data storage. Then section 5 demonstrates a pointwise appli-
cation of the string extension learning algorithm of Heinz (2010b) to this problem, and
introduces a simplification that allows for reinterpretation of an SL grammar as a TSL one.

2. Preliminaries

This section contains background material fundamental to this work. Section 2.1 describes
notation that will be used throughout. Section 2.2 provides a brief overview of the SL
and TSL classes, with examples. Section 2.3 discusses the learning framework in use, and
section 2.4 details the family of learning algorithms that includes our result.

2.1. Notation

Throughout this paper we will use some basic concepts from formal language theory. Given
some alphabet X, we use ¥* to refer to the set of all possible finite strings over that alphabet.

A function from a domain D to a codomain D’ is written f: D — D’. The set of natural
numbers is written N. As a special case reflecting traditional notation for sequences, the
value of a function f: N — D’ at n is written f,,.

2.2. (Tier-Based) Strict Locality

In general, a factor is some substructure of a word that is connected in some sense. For
the sL languages as defined by McNaughton and Papert (1971), these substructures are
simply adjacent sequences of symbols. For example, there are seven factors in the string

13 M. W 43

abc , “a”) “b”, “c”, “ab”, “bc”, and “abc” itself. Notably, “ac” is not a factor under
this interpretation. The size of a factor is the length of the sequence. An SL language is
characterized by a set of forbidden factors, containing all and only those strings in which
no forbidden factor occurs. If the largest factor in the set of forbidden factors is of size k,
then the language is k-SL.

One example of an SL language over the alphabet ¥ = {a, b, c,d} is that in which the
forbidden factors are “aa” and “bb”. This requires that “a” and “b” alternate within blocks
of these two symbols, so “abaca” and “abada” are valid words but “aaca” is not.

One can prove that a language is not k-SL by using what is known as Suffix Substitution
Closure: finding two valid words w = w,rws and v = v,zv,s that share a common factor
of length k — 1 where w,zvs is not a valid word (Rogers and Pullum, 2011, see also De Luca
and Restivo, 1980). If such w and v can be found for any k, then the language is not SL.

82

GRAMMAR INTERPRETATIONS AND LEARNING TSL ONLINE

Consider a slight modification to this example language: not only are “aa” and “bb”
forbidden, but also “ada”, “bdb”, “adda”, “bddb”, etc. Essentially, “d” is invisible to
the constraint. Now w = ad*~'b and v = bd¥~'a are both valid words, but after suffix-
substitution we have “ad®~'a” which is not valid. Thus this pattern is not sL. The TSL
class seeks to capture exactly the constraints that would be sL if only some category of
symbols could be ignored. It is defined by applying an SL grammar not to the words
themselves but to their projection to a tier alphabet T (Heinz et al., 2011). In this case,
T = {a,b,c} and the grammar is the same as before. See Lambert and Rogers (2020) for
further information on the TSL class, including how to decide membership. Note that while
the previous discussion involved forbidden factors, the finiteness of both the factor width
and alphabet size allows an equivalent description in terms of permitted factors.

2.3. Our Learning Problem

Gold (1967) introduces a number of learning paradigms, but here we will focus on the case
when a language is learned in the limit from distribution-free positive data. We further
restrict ourselves to consider only online learning, where the induction function takes as
arguments not an entire input set, but only a single input item along with a previously
proposed grammar. This section formalizes these notions.

Let L C ¥* be a stringset and let Ls be L with an adjoined element © that represents
the lack of any string. A text for L is a total, surjective function t: N — Lg, an infinite
sequence of strings drawn from L that contains each string at least once, and may at some
points present no data. Note that for any non-empty stringset, there are infinitely many
possible distinct texts. The addition of ® is a deviation from the original work by Gold but
without it no text exists for the empty stringset (Osherson et al., 1986). For a given text
t, let 7, represent the sequence (to,t1,...,t,), i.e. the initial segment of ¢ of length n + 1.
We denote the class of texts for Lg by T and the class of initial segments thereof by T.

A grammar is some representation of a mechanism by which the membership of a string
in a stringset may be decided. Let G be a set of possible grammars, and let £: G — P(¥X*)
be a function that transforms a grammar into its extension, i.e. the set of all strings
that it accepts. Two grammars G; and Gg are equivalent (written G; = Gg) iff they are
extensionally equal, i.e. £(G1) = L(G2). A batch learner is then a total function ¢: T — G.
In words, a batch learner is an algorithm that takes as input an initial segment of a text
and outputs a guess at the correct grammar.

Given a text t and a learner ¢, we say that ¢ converges on t iff there is some point
after which its guess never changes. Formally, that means there exists some 7 € N and
some grammar G such that for all j > ¢, it holds that w(fj) = G. If given any text ¢ for
a stringset L, ¢ converges on t to a grammar G such that £(G) = L, then we say that ¢
identifies L in the limit. For any class of stringsets . C P(X*), we say that ¢ identifies L
in the limit iff it identifies L in the limit for all L € L.

An online learner differs from a batch learner only in how it assumes the data is
presented. For a batch learner, the function is of type ¢: T — G as discussed. On
the other hand, an online learner, sometimes called an incremental learner, is of type
¢: G x Lg — G, taking as input a previous guess and a single data point (Jain et al., 2007).

83

LAMBERT

Ideally the online learner can take more input over time in an efficient way while maintaining
a bounded information store.

2.4. String Extension Learning

Heinz (2010b) described a general algorithm for learning (among others) stringsets that can
be described by a set of permitted factors of length bounded above by k. For this case
G = P(XF). In general, given a function f: ¥* — P(XF) that maps a string to the set of
factors it contains, one can define a batch learner ¢; as follows

0 ifi=0,t =0
pr(ti) = (l .

or(ti-1) if i #0,t; =0

wf(fi_l) U f(t;) otherwise.

Effectively one begins with a guess of the empty grammar, and for each string provided, this
guess is updated to include all factors encountered in that string. A factor is attested iff
it appears in some string in the input. The online variant of this same function is identical
except that strings are provided one at a time.

G ifw=0
GU f(w) otherwise.

(,Of(G, w) < {

If the parameter k is fixed and known, this approach identifies the k-SL class in the limit.
If this holds and further the parameter T is fixed and known, this approach also identifies
k-TsLT in the limit. But in general when learning TSL generalizations, we want to be able
to account for the case where T is unknown.

3. Deciding Salience

When learning a k-TSLT stringset, if T is not provided then a learner must discover not
only the underlying SL constraints, but also the class of symbols that are salient for these
constraints. The model-theoretic view of k-TSLT given by Lambert and Rogers (2020) makes
this explicit in that the ordering relation never connects to a position containing a symbol
outside of T. There is no way to even talk about the other symbols. It follows then that
there is no way to restrict their occurrence, meaning they are freely insertable and deletable
in all strings. This property is what allows for the salience-finding algorithm of Jardine and
McMullin (2017). We discuss here a simplification of that original work.

Given the set of all factors under adjacency of width up to £ + 1 in the stringset, a
symbol z is freely insertable iff for each attested factor of width less than or equal to k,
inserting x at each possible point in turn results in an attested factor one symbol wider.
Similarly, z is freely deletable iff for each attested factor of width k + 1 that contains =,
the removal of each instance of x in turn results in an attested factor one symbol narrower.
This is a deviation from the original work in that Jardine and McMullin use only factors of
widths in the range k + 1, but the formulation here avoids making a special case of shorter
words. The symbols that are not both freely insertable and deletable are the salient ones.

84

GRAMMAR INTERPRETATIONS AND LEARNING TSL ONLINE

Figure 1: The tier-successor relation preserves linear order, but ignores certain symbols.
Importantly, if a symbol is included then it is not also ignored.

In summary, let Fj1 represent all attested factors of width k+1 or less and Fy, represent
all those of width k& or less, and define for each symbol ¢ € ¥ two sets: gg containing all
possible factors obtained by adding a single instance of o to Fi, and og containing all
possible factors obtained by deleting a single instance of ¢ from Fiy;. Then the set of
salient symbols is

T={o:09 € Fg+1 0r o5 L Fi}.

Thus to decide salience we can use exactly the SL string extension learner described in
section 2.4 and then post-process the resulting grammar by this algorithm.

In terms of time and space complexity, this portion of the algorithm is relatively efficient.
There are |Z]k possible factors of width k, and thus by summation there are %
possible factors of width up to k + 1. Supposing we store one bit per possible factor that
represents whether or not it is attested, we require O(|X|¥+1) bits. For each word, its factors
can be found in linear time, and each factor can be marked as attested in this set in time
logarithmic in the set’s size. That is, for an input of size n, the time complexity of gathering
factors to determine salience is O(nklog|X|).

4. The Substructures

Because Jardine and McMullin (2017) assume a batch-learning setting, they can simply learn
the set of salient symbols, then erase all other symbols from the input and (in a second pass)
analyze the result with any SL learner. Performing a second pass over the input requires
this input to be retained. This, of course, results in unbounded space requirements and is
therefore unsuitable for an online setting.

Fortunately, we can avoid this memorization of the input. A factor over relativized
adjacency is made up of a sequence of symbols that appear in order, but not necessarily
adjacently. These structures are, in general, referred to as subsequences (Heinz, 2010a;
Rogers et al., 2010). Figure 1 shows one possible factor of width 3 (“lkl”) in the string
“lokalis”. Crucially, when gathering subsequences, if a symbol is included in the subse-
quence, it can never later be excluded in that same subsequence. The factors “lki” and
“lks” then would be invalid in this example and excluded from consideration because they
both contain an “1” but go on to skip the second “1”.

There are (Z) subsequences of width k in a word of length n, where this notation repre-
sents a binomial coefficient. It follows that the time complexity to find them is O(n*/k!),
and the same holds when including smaller factors as well. If for each factor we store the
set of symbols that intervened, much like the paths of Jardine and Heinz (2016), then we
need to account for the time it takes to find the set associated with the particular factor

85

LAMBERT

Table 1: In gathering augmented subsequences for “cabacba”, many possibilities can be
ignored. The intervener-sets are shown simply as sorted strings to avoid nested
braces. Here, only the undecorated sets are maintained; those struck through were
invalid from the start, while those in light gray are subsumed.

Factor Intervener-Sets

aa {b,abe, hc}
ab {0, abe, c}
ac {ab,0}

ba {0, abe}

bb {ac}

bec {a}

ca {Q,ab,abe b}
cb {a,abe, O}

cc {ab}

and to mark the intervener-set as attested. These are additional multipliers of klog |X| and
||, respectively. So in total the time complexity is O(nk/(k — 1! |X]log |E\)

Formally, if w = 01...0, (0; € ¥) is a string and X = (i1,...,i;) (k < n) is an
increasing sequence of indices, then the subsequence indicated by X is Q = (oy,,...,04,)-
The intervener-set is 7 = {0 : i1 < j < it and j ¢ X }. The pair (Q,Z) is the augmented
subsequence indicated by X. A valid subsequence is one where no symbol appears in
both @) and Z. Henceforth, any mention of subsequences is restricted to the valid ones.

Unfortunately it appears that to store all possible augmented subsequences, we would
need space significantly beyond exponential in the size of the alphabet and factor width,
O(|2[F - 2. But it turns out that we can exploit some structure in order to store signifi-
cantly less. If a subsequence is in fact contiguous, that is it skips nothing, then no matter
how adjacency is relativized that subsequence will still be an attested factor as long as it
is valid. In fact a generalization holds: if a factor is attested with intervener-set Z, then
it can also be assumed to be attestable for any superset of Z for which it remains valid.
So one needs only maintain the smallest observed intervener-sets (partially-ordered by sub-
set). This means that the size of the set stored by any particular factor will never exceed
O((|§/|2)), which is still exponential in |X|, but many factors will store just a single set:
(. Given these interactions, we conjecture that the space complexity will often be sub-
exponential in the size of |X|. Table 1 shows the possible augmented subsequences for k = 2
in the string “cabacba” and indicates which subset of those actually need to be maintained.
However, we show in section 5 that we can avoid this source of space complexity entirely.

Once the set of salient symbols T is known, we can derive a standard k-TSLT grammar
from this set of augmented subsequences. A subsequence is a permitted factor iff all of the
symbols that comprise it are salient and it is attested for an intervener-set that is disjoint
with T. Otherwise it is a forbidden factor.

86

GRAMMAR INTERPRETATIONS AND LEARNING TSL ONLINE

5. Pointwise String Extension Learning

In sections 3 and 4, we discussed two different kinds of substructure that can be gathered
when learning k-TSL: the substrings of length bounded above by k + 1, which allow us to
determine which symbols are salient, and the augmented subsequences of length bounded
above by k, which allow us to select a set of permitted factors once salience has been

determined. If we let the hypothesis space G = P(XSFF1) x P(£Sk x P(X)), then we can
define a learner

<G5,G5> ifw=0

©((Gy, Gy),w) & {<Gz U f(w),r(GsUz(w))) otherwise,

where f: X* — P(35F+1) gathers all and only those substrings of w whose width is bounded
above by k + 1, 2: ¥* — P(X=F x P(X)) extracts the valid augmented subsequences of w
of width bounded above by k, and r: P(X5F x P(X)) — P(ESF x P(2)) restricts the set of
augmented subsequences to exclude any that are entailed by any other. This is effectively
two distinct string extension learners run in parallel, pointwise on the composite grammar.

The composite grammar can immediately be used as an acceptor without further pro-
cessing. We replace the cost of deciding salience by that of finding augmented subsequences.

L((Ge,Gs)) & {w: f(w) € Gy and r(Gs Uz(w)) C G}

In words, a string is accepted iff it has only permitted substrings and each of its valid
augmented subsequences is attested or entailed by something that is attested.

Depending on the parameters and the size of the input words, this strategy might be
a good one. In other situations, it might be better to actually determine which symbols
are salient. Recall that a text contains every valid word at least once, and that non-salient
symbols are freely deletable in all strings. Free deletability of non-salient symbols implies
that any subsequence that includes only salient symbols will, in some word of the text,
have only its salient interveners as interveners. Those subsequences that do not violate
constraints on the tier then must appear with an empty intervener set. In other words,
such subsequences will appear as factors in terms of adjacency and will be accounted for by
that component of the composite grammar.

Thus upon convergence the left component of this composite grammar, Gy, is sufficient
on its own to decide salience and to extract the grammar itself. G is unnecessary. Let
s: G — P(X) be the function that decides salience in the manner described in section 3,
and let mp(w) represent the projection to T of w as described by erasing symbols that are
not in T. Then we might have the following as an equivalent alternative definition

L(G) £ {w: (mye)(w) € G}

As an aside, the deletion-closure of the strictly piecewise class of stringsets (Rogers et al.,
2010, see also Haines, 1969) enables this same sort of learning of long-distance patterns using
only adjacent substrings.

Revisiting the time and space complexities mentioned previously, this optimized version
of the grammar can be learned in O(nk log|%|) time and O(|%|¥) space, exactly those values
that were assumed for only the salience-decision component of learning. The time complex-
ity is deferred to later, in interpreting the grammar as k-TSL rather than as (k + 1)-SL.

87

LAMBERT

Table 2: Some words of varying degrees of phonological plausibility. Each set is in the order
produced by a sliding 3-window. Factors already accounted for are in light gray.

akkalkak {akk, kka, kal, alk, lka, kak}
klark {kla, lar, ark}
kralk {kra,ral, alk}

karlakalra {kar, arl, rla, lak, aka, kal, alr, lra}
akrala {akr, kra,ral, ala}

aklara {akl, kla, lar, ara}
rakklarkka {rak, akk, kkl, kla, ark, rkk, kka}
arkralkla {ark,rkr, kra, ral;alk, 1kl kla}
laarlraalr {laa, aar, arl, rlr, Ira, raa, aal, alr}

kaaakkrka {kaa,aaa,aak, , kkr, krk, rka}
Klkkklrk {klk, lkk, kkk,], Klr, Ik}
krlkrkl {krl, rlk, lkr, krk, rkl}

alrla {alr, Irl, rla}

6. A Worked Example of the Final Simplified Approach

Consider a blocked-assimilation constraint such as the liquid dissimilation of Latin (Cser,
2010), where identical liquids may not occur in sequence unless a non-coronal intervenes.
This is equivalent to the example language described in section 2.2. We will assume for
now that no other constraint interacts with this. Assuming an alphabet consisting of two
distinct liquids (“1” and “r”), a non-coronal consonant (“k”), and a vowel (“a”), we discuss
a worked example that learns this constraint.

As this can be described by the 2-1s.UT} constraint whose forbidden factors are {ll, rr},
the text must contain all substrings of width 3 or less whose projection to {l,k,r} do
not contain these prohibited bigrams. The words shown in Table 2 would constitute a
representative sample for this constraint, though one may notice that some of the 3-factors
that need to appear are phonologically implausible.

If we assume that domain boundaries are explicit, then we would also need to encounter
any permitted factors that include these boundary symbols. For the sake of brevity such
an account has been omitted, but one could easily construct similarly implausible words to
account for this change.

7. Non-Strict Locality

These methods can be extended beyond just TSL. Lambert (2021) demonstrates that the
locally testable (McNaughton and Papert, 1971) and locally threshold testable (Beauquier
and Pin, 1989) stringsets admit T-relativized variants with the same properties as TSLT:

e A string appears iff its projection to T appears, and

e All symbols that are not in T are freely insertable and deletable.

88

GRAMMAR INTERPRETATIONS AND LEARNING TSL ONLINE

Space Requirements for Learning

1.2
1010 | ////' Factors
10101‘0 + /_///l Sets
i - - 2-Saturating Multisets
10100‘8 T //:’ -——-3-Saturating Multisets
/
10100‘6 + ,//./ R :
///
1010044 1 /////
o0 |
! .
/_//' | Factor Width_

5 10 15

Figure 2: While gathering factors requires space exponential in terms of factor width, the
requirements are doubly exponential for any of the larger structures we might
employ. Here the space requirements are shown for just a binary alphabet.

Locally threshold testable stringsets are characterized by not just the factors in each word
but the saturating multisets of factors in the words. A saturating multiset is a variant
of the multiset in which the counts associated with elements are capped to some maximum
value, t. Multisets that saturate at a count of ¢ = 1 are simply sets, and these are the
characterization of locally testable.

Due to the two properties of relativization, if we collect the saturating multisets of
substrings of width bounded above by k along with the individual factors of width k+ 1, we
can still use the algorithm described in section 3 to determine salience and again treat the
non-relativized grammar in a relativized way. The issue is not finding a learning algorithm;
instead it is the space complexity. Figure 2 shows the amount of space required for factors,
O(|Z[%), compared to that of saturating multisets, O((¢ + 1)|E‘k). Of course, ¥ and k are
fixed parameters for any given run of the algorithm, and thus constant, but this complexity
should not be ignored.

8. Conclusions

We proposed an online learning algorithm for the tier-based strictly k-local class of stringsets
that operates in linear time, O(nklog|%|), and constant space, O(|S[¥+1), in terms of the
size of the input. This space complexity is exponential in the factor width. We demonstrated
that the grammar representation given by a strictly k-local learner can also be interpreted as
a strictly k-piecewise or tier-based strictly (k—1)-local grammar. The difference comes later,
in the interpretation of the grammar. The algorithms presented here can be incorporated
into any sufficiently general implementation of string extension learners (Heinz, 2010b).
Efficient learning of interacting constraints remains an open question. Generally the
set of symbols salient to a pattern as a whole will be some superset of those sets for its

89

LAMBERT

constraints. If a stringset L consists of a TSL component with an additional constraint
imposed that restricts the set of substrings that may occur, then L will not in general be
learnable by the known TSL-learning algorithms including those presented here. If multiple
TSL constraints over different tier alphabets interact, the learned stringset will consider the
set of salient symbols to be the union of all such alphabets, but other sorts of interactions
have yet to be explored. Notably, SL is equivalent to TSL™ by definition, and any SP
constraint imposes a tier of salience including the symbols that it mentions, so many cases
of interaction will result in a TSL> (that is, SL) approximation of the target stringset.

This lack of robustness in the face of constraint interaction poses a challenge for the
learnability of TSL constraints within a more complex structure in a natural setting. If the
solution to this problem is learning a new grammar for each possible tier alphabet, rather
than trying to determine which such alphabet to consider, then we must bear in mind the
additional space requirements, exponential in the size of the alphabet. Such an approach
yields the multiple-tier-based strictly local languages of De Santo and Graf (2019).

References

Danitle Beauquier and Jean-Eric Pin. Factors of words. In Giorgio Ausiello, Mariangiola
Dezani-Ciancaglini, and Simonetta Ronchi Della Rocca, editors, Automata, Languages
and Programming: 16th International Colloquium, volume 372 of Lecture Notes in Com-
puter Science, pages 63—79. Springer Berlin / Heidelberg, 1989. doi: 10.1007/BFb0035752.

Andris Cser. The -alis/-aris allomorphy revisited. In Franz Rainer, Wolfgang Dressler,
Dieter Kastovsky, and Hans Christian Luschiitzky, editors, Variation and Change in
Morphology: Selected Papers from the 13th International Morphology Meeting, pages 33—
52. John Benjamins Publishing Company, Vienna, Austria, 2010. doi: 10.1075/cilt.310.
02cse.

Aldo De Luca and Antonio Restivo. A characterization of strictly locally testable languages
and its application to subsemigroups of a free semigroup. Information and Control, 44
(3):300-319, March 1980. doi: 10.1016/S0019-9958(80)90180-1.

Aniello De Santo and Thomas Graf. Structure sensitive tier projection: Applications and
formal properties. In Raffaella Bernardi, Greg Kobele, and Sylvain Pogodalla, editors,
Formal Grammar 2019, volume 11668 of Lecture Notes in Computer Science, pages 35-50.
Springer Verlag, 2019. doi: 10.1007/978-3-662-59648-7_3.

Pedro Garcia, Enrique Vidal, and José Oncina. Learning locally testable languages in the
strict sense. In Proceedings of the 1st International Workshop on Algorithmic Learn-
ing Theory, pages 325-338, Tokyo, Japan, 1990. URL https://grfia.dlsi.ua.es/
repositori/grfia/pubs/111/a1t1990.pdf.

Edward Mark Gold. Language identification in the limit. Information and Control, 10(5):
447-474, May 1967. doi: 10.1016/S0019-9958(67)91165-5.

Leonard H. Haines. On free monoids partially ordered by embedding. Journal of Combi-
natorial Theory, 6(1):94-98, 1969. doi: 10.1016/s0021-9800(69)80111-0.

90

https://grfia.dlsi.ua.es/repositori/grfia/pubs/111/alt1990.pdf
https://grfia.dlsi.ua.es/repositori/grfia/pubs/111/alt1990.pdf

GRAMMAR INTERPRETATIONS AND LEARNING TSL ONLINE

Jeffrey Heinz. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623-661, Oc-
tober 2010a. doi: 10.1162/ling_a_00015.

Jeffrey Heinz. String extension learning. In Proceedings of the 48th Annual Meeting of the
Association for Computational Linguistics, pages 897-906, Uppsala, Sweden, July 2010b.
Association for Computational Linguistics. URL https://www.aclweb.org/anthology/
P10-1092.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tanner. Tier-based strictly local constraints
for phonology. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Short Papers, volume 2, pages 58—64, Portland, Oregon, 2011. Associ-
ation for Computational Linguistics. URL https://aclweb.org/anthology/P11-2011.

Sanjay Jain, Steffen Lange, and Sandra Zilles. Some natural conditions on incremental
learning. Information and Computation, 205(11):1671-1684, November 2007. doi: 10.
1016/j.ic.2007.06.002.

Adam Jardine and Jeffrey Heinz. Learning tier-based strictly 2-local languages. Transac-
tions of the Association for Computation in Linguistics, 4:87-98, 2016. doi: 10.1162/
tacl_a_00085.

Adam Jardine and Kevin McMullin. Efficient learning of tier-based strictly k-local lan-
guages. In Frank Drewes, Carlos Martin-Vide, and Bianca Truthe, editors, Lan-
guage and Automata Theory and Applications: 11th International Conference, volume
10168 of Lecture Notes in Computer Science, pages 64-76. Springer, Cham, 2017. doi:
10.1007/978-3-319-53733-7 4.

Dakotah Lambert. Relativized adjacency, 2021. In review.

Dakotah Lambert and James Rogers. Tier-based strictly local stringsets: Perspectives from
model and automata theory. In Proceedings of the Society for Computation in Linguistics,
volume 3, pages 330-337, New Orleans, Louisiana, 2020. doi: 10.7275/2n1j-pj39.

Robert McNaughton and Seymour Aubrey Papert. Counter-Free Automata. MIT Press,
1971.

Daniel Nathan Osherson, Michael Stob, and Scott Weinstein. Systems That Learn. MIT
Press, 1986.

James Rogers and Geoffrey K. Pullum. Aural pattern recognition experiments and the
subregular hierarchy. Journal of Logic, Language and Information, 20(3):329-342, June
2011. doi: 10.1007/s10849-011-9140-2.

James Rogers, Jeffrey Heinz, Gil Bailey, Matt Edlefsen, Molly Visscher, David Wellcome,
and Sean Wibel. On languages piecewise testable in the strict sense. In Christian
Ebert, Gerhard Jager, and Jens Michaelis, editors, The Mathematics of Language: Re-
vised Selected Papers from the 10th and 11th Biennial Conference on the Mathematics
of Language, volume 6149 of LNCS/LNAI, pages 255-265. FoLLI/Springer, 2010. doi:
10.1007/978-3-642-14322-9_19.

91

https://www.aclweb.org/anthology/P10-1092
https://www.aclweb.org/anthology/P10-1092
https://aclweb.org/anthology/P11-2011

	Introduction
	Preliminaries
	Notation
	(Tier-Based) Strict Locality
	Our Learning Problem
	String Extension Learning

	Deciding Salience
	The Substructures
	Pointwise String Extension Learning
	A Worked Example of the Final Simplified Approach
	Non-Strict Locality
	Conclusions

