
Proceedings of Machine Learning Research 153:18–31, 2021 Proceedings of the 15th ICGI

A Hierarchy of Context-Free Languages Learnable from
Positive Data and Membership Queries

Makoto Kanazawa kanazawa@hosei.ac.jp
Hosei University

Ryo Yoshinaka ryoshinaka@tohoku.ac.jp

Tohoku University

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

We consider a generalization of the “dual” approach to distributional learning of context-
free grammars, where each nonterminal A is associated with a string set XA characterized
by a finite set C of contexts. Rather than letting XA be the set of all strings accepted by all
contexts in C as in previous works, we allow more flexible uses of the contexts in C, using
some of them positively (contexts that accept the strings in XA) and others negatively
(contexts that do not accept any strings in XA). The resulting more general algorithm
works in essentially the same way as before, but on a larger class of context-free languages.

Keywords: distributional learning; membership queries; context-free grammars

1. Introduction

In the “dual” approach to distributional learning of context-free grammars (Clark and Yoshi-
naka, 2016), the learner uses finite sets of contexts (i.e., pairs of strings) as nonterminals of
the hypothesized grammar. A hypothesized production

C0 → w0C1w1 . . . Cnwn ,

where each Ci is a finite set of contexts qua nonterminal and each wi is a terminal string, is
deemed by the learner to be compatible with available evidence about the target language
if

C/
0 ⊇ w0 (E ∩ C/

1)w1 . . . (E ∩ C/
n)wn , (1)

where E is the set of substrings contained in the positive data given to the learner so far.
The operation (·)/ takes a set C of contexts to the set C/ = {x | for all (u, v) ∈ C, uxv ∈ L }
consisting of all the strings that are accepted by all contexts in C in the target language L.
If C = {(u1, v1), . . . , (uk, vk)}, then

x ∈ C/ ⇐⇒ u1xv1 ∈ L ∧ · · · ∧ ukxvk ∈ L , (2)

so that whether a string x belongs to C/ is determined by k queries to the membership
oracle. With a fixed bound on the cardinality of the Ci and the number n of right-hand
side nonterminals, as well as an appropriate restriction on the elements of the Ci and
the sequence of terminal strings (w0, w1, . . . , wn) in the right-hand side of productions,
a polynomial number of queries suffice to test all hypothesized productions as to their
compatibility, in the sense of (1).

© 2021 M. Kanazawa & R. Yoshinaka.

A Hierarchy of Context-Free Languages

From the computational efficiency perspective, however, there is no reason to want to
restrict the use of finite context sets to conjunctions of “membership atoms” uxv ∈ L,
as in (2). One could partition a finite context set representing a nonterminal into two
sets C = {(u1, v1), . . . , (uk, vk)} and D = {(y1, z1), . . . , (yl, zl)}, and use the contexts in C
positively and those in D negatively:

x ∈ C/ ∩D/ ⇐⇒ u1xv1 ∈ L ∧ · · · ∧ ukxvk ∈ L ∧ y1xz1 6∈ L ∧ · · · ∧ ylxzl 6∈ L. (3)

The operation (·)/ takes a context set D to the set D/ = {x | for all (y, z) ∈ D, yxz 6∈ L }.
With each nonterminal represented by such a pair of finite context sets, the production

(C0, D0)→ w0 (C1, D1)w1 . . . (Cn, Dn)wn

would be compatible with available evidence just in case

C/
0 ∩D/

0 ⊇ w0 (E ∩ C/
1 ∩D/

1)w1 . . . (E ∩ C/
n ∩D/

n)wn .

In fact, one could go a step further and allow all Boolean combinations of membership
atoms uxv ∈ L, not just conjunctions of positive and negative membership literals as in (3).

In this paper, we show that these generalizations of the existing distributional learning
algorithm indeed meet the same criteria of efficient learning from positive data and member-
ship queries as before, while significantly enlarging the class of context-free languages that
can be learned. For the case of allowing conjunctions of positive and negative membership
literals, the bound k on the number of positive literals and the bound l on the number of
negative literals give rise to a two-dimensional hierarchy of context-free languages, where
an increment of either k or l cannot be matched by any amount of increase in the other
parameter.

Although still further uses of membership queries are conceivable, we hope that this pa-
per leads to a better understanding of the limits of efficient learning algorithms for context-
free languages utilizing positive data and membership queries.

2. Preliminaries

We allow a context-free grammar to have multiple initial nonterminals. Thus, a CFG is a
4-tuple G = (N,Σ, P, I), where N is the set of nonterminals, Σ is the terminal alphabet,
P is the set of productions, and I is the set of initial nonterminals. A sequence (XA)A∈N
of subsets of Σ∗ indexed by nonterminals is a pre-fixed point of G if for each production
B0 → w0B1w1 . . . Bnwn of G, we have XB0 ⊇ w0XB1 w1 . . . XBn wn. If (XA)A∈N is the
least pre-fixed point (under componentwise inclusion) of G (which must exist), then we
write L(G,A) for XA. The language of G is then L(G) =

⋃
A∈I L(G,A). A pre-fixed point

(XA)A∈N of G is sound if
⋃

A∈I XA ⊆ L(G) (or, equivalently, if
⋃

A∈I XA = L(G)).
We take for granted the standard notions of derivation and derivation tree of a CFG

G. If A is a nonterminal of G, then the context set of A is C(G,A) = { (u, v) ∈ Σ∗ × Σ∗ |
S ⇒∗G uAv for some S ∈ I }. It is easy to see that if (XA)A∈N is a sound pre-fixed point
(SPP) of G, then L(G) ⊇

⋃
(u,v)∈C(G,A) uXA v for every A ∈ N . A nonterminal A is

unreachable if C(G,A) = ∅ and unproductive if L(G,A) = ∅. A nonterminal is useless if
it is either unproductive or unreachable.

19

A Hierarchy of Context-Free Languages

A pump in a derivation tree τ of G is a part of τ that corresponds to a derivation of the
form A ⇒+

G uAv, where A ∈ N and uv ∈ Σ+. The yield of such a pump is the pair (u, v).
The pumping number for G is the least natural number p such that every derivation tree τ
for a string x with |x| ≥ p contains a pump with yield (u, v) such that |u|+ |v| ≤ p.

Let L ⊆ Σ∗. We write L for Σ∗ − L. For C ⊆ Σ∗ × Σ∗, define

C〈L| = {x ∈ Σ∗ | for all (u, v) ∈ C, uxv ∈ L }

For X ⊆ Σ∗, define
X |L〉 = { (u, v) ∈ Σ∗ × Σ∗ | uX v ⊆ L }.

When L is understood from context, we write C/ and X. for C〈L| and X |L〉, and C/ and
X. for C〈L| and X |L〉. The map (·)./ : P(Σ∗)→P(Σ∗) is a closure operator in the sense
that (i) X ⊆ X./; (ii) X ⊆ Y implies X./ ⊆ Y ./; and (iii) X././ = X./. A set X ⊆ Σ∗ is
closed when X./ = X, or equivalently, when X = C/ for some C ⊆ Σ∗ × Σ∗.

For k ≥ 1, l ≥ 0, and m ≥ 1, define1

FCL(k, l) = {C/ ∩D/ | C,D ⊆ Σ∗ × Σ∗, 1 ≤ |C| ≤ k, 0 ≤ |D| ≤ l },
FCL(k, l,m) = {X1 ∪ · · · ∪Xm | X1, . . . , Xm ∈ FCL(k, l) }.

If membership of x in X is determined by a fixed Boolean combination ϕ of a fixed finite
set of queries of the form “uxv ∈ L?”, then X is in FCL(k, l,m) for some k, l,m. A bound
on k, l,m is obtained by converting ϕ into disjunctive normal form.

A context-free language L belongs to FCPr(k, l) (resp. FCPr(k, l,m)) iff there is a
context-free grammar G = (N,Σ, P, I) for L such that each production in P has at most r
nonterminals on its right-hand side and G has an SPP (XA)A∈N satisfying XA ∈ FCL(k, l)
(resp. XA ∈ FCL(k, l,m)) for all A ∈ N . We write FCP(k, l) and FCP(k, l,m) for⋃

r≥0FCPr(k, l) and
⋃

r≥0FCPr(k, l,m), respectively.2

3. Learnability of FCPr(k, l,m)

We give an algorithm for learning context-free languages in FCPr(k, l,m) in the limit from
positive data and membership queries.

For K ⊆ Σ∗, let

Sub(K) = {w ∈ Σ∗ | uwv ∈ K for some u, v },
Subn(K) = { (w1, . . . , wn) ∈ (Σ∗)n | u0w1u1 . . . wnun ∈ K for some u0, u1, . . . , un },

Sub≤r(K) =
r⋃

n=1

Subn(K),

Con(K) = { (u, v) ∈ Σ∗ × Σ∗ | uwv ∈ K for some w }.

We first observe a simple fact.

1. A set of the form D/ contains all strings that do not occur as substrings of any elements of L and so
cannot be a component of an SPP of a grammar G of L unless all strings occur as substrings of elements
of L or G has an unreachable nonterminal. This is why we do not consider FCL(0, l) or FCL(0, l,m).

2. In the terminology of Kanazawa and Yoshinaka (2017), L ∈ FCP(k, 0) iff L has a CFG with the very
weak k-FCP. We do not consider the “weak” and “strong” versions of FCP(k, l) and FCP(k, l,m) in
this paper.

20

A Hierarchy of Context-Free Languages

Proposition 1 If X ∈ FCL(k, l) and X 6= ∅, then X = C〈L| ∩ D〈L| for some C,D ⊆
Con(L).

Proof It is easy to see that if C 6⊆ Con(L), then C〈L| = ∅, and for all D ⊆ Σ∗ × Σ∗,
D〈L| = (D ∩ Con(L))〈L|.

A learner for FCPr(k, l,m) is listed in Algorithm 1. A positive presentation of L∗
is an infinite sequence of strings t1, t2, . . . enumerating exactly the elements of L∗. If
B = {(C1, D1), . . . , (Cm, Dm)}, where Cj , Dj ⊆ Con(L∗) for j = 1, . . . ,m, define

JBKL∗ =
(
C
〈L∗|
1 ∩D〈L∗|1

)
∪ · · · ∪

(
C〈L∗|m ∩D〈L∗|m

)
.

Whether a string x belongs to JBKL∗ can be decided by at most m(k + l) queries to the
membership oracle for L∗. A production B0 → w0B1w1 . . . Bnwn is valid if

JB0KL∗ ⊇ w0 JB1KL∗ w1 . . . JBnKL∗ wn ,

and valid on E if

JB0KL∗ ⊇ w0 (E ∩ JB1KL∗)w1 . . . (E ∩ JBnKL∗)wn .

Note that a production is valid if and only if it is valid on Sub(L∗).

Algorithm 1: Learner for FCPr(k, l,m).

Parameters: Positive integers r, k,m; a natural number l;
Data: A positive presentation t1, t2, . . . of L∗ ⊆ Σ∗; membership oracle for L∗;
Result: A sequence of grammars G1, G2, . . . ;

T0 := ∅;E0 := ∅; J0 := ∅;H0 := ∅; G0 := (∅,Σ,∅,∅);
for i = 1, 2, . . . do

Ti := Ti−1 ∪ {ti}; Ei := Sub(Ti);
if Ti * L(Gi−1) then

Ji := Con(Ti); Hi := Sub≤r+1(Ti);
else

Ji := Ji−1; Hi := Hi−1;
end
output Gi := (Ni,Σ, Pi, Ii) where

Ni := { {(C1, D1), . . . , (Cm, Dm)} | Cj , Dj ⊆ Ji, 1 ≤ |Cj | ≤ k, 0 ≤ |Dj | ≤ l },
Pi := {B0 → w0B1w1 . . . Bnwn | (w0, w1, . . . , wn) ∈ Hi,

B0, B1, . . . , Bn ∈ Ni, B0 → w0B1w1 . . . Bnwn is valid on Ei },
Ii := {B ∈ Ni | Ei ∩ JBKL∗ ⊆ L∗ };

end

Proposition 2 At each stage i, the number of queries to the membership oracle made by
Algorithm 1 is bounded by a polynomial in the total lengths of the strings in Ti.

21

A Hierarchy of Context-Free Languages

Proof Let n =
∑i

j=1 |tj | (the sum of the lengths of the strings in Ti, accounting for
repetitions). Then

|Ei| ≤
(
n+ 1

2

)
+ 1 =

(n+ 1)n+ 2

2
,

|Ji| ≤
(
n+ 1

2

)
+ 2(n+ 1) =

(n+ 1)(n+ 4)

2
,

|Hi| ≤
r+1∑
j=1

(
n+ 2j

2j

)
≤ (r + 1)

(
n+ 2r + 2

2r + 2

)
≤ (r + 1)(n+ 2r + 2)2r+2

(2r + 2)!
,

|Ni| ≤
1

m!

 k∑
j=1

(
|Ji|
j

) l∑
j=0

(
|Ji|
j

)m

≤ 1

m!

(
|Ji|k (|Ji|l + 1)

)m
≤ |Ji|

(k+l+1)m

m!
.

The number of productions that are considered for inclusion in Pi is |Hi| |Ni|r+1, and to test
each of them for validity on Ei requires at most |Ei|r (m(k+l))r+1 queries to the membership
oracle, so the construction of the set Pi requires at most |Hi| |Ni|r+1|Ei|r (m(k + l))r+1

queries. Finally, to test each B ∈ Ni for inclusion in Ii requires at most |Ei| (m(k + l) + 1)
queries to the membership oracle, so to determine the set Ii requires at most |Ni| |Ei| (m(k+
l) + 1) queries. All these numbers are polynomial in n.

The proof of correctness of Algorithm 1 is virtually identical to the corresponding proofs
in Clark et al. (2016) and Kanazawa and Yoshinaka (2017).

Theorem 3 If L∗ ⊆ Σ∗ is in FCPr(k, l,m), the output of Algorithm 1 converges to
a grammar G = (N,Σ, P, I) for L∗. Moreover, (JBKL∗)B∈N is an SPP of G consisting
entirely of sets in FCL∗(k, l,m).

Proof Since L∗ is in FCPr(k, l,m), Proposition 1 implies that there is a CFG G∗ =
(N∗,Σ, P∗, I∗) for L∗ with the following properties:

• there are at most r nonterminals on the right-hand side of every production in P∗,

• G∗ has an SPP (XA)A∈N∗ consisting of sets of the form(
C
〈L∗|
1 ∩D〈L∗|1

)
∪ · · · ∪

(
C〈L∗|m ∩D〈L∗|m

)
, (4)

where for j = 1, . . . ,m, Cj , Dj ⊆ Con(L∗), 1 ≤ |Cj | ≤ k, and 0 ≤ |Dj | ≤ l.

Let J be the union of all the sets Cj , Dj that appear in the description (4) of the components
of the SPP (XA)A∈N∗ for G∗. Since t1, t2, . . . enumerates L∗, there exists an i such that
J ⊆ Con(Ti).

Case 1. Tl ⊆ L(Gl−1) for all l ≥ i. In this case, L∗ ⊆ L(Gl) for all l ≥ i − 1. Also, for
all l ≥ i, we have Jl = Ji−1, Hl = Hi−1, Nl = Ni−1, and since El ⊇ El−1,

Pl ⊆ Pl−1 , Il ⊆ Il−1 .

Since Pi−1 and Ii−1 are finite, Pl and Il, and hence Gl, will eventually stabilize. When
that happens, all productions in Pl will be valid on

⋃
lEl = Sub(L∗), and all nonterminals

22

A Hierarchy of Context-Free Languages

B ∈ Il will satisfy
⋃

lEl ∩ JBKL∗ = Sub(L∗)∩ JBKL∗ = JBKL∗ ⊆ L∗ ⊆ L(Gl). It follows that
(JBKL∗)B∈Nl

is an SPP of Gl. Since (L(Gl, B))B∈Nl
is the least pre-fixed point of Gl, we

also have L(Gl) =
⋃

B∈Il L(Gl, B) ⊆
⋃

B∈IlJBKL∗ ⊆ L∗. So L(Gl) = L∗.
Case 2. Tl 6⊆ L(Gl−1) for some l ≥ i. Then Jl = Con(Tl) ⊇ J . For each A ∈ N∗, Nl

contains a nonterminal Â = {(C1, D1), . . . , (Cm, Dm)} corresponding to the description of
the form (4) of XA, which is to say JÂKL∗ = XA. The fact that (JÂKL∗)A∈N∗ is an SPP of
G∗ implies the following:

• for each production A0 → w0A1w1 . . . Anwn in P∗, the corresponding production

Â0 → w0 Â1w1 . . . Ân wn

is valid and hence is in Pl;

• for each A ∈ I∗, the corresponding nonterminal Â satisfies JÂKL∗ ⊆ L∗ and hence is
in Il.

It follows that Gl contains a “homomorphic image” of G∗, which implies L∗ ⊆ L(Gl). It is
easy to see that this will continue to be the case at all stages j ≥ l. The same reasoning as in
Case 1 shows that Gj will eventually stabilize to a correct grammar for L∗ and (JBKL∗)B∈Nj

will be an SPP of Gj .

4. A Language Outside of the Hierarchy

We show that there is a context-free language that Algorithm 1 does not learn for any choice
of r, k, l,m.

For x ∈ {a, b}∗, let δ(x) = |x|a − |x|b, where |x|c denotes the number of occurrences of
c in x. For X ⊆ {a, b}∗, we let δ(X) = { δ(x) | x ∈ X }.

Proposition 4 The language O2 = {x ∈ {a, b}∗ | δ(x) 6= 0 } does not belong to FCP(k, l,m)
for any k, l,m.

Proof Let G = (N, {a, b}, P, I) be a CFG for O2. Applying the pumping lemma to a
sufficiently long string in O2 of the form ap, we obtain

S ⇒∗G ah1Aah2 ,

A⇒+
G ai1Aai2 ,

A⇒+
G aj

such that S ∈ I, A ∈ N , and i1 + i2 > 0. Let (XB)B∈N be any SPP of G. Then we must
have

ah1+ni1XAa
ni2+h2 ⊆ O2 for all n ≥ 0, (5)

ani1+j+ni2 ∈ XA for all n ≥ 0. (6)

The property (5) implies that δ(XA) is co-infinite and the property (6) implies that δ(XA)

is infinite. Note that for every (u, v) ∈ {a, b}∗ × {a, b}∗, we have δ({(u, v)}〈O2|) = Z −

23

A Hierarchy of Context-Free Languages

{−δ(uv)}, which is a co-finite set. Since any set X ∈ FCO2
(k, l,m) is a Boolean combination

of sets of the form {(u, v)}〈O2| and it is easy to see that δ commutes with Boolean operations
on FCO2

(k, l,m), it follows that δ(X) is either finite or co-finite. So XA cannot belong to
FCO2

(k, l,m) for any k, l,m.

5. Hierarchy Theorems

Theorem 5 For each l ≥ 1,

FCP1(1, l)−
⋃
k≥1

FCP(k, l − 1) 6= ∅.

Proof Consider the context-free grammar Gl = ({S, S0, S1, . . . , Sl}, {a, b,#, d}, Pl, {S}),
with the following productions:

S → S0

S → Si | Si#di (1 ≤ i ≤ l)
S0 → ab | ab2 | aS0b | aS0b2

Si → ab2i+1 | ab2i+2 | aSib2i+1 | aSib2i+2 (1 ≤ i ≤ l)

Let Ll = L(Gl). Writing A for L(Gl, A), we have

S = S0 ∪ S1 ∪ S1#d ∪ · · · ∪ Sl ∪ Sl#dl = Ll = {(ε, ε)}/,
S0 = { aj1bj2 | j1 ≤ j2 ≤ 2j1 } = {(ε, ε)}/ ∩ {(ε,#d), . . . , (ε,#dl)}/,
Si = { aj1bj2 | (2i+ 1)j1 ≤ j2 ≤ (2i+ 2)j1 } = {(ε,#di)}/.

This shows that Ll ∈ FCP1(1, l).
To prove that Ll 6∈ FCP(k, l − 1) for any k, let G = (N, {a, b,#, d}, P, I) be a context-

free grammar for Ll. Let p− 1 be the pumping number for G.

Claim 1 If p ≤ q ≤ r ≤ 2q, then any pump in a derivation tree for aqbr has a yield of the
form (aj1 , bj2), where 1 ≤ j1 ≤ j2 ≤ 2j1.

Let (v, w) be the yield of a pump in a derivation tree for aqbr. It is clear that (v, w)
must be of the form (aj1 , bj2), where 0 < j1 + j2. We have

aq+(n−1)j1br+(n−1)j2 ∈ Ll for every n ≥ 0. (7)

Since (7) implies q + (n − 1)j1 ≤ r + (n − 1)j2 ≤ (2l + 2)(q + (n − 1)j1) for all n, it is
easy to see that 1 ≤ j1 ≤ j2. To see j2 ≤ 2j1, suppose by way of contradiction 2j1 < j2.
Letting n = 0 in (7), we have aq−j1br−j2 ∈ Ll, which implies q − j1 ≤ r − j2, and hence
j2 − j1 ≤ r − q ≤ 2q − q = q. Since 2j1 < j2, there is a natural number m such that

2(q + (n− 1)j1) < r + (n− 1)j2 for all n ≥ m.

24

A Hierarchy of Context-Free Languages

So let m be the least such number. Clearly, m ≥ 2. We have

r + (m− 1)j2 = r + (m− 2)j2 + j2

≤ 2(q + (m− 2)j1) + j2 (by the minimality of m)

= 2(q + (m− 1)j1) + j2 − 2j1

= 2(q + (m− 1)j1) + (j2 − j1)− j1
≤ 2(q + (m− 1)j1) + q − j1
< 2(q + (m− 1)j1) + q + (m− 1)j1

= 3(q + (m− 1)j1),

so we have
2(q + (m− 1)j1) < r + (m− 1)j2 < 3(q + (m− 1)j1),

which contradicts (7). This proves Claim 1.

Claim 2

(i) For all q, any derivation tree for ap+qb2p+q contains a pump with yield (aj1 , bj2) such
that 1 ≤ j1 < j2 ≤ 2j1.

(ii) For all q, any derivation tree for ap+qbp+2q contains a pump with yield (aj1 , bj2) such
that 1 ≤ j1 ≤ j2 < 2j1.

Both parts are proved by induction on q.
(i). Any derivation tree τ for ap+qb2p+q contains a pump with yield (v, w) such that

|v| + |w| < p. By Claim 1, (v, w) = (aj1 , bj2) for some j1, j2 such that 1 ≤ j1 ≤ j2 ≤ 2j1.
Note that 2j1 ≤ j1 + j2 < p. If j1 < j2, we are done. If j1 = j2, then consider the result of
deleting the pump from τ , which is a derivation tree τ1 for ap+q−j1b2p+q−j1 . If q < j1, then

2(p+ q − j1) < 2p+ q − j1 < 2p+ q − j1 + p− 2j1 ≤ 3(p+ q − j1),

but this contradicts ap+q−j1b2p+q−j1 ∈ Ll. If j1 ≤ q, then q − j1 ≥ 0 and we can apply
the induction hypothesis to τ1. We thus get a pump with yield (ak1 , bk2) in τ1 such that
1 ≤ k1 < k2 ≤ 2k1. In τ , the part that corresponds to the pump with yield (ak1 , bk2) in
τ1 may or may not overlap with the pump with yield (aj1 , bj1). If they overlap, the former
must wholly contain the latter and is a pump with yield (aj1+k1 , bj1+k2), which has the
required property. If they do not overlap, the part of τ that corresponds to the pump with
yield (ak1 , bk2) in τ1 is a pump with yield (ak1 , bk2), again satisfying the required property.

The proof of (ii) is similar.

Claim 3 The grammar G has an initial nonterminal S and a nonterminal A such that

S ⇒∗G ai1+nl1Abnl2+i2 for all n, (8)

A⇒∗G anm1+i3bi4+nm2 for all n, (9)

where
1 ≤ l1 ≤ l2 ≤ 2l1,

1 ≤ m1 < m2 < 2m1.

25

A Hierarchy of Context-Free Languages

We apply Claim 2 to a derivation tree τ for the string

a2pb3p

and obtain a pump with yield (aj1 , bj2) such that 1 ≤ j1 < j2 ≤ 2j1 and a pump with
yield (ak1 , bk2) such that 1 ≤ k1 ≤ k2 < 2k1. If the two pumps are the same, then
1 ≤ j1 < j2 < 2j2, and we are done by letting l1 = m1 = j1 and l2 = m2 = j2 and
A be the nonterminal at the root the pump. Otherwise, the two pumps may or may not
overlap. If they do not, let (al1 , bl2) be the yield of the upper pump and A be the nonterminal
at its root. We then have (8) for some i1, i2. By repeating both pumps n times, we get
(9) for some i2, i4 with m1 = j1 + k1 and m2 = j2 + k2. If the two pumps overlap, then
one wholly contains the other. Letting (al1 , bl2) be the yield of the outer pump, we get (8)
for some i1, i2. Repeating the inner pump, we get a pump with yield (aj1+k1 , bj2+k2) in a
derivation tree for a2p+j1b3p+j2 or a2p+k1b3p+k2 , depending on which pump is the inner one.
Letting m1 = j1 + k1 and m2 = j2 + k2, we get (9). This proves Claim 3.

Now suppose that (XB)B∈N is an SPP of G. Let S, A, l1, l2,m1,m2, etc., be as in
Claim 3. By (8) and (9), we have

ai1+nl1XAb
nl2+i2 ⊆ Ll for all n, (10)

anm1+i3bi4+nm2 ∈ XA for all n. (11)

Assume that CA and DA are finite subsets of {a, b,#, d}∗ × {a, b,#, d}∗ such that XA =
C/
A ∩D/

A. Our goal is to prove |DA| ≥ l.

Claim 4 CA ⊆ {a}∗ × {b}∗ and DA ∩ ({a}∗ × {b}∗) = ∅.

Let
n = max{i3, i4}+ max

⋃
(v,w)∈CA∪DA

{|v|, |w|}.

Let j1, j2 ≤ max
⋃

(v,w)∈CA∪DA
{|v|, |w|}. Since m1 < m2 < 2m1,

j1 + nm1 + i3 ≤ nm1 + n

= n(m1 + 1)

≤ nm2

≤ i4 + nm2 + j2

≤ nm2 + n

= n(m2 + 1)

≤ 2nm1

≤ 2(j1 + nm1 + i3).

This means that
aj1anm1+i3bi4+nm2bj2 ∈ Ll,

aj1anm1+i3bi4+nm2bj2#di 6∈ Ll for any i.

It follows from (11) that (aj1 , bj2#di) 6∈ CA and (aj1 , bj2) 6∈ DA. This establishes Claim 4.

26

A Hierarchy of Context-Free Languages

Claim 5 For each i ∈ {1, . . . , l}, DA contains a pair of the form (aj1 , bj2#di).

Let

j = max

{i1 + l1} ∪
⋃

(v,w)∈CA∪DA

{|v|, |w|}

 .

Fix i ∈ {1, . . . , l}, and consider the string

ui = a(4i+3)jb(2i+2)(4i+2)j ,

which is in Ll, since (2i+ 1)(4i+ 3)j < (2i+ 2)(4i+ 2)j < (2i+ 2)(4i+ 3)j. If j1 ≤ j and
j2 ≤ j, we have

(2i+ 1)(j1 + (4i+ 3)j) ≤ (2i+ 2)(4i+ 2)j + j2 ≤ (2i+ 2)(j1 + (4i+ 3)j), (12)

since

(2i+ 1)(j1 + (4i+ 3)j) ≤ (2i+ 1)(j + (4i+ 3)j)

= (2i+ 1)((4i+ 4)j)

= (2i+ 2)(4i+ 2)j

≤ (2i+ 2)(4i+ 2)j + j2

≤ (2i+ 2)(4i+ 2)j + j

< (2i+ 2)(4i+ 3)j

≤ (2i+ 2)(j1 + (4i+ 3)j).

So aj1uib
j2 ∈ Ll. This means that ui ∈ C/

A. Since l2 ≤ 2l1, there is an m such that

(2i+ 2)(4i+ 2)j + nl2 + i2 < 3(i1 + nl1 + (4i+ 3)j)

for all n ≥ m. So let m be the least such number. Then m ≥ 2, since

3(i1 + l1 + (4i+ 3)j) ≤ 3(j + (4i+ 3)j)

= 6(2i+ 2)j

≤ (2i+ 2)(4i+ 2)j + l2 + i2.

We have

2(i1 +ml1 + (4i+ 3)j) = 2(i1 + (m− 1)l1 + (4i+ 3)j) + 2l1

= 3(i1 + (m− 1)l1 + (4i+ 3)j)− (i1 + (m− 1)l1 + (4i+ 3)j) + 2l1

≤ (2i+ 2)(4i+ 2)j + (m− 1)l2 + i2

− (i1 + (m− 1)l1 + (4i+ 3)j) + 2l1

= (2i+ 2)(4i+ 2)j +ml2 + i2

− (i1 + (m− 2)l1 + (4i+ 3)j) + l1 − l2
< (2i+ 2)(4i+ 2)j +ml2 + i2,

27

A Hierarchy of Context-Free Languages

since m ≥ 2, l1 ≤ l2, and j ≥ l1 ≥ 1. So

2(i1 +ml1 + (4i+ 3)j) < (2i+ 2)(4i+ 2)j +ml2 + i2 < 3(i1 +ml1 + (4i+ 3)j),

which implies

ai1+ml1uib
ml2+i2 = ai1+ml1a(4i+3)jb(2i+2)(4i+2)jbml2+i2 6∈ Ll.

By (10), it follows that ui 6∈ XA. Since we have already shown that ui ∈ C/
A, it must be that

ui 6∈ D/
A. So there is a pair (v, w) ∈ DA such that vuiw ∈ Ll. Since DA∩({a}∗×{b}∗) = ∅,

it is clear that (v, w) must be of the form (aj1 , bj2#dh). But (12) means that we must have
h = i. This proves Claim 5.

Having established Claim 5, we can immediately conclude |DA| ≥ l.

Theorem 6 For each k ≥ 2,

FCP1(k, 1)−
⋃
l≥0

FCP(k − 1, l) 6= ∅.

Proof Consider the context-free grammar Gk = ({S, S0, S1, . . . , Sk}, {a, b,#, d}, Pk, {S}),
with the following productions:

S → S0#d | · · · | S0#dk

S → Si#d | · · · | Si#di−1 | Si#di+1 | · · · | Si#dk (1 ≤ i ≤ k)

S0 → ab | abb | aS0b | aS0bb
Si → ab2i+1 | ab2i+2 | aSib2i+1 | aSib2i+2 (1 ≤ i ≤ k)

Let Lk = L(Gk). We have

L(Gk, S) = {(ε, ε)}/,
L(Gk, S0) = {(ε,#d), . . . , (ε,#dk)}/,
L(Gk, Si) = {(ε,#d), . . . , (ε,#di−1), (ε,#di+1), . . . , (ε,#dk)}/ ∩ {(ε,#di)}/.

This shows that Lk ∈ FCP1(k, 1). A proof analogous to that of Theorem 5 shows that
Lk 6∈ FCP(k − 1, l) for any l.

We also have

Theorem 7 For each k ≥ 5,

FCP(k, 0)−
⋃
l≥0

FCP(k − 1, l) 6= ∅. (13)

Proof We can show that the context-free language

Lk = { an0ban1b . . . bankbank+1 | there are i, j such that ni = nj and 1 ≤ i < j ≤ k } .

belongs to FCP(k, 0)−
⋃

l≥0FCP(k − 1, l). We omit the details.

We leave open the question of whether (13) holds for 2 ≤ k ≤ 4.

28

A Hierarchy of Context-Free Languages

6. Conclusion

In previous works on distributional learning, nonterminals of CFGs were associated with
closed sets of strings, i.e., sets of the form C/ for some C ⊆ Σ∗ × Σ∗. The present
work shows that the closedness of the associated sets in this sense was not essential to
the success of the “dual” learning algorithms. Closed sets, and more generally sets of the
form C/

1 ∪· · ·∪C/
m, are upper sets with respect to the syntactic quasiorder 4L on Σ∗ defined

by x 4L y ⇐⇒ { (u, v) ∈ Σ∗ ×Σ∗ | uxv ∈ L } ⊆ { (u, v) ∈ Σ∗ ×Σ∗ | uyv ∈ L }.3 Sets of the
form C/ ∩D/ satisfy the weaker property that x 4L y 4L z and {x, z} ⊆ C/ ∩D/ together
imply y ∈ C/ ∩D/. Sets of the form (C/

1 ∩D/
1) ∪ · · · ∪ (C/

m ∩D/
m) do not even satisfy this

weaker property. None of this matters to Algorithm 1.4

Our first hierarchy theorem (Theorem 5) shows that the generalization from using sets of
the form C/ to using sets of the form C/∩D/ significantly enlarges the class of context-free
languages that can be learned. We do not know whether the further extension to sets of the
form (C/

1 ∩D/
1)∪ · · · ∪ (C/

m ∩D/
m) similarly leads to a wider class of context-free languages.

We leave this question for further work.
As regards sets of the form C/ ∩D/, it is perhaps worth mentioning that while they are

not closed in the sense that they are fixed points of the operator (·)./, they are closed with
respect to another closure operator. For X ⊆ Σ∗, let

XI = (X., X.).

For (C,D) ∈P(Σ∗ × Σ∗)×P(Σ∗ × Σ∗), let

(C,D)J = C/ ∩D/.

Then we have
XIJ = X./ ∩X./,

and we can see that (·)IJ is a closure operator. The two operators I and J give rise
to an “(antitone) Galois connection” between the partially ordered sets (P(Σ∗),⊆) and
(P(Σ∗ ×Σ∗)×P(Σ∗ ×Σ∗),⊆) (the latter ordered by componentwise inclusion), with all
the properties familiar from Clark’s (2015) syntactic concept lattice. In particular, sets of

3. The syntactic quasiorder was introduced by Schützenberger (1956) and Pin (1995). See also Almeida
et al. (2015); Almeida and Kĺıma (2019).

4. When (XA)A∈N is an SPP of G = (N,Σ, P, I), so is (X./
A)A∈N , so one might be tempted to view the

nonterminals
B = ((C1, D1), . . . , (Cm, Dm))

used by Algorithm 1 as representing the closed sets (JBKL∗)|L∗〉〈L∗|, rather than JBKL∗ . However, this
view does not jibe with the behavior of the algorithm. When a hypothesized production

B0 → w0 B1 w1 . . . Bn wn

is discarded by the algorithm because it is not valid on Ei, it might still be the case that

(JB0KL∗)|L∗〉〈L∗| ⊇ w0 (JB1KL∗)|L∗〉〈L∗| w1 . . . (JBnKL∗)|L∗〉〈L∗| wn.

(To see this, take n = 0 and any w0 ∈ (JB0KL∗)|L∗〉〈L∗| − JB0KL∗ .) In other words, when L∗ has a
grammar G∗ = (N∗,Σ, P∗, I∗) with an SPP each of whose components is of the form (JBKL∗)|L∗〉〈L∗|,
there is no guarantee that Algorithm 1 learns it.

29

A Hierarchy of Context-Free Languages

the form (C,D)J are closed sets with respect to (·)IJ, and for any X,Y ∈P(Σ∗), we have
(XY)IJ = (XIJY IJ)IJ. While these properties of the sets C/ ∩D/ may be interesting in
their own right, we stress that they play no role in our learnability result (Theorem 3).

Although Algorithm 1 does not rely on the properties of closed sets, it is still a “dis-
tributional” learning algorithm in that it classifies strings according to their distributions
(i.e., the contexts in which they occur) in the target language.

Finally, one might wonder how the idea of using contexts both positively and negatively
might be adapted to the “primal” approach to distributional learning, where finite sets of
strings are used as nonterminals of the hypothesized grammar.5 For the primal learner, a
hypothesized production

K0 → w0K1w1 . . . Knwn ,

where each Ki is a finite subset of Σ∗, is valid if

K./
0 ⊇ w0K

./
1 w1 . . . K

./
n wn .

Crucially, this is equivalent to

K.
0 ⊆ (w0K1w1 . . . Knwn). ,

which can then be approximated by

J ∩K.
0 ⊆ (w0K1w1 . . . Knwn). ,

where J is the set of contexts contained in the positive data given to the learner so far.
The last inclusion can be determined by a finite number of membership queries. One could
replace / and . in this approach by J and I, and everything would work the same way
as before. It is easy to see that (KIJ

A)A∈N is an SPP of G = (N,Σ, P, I) if and only if
(K./

A)A∈N is an SPP of G and (K./
A)A∈N is a pre-fixed point of G, so this new primal

learner would be less general than the original one. It may still be interesting to investigate
it, since it would produce a more compact context-free grammar, with fewer productions.

Acknowledgments

We thank one of the reviewers for raising some of the points that are addressed in the con-
cluding section. This work was supported by JSPS KAKENHI Grant Numbers 17K00026
and 18K11150.

References

J. Almeida, A. Cano, O. Kĺıma, and J.-É. Pin. On fixed points of the lower set operator.
International Journal of Algebra and Computation, 25(01n02):259–292, 2015. doi: 10.
1142/S021819671540010X. URL https://doi.org/10.1142/S021819671540010X.

5. One could also consider using two finite sets of strings, one positively and the other negatively, to define
a set of contexts, completely symmetrically to how we used two sets of contexts to define a set of strings.
The set of contexts obtained this way can then be used to define a set of strings, and we may study
CFGs that have SPPs whose components are obtained this way from two finite sets of strings. While
this seems to lead to another hierarchy of context-free languages, it is not clear how to design a learning
algorithm for such CFGs.

30

https://doi.org/10.1142/S021819671540010X

A Hierarchy of Context-Free Languages

Jorge Almeida and Ondřej Kĺıma. On the insertion of n-powers. Discrete Mathematics
and Theoretical Computer Science, 21(3), 2019. doi: 10.23638/DMTCS-21-3-5. URL
https://dmtcs.episciences.org/5155.

Alexander Clark. The syntactic concept lattice: Another algebraic theory of the context-
free languages? Journal of Logic and Computation, 25(5):1203–1229, 2015. doi: 10.1093/
logcom/ext037. First published online: July 30, 2013.

Alexander Clark and Ryo Yoshinaka. Distributional learning of context-free and multi-
ple context-free grammars. In Jeffrey Heinz and José M. Sempere, editors, Topics in
Grammatical Inference, pages 143–172. Springer, Berlin, 2016.

Alexander Clark, Makoto Kanazawa, Gregory M. Kobele, and Ryo Yoshinaka. Distri-
butional learning of some nonlinear tree grammars. Fundamenta Informaticae, 146(4):
339–377, 2016.

Makoto Kanazawa and Ryo Yoshinaka. The strong, weak, and very weak finite context
and kernel properties. In Frank Drewes, Carlos Mart́ın-Vide, and Bianca Truthe, editors,
Language and Automata Theory and Applications, pages 77–88, Cham, 2017. Springer
International Publishing. ISBN 978-3-319-53733-7. doi: 10.1007/978-3-319-53733-7 5.

Jean-Eric Pin. A variety theorem without complementation. Russian Mathematics, 39:
80–90, 1995.

M. P. Schützenberger. Une théorie algébraique du codage. Séminaire P. Dubreil et C. Pisot.
Algèbre et théorie des nombres, Année 1955/1956, 1956.

31

https://dmtcs.episciences.org/5155

	Introduction
	Preliminaries
	Learnability of FCPr(k,l,m)
	A Language Outside of the Hierarchy
	Hierarchy Theorems
	Conclusion

