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Abstract

We propose an inside-outside algorithm for stochastic macro grammars. Our approach
is based on types, which has been inspired by type-based approaches to reasoning about
functional programs and higher-order grammars. By considering type derivations instead
of ordinary word derivation sequences, we can naturally extend the standard inside-outside
algorithm for stochastic context-free grammars to obtain the algorithm for stochastic macro
grammars. We have implemented the algorithm and confirmed its effectiveness through an
application to the learning of macro grammars.
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1. Introduction

The inside-outside algorithm (Baker, 1979) is a popular algorithm for learning stochastic
context-free grammars (CFGs), and it has been used in various applications (Jelinek, 1985;
Dodd, 1988). There are also many extensions so that the algorithm can handle various
grammars, such as stochastic lexicalized tree-adjoining grammars (Schabes, 1992), projec-
tive and non-projective dependency grammars (Eisner, 1996; Koo et al., 2007), and multiple
context-free grammars (MCFGs) (Kato et al., 2006).

In this paper, we extend the inside-outside algorithm for (stochastic, OI) macro gram-
mars (Fischer, 1968), where each non-terminal may take parameters. Macro grammars
(MGs) can generate non-context free languages, including non-semilinear languages, like
{ww | w ∈ {a, b}+}, {anbncn | n > 0} and {a2n | n ≥ 0}. The class of languages generated
by MGs coincides with the class of indexed languages and also with the level-2 language
in Damm’s OI-hierarchy of higher-order languages (Damm, 1982) (where level-0 and level-
1 languages are regular and context-free langauges respectively). Stochastic MGs would
be useful for more faithfully representing stochastic language models than less expressive
grammars like CFGs.

Extending the inside-outside algorithm for MGs is non-trivial. In CFGs, non-terminals
in sequences derived from the initial symbol are rewritten in an arbitrarily order and they
derive strings independently. This makes derivation modes like left-most derivation and
right-most derivations indifferent and allows us to define derivation trees, based on which
the inside-outside algorithm can be constructed. It is the case for TAGs and MCFGs as
well. However, the situation is quite different when considering MG derivations, where a
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non-terminal may copy other non-terminals and those copies may derive different terms.
Thus, it is tricky to come up with the right notion of derivation trees for designing an
inside-outside algorithm.

Our key idea for extending the inside-outside algorithm is to use intersection types,
which have been proved useful for reasoning about higher-order grammars (Kobayashi,
2013b; Kobayashi et al., 2013). By replacing the role of word derivations trees in the inside-
outside algorithm for stochastic CFGs with that of type derivation trees, we can naturally
obtain an inside-outside algorithm for MGs (and possibly also for arbitrary higher-order
grammars (Damm, 1982; Kobele and Salvati, 2015), though it is left for future work).

We have implemented the algorithm and applied it to learn (non-stochastic) MGs. The
learning of MGs proceeds as follows. Given a set of words, the goal is to find an MG
that provides a good explanation of the words. To this end, we first fix a set of non-
terminals and prepare a set of all the possible rules (in certain normal form), and run
the inside-outside algorithm to maximize the probability that the words are generated.
We then remove the rules whose probabilities are below a certain threshold. Finally, by
removing the probabilities of the remaining rules, we obtain a non-stochastic MG. We have
applied this procedure to several non-context free languages including non-semilinear ones
and successfully obtained appropriate MGs.

Another potential application of our inside-outside algorithm is grammar-based data
compression. Stochastic CFGs have been used for data compression, where a word is com-
pressed as (the arithmetic coding of) its derivation sequence (Cameron, 1988; Tarhio, 2001;
Naganuma et al., 2020). We expect that, by using stochastic MGs, we can achieve more
compact coding of word data.

Related Work. As already mentioned, the inside-outside algorithm has been originally
proposed for (stochastic) CFGs (Baker, 1979) and adapted later to other grammars (Sch-
abes, 1992; Eisner, 1996; Koo et al., 2007; Kato et al., 2006). To our knowledge, the inside-
outside algorithm for MGs is new. A distinguishing, novel feature of our inside-outside
algorithm is the use of types, which allowed us to naturally extend the algorithm for CFGs.
Type-based techniques have recently been used for higher-order grammars, albeit for dif-
ferent purposes such as higher-order model checking (Kobayashi, 2013b), pumping lemmas
(Kobayashi, 2013a; Asada and Kobayashi, 2017), and data compression (Kobayashi et al.,
2013).

Structure of the Paper. The rest of this paper is structured as follows. Section 2
gives the definition of stochastic macro grammars. Section 3 describes the inside-outside
algorithm for stochastic macro grammars. Section 4 reports experiments, and Section 5
concludes the paper. The details omitted in this paper are found in an extended version of
this paper (Kambe et al., 2021).

2. Stochastic Macro Grammars

In this section, we review the notion of macro grammars (Fischer, 1968) and define its
stochastic extension.

Macro grammars are an extension of context-free grammars, where non-terminals may
take parameters. For example, a macro grammar may contain a rule like F x→ x ·x, where
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the non-terminal F takes a parameter x and · denotes the word concatenation (we omit ·
when there is no danger of confusion). Using the rule, F a and F b are rewritten to aa and
bb.

Definition 1 (Macro grammars) A macro grammar (MG, for short) is a quadruple
G = (A,N ,R, S) where:

(i) A is a finite set of symbols called terminals; we use meta-variables a, b, c, . . . for
terminals;

(ii) N is a map from a finite set of symbols called non-terminals to the set of non-
negative integers; N (F ), called the arity of F , represents how many parameters F takes;
we use meta-variables F,G, S, . . . for non-terminals;

(iii) R is a finite set of rewriting rules of the form Fx1 . . . xN (F ) → t where F is a non-
terminal, x1, . . . , xN (F ) are distinct variables, and t ranges over the set of terms defined by
the following BNF:

t ::= xi | a | t1 · t2 | Gt1 · · · tN (G)

We give higher precedence to concatenations (·) than to applications, so that F x · x means
F (x · x) instead of (F x) · x. We sometimes insert parentheses explicitly to avoid confusion.
By using the notation of λ-calculus, we sometimes write F → λx1, . . . , xk.t for the rule
F x1 · · · xk → t, and use meta-variables α, β, · · · for the part λx1, . . . , xk.t (thus, the rule
is written F → α);

(iv) S ∈ dom(N ) is the start symbol, which satisfies N (S) = 0;
For an MG G = (A,N ,R, S), the (outermost, leftmost1) rewriting relation t ⇒G,r t′

(where r ∈ R) is inductively defined by:

• F t1 · · · tk ⇒G,F→λx1,...,xk.t [t1/x1, . . . , tk/xk]t if F → λx1, . . . , xk.t.

• t1 · t2 ⇒G,r t′1 · t2 if t1 ⇒G,r t′1.

• t1 · t2 ⇒G,r t1 · t′2 if t2 ⇒G,r t′2 and t1 contains no non-terminals.

Here, [t1/x1, . . . , tk/xk]t denotes the term obtained from t by simultaneously replacing each
occurrence of xi with ti. We omit the subscripts G and/or r when they are clear from the
context or unimportant. We write ⇒∗G,r1···rk for the relational composition ⇒G,r1 · · · ⇒G,rk
(where k may be 0, in which case ⇒∗G,r1···rk is the identity relation on terms). Note that,
given a term t and a sequence of rules r1, . . . , rk ∈ R, there exists at most one term t′ such
that t⇒∗G,r1···rk t

′.
The language generated by G, written L(G), is defined as {w ∈ A∗ | S ⇒∗G w}.

Remark 2 Fischer (1968) actually introduced two kinds of macro grammars: OI and IO.
The MGs defined above are OI macro grammars. For the sake of simplicity, we excluded
out the empty word ε from the set of terms. This is not a fundamental restriction, because
any MG G with ε can be transformed to another MG G′ without ε such that L(G)\ ε = L(G′)
(see, e.g., Asada and Kobayashi, 2016).

Below we often write x̃ for a sequence of variables x1 · · · xk.

1. We need to fix the rewriting strategy to properly count the probability of a word being generated. We
could alternatively choose the rightmost derivation.
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Example 1 Consider the MG G2n = (A,N ,R, S) where A = {a}, N = {S 7→ 0, F 7→ 1},
and R consists of:

S → a | F a F x→ x · x | F (x · x)

(Here, we use the convention of writing multiple rules F x̃→ t1, . . . , F x̃→ t` that share the
same left-hand side as F x̃→ t1 | · · · | t`.) The word a4 = aaaa can be generated as follows.

S ⇒S→F a F a⇒F x→F (x·x) F (a · a)⇒F x→x·x aaaa.

The language L(G2n) is {a2n | n ≥ 0}. �

Definition 3 (Stochastic macro grammars) A stochastic macro grammar (SMG, for
short) is a quintuple G = (A,N ,R, S, φ), where (A,N ,R, S) is an MG, and φ : R → (0, 1]
assigns a non-zero probability to each rule. We require that

∑
F→α∈R φ(F → α) = 1 holds

for each non-terminal F ∈ dom(N ).
The rewriting relation ⇒G,r for G = (A,N ,R, S, φ) is the one for the underlying MG

(A,N ,R, S).
The probability of a rewriting sequence t ⇒∗G,r1···rk t′, written Prob(t ⇒∗G,r1···rk t′), is

defined as
∏k
i=1 φ(ri). For terms t and t′, the probability that t′ is obtained from t, written

Prob(t⇒∗G t′), is defined as the sum of the probabilities of all the rewriting sequences from
t to t′, i.e.,

∑
r1···rk∈R∗,t⇒∗G,r1···rk t

′ Prob(t ⇒∗G,r1···rk t′). For a word W ∈ A∗, we write

ProbG(W ) for Prob(S ⇒∗G W ). We write L(G) for the set {W ∈ A∗ | ProbG(W ) > 0}.

For an SMG G = (A,N ,R, S, φ), we write (G)# for the underlying MG (A,N ,R, S). Note
that L(G) = L((G)#) holds.

Example 2 Consider the SMG G′2n = (A,N ,R, S, φ) where (A,N ,R, S) is as given in
Example 1, and φ is given by:

φ(S → a) = 0.3, φ(S → F a) = 0.7,
φ(F x→ x · x) = 0.4, φ(F x→ F (x · x)) = 0.6.

Then, the probability for the derivation

S ⇒S→F a F a⇒F x→F (x·x) F (a · a)⇒F x→x·x aaaa

is 0.7 × 0.6 × 0.4 = 0.168. Since this is the only derivation sequence for generating a4,
ProbG′2n (a4) = 0.168. �

In the rest of the paper, we impose a restriction to SMGs, so that for each word W ∈ A∗,
the set of rewriting sequences S ⇒∗G,r1···rk W is finite. For a term t, we write ‖t‖0 for the
number of occurrences of symbols (terminals, non-terminals, and variables) in t, ‖t‖1 for the
number of occurrences of symbols excluding non-terminals of non-zero arity. For example,
if N (F ) = 1 and N (G) = 0, then ‖F (a · a · G)‖0 = 4 while ‖F (a · a · G)‖1 = 3. We define
the measure ‖t‖ of t by:

‖t‖ ::= (‖t‖0, ‖t‖1).

For example, ‖F (x · a)‖ = (3, 2). We define the strict partial order < on ‖t‖ as the lexico-
graphic order: (m,n) < (m′, n′) iff m < m′ or m = m′ ∧ n < n′.

35



Inside-Outside Algorithm for Macro Grammars

Definition 4 (Expansive grammars) An SMG G = (A,N ,R, S, φ) is expansive if (I)
the start symbol S does not occur on the right-hand side of any rule and (II) for every rule
F x1 · · · xk → t ∈ R such that F 6= S, (i) each variable xi occurs at least once in t, and
(ii) ‖F x1 . . . xk‖ < ‖t‖.

Note that the grammar G′2n in Example 2 is expansive. The following property of
expansive SMGs is important for our inside-outside algorithm. A proof is given in Kambe
et al. (2021).

Lemma 5 Let G = (A,N ,R, S, φ) be an expansive SMG. For every word W ∈ A∗, the set
of rewriting sequences S ⇒∗G,r1···rk W is finite.

Henceforth, we consider only expansive SMGs, and call them just SMGs.

Remark 6 Every context-free grammar in Chomsky normal form is expansive. To our
knowledge, there is no such normal form for MGs. The definition of expansive grammars
above is non-standard and ad hoc. We do not know whether every macro grammar can be
transformed to an equivalent expansive grammar.

3. The Inside-Outside Algorithm for Macro Grammars

This section introduces our inside-outside algorithm for SMGs. Given an SMG G and a
finite set of words W = {W1, . . . ,WQ}, the goal of the algorithm is to obtain a probability

function φ that (locally) maximize
∏Q
q=1 ProbG(Wq) by iteratively updating φ.2 At each

iteration, the value of φ(A → α) is updated to
c(A→ α)∑
A→β c(A→ β)

, where c(A → α) is the

expected number of times the rule A→ α is used to derive the words in W.
In the inside-outside algorithm for stochastic context-free grammars (SCFGs), c(A →

α) is obtained by considering the inside probability inside(A, i, j) and outside probability
outside(A, i, j). For a word W = a1 · · · an, inside(A, i, j) (where 1 ≤ i ≤ j ≤ n) denotes
the probability that ai · · · aj is generated from A (or, the probability that the derivation
tree for ai · · · aj whose root is A is obtained), and outside(A, i, j) denotes the probability
that a1 · · · ai−1Aaj+1 · · · an can be derived from the start symbol S: see Figure 1 (a) for an
illustration.

In the case of SMG, the notion of a “derivation tree” is unclear, due to the existence of
parameters. Our insight is that, by considering a “type derivation tree” corresponding to a
derivation of a word, we can naturally define the inside probability and outside probability,
and obtain an inside-outside algorithm based on those probabilities. For those who are
familiar with type systems, Figure 1 (b) shows an illustration; it will be explained later.
The reason why “types” come to play is that an SMG may be viewed as a (probabilistic)
functional program; thus, a type system can be used to analyze the behavior of an SMG. In

2. As in the case for stochastic context-free grammars, our inside-outside algorithm may be viewed as an
instance of EM-algorithm (Dempster et al., 1977; Wu, 1983). Therefore, actually we can only guarantee
that the value of

∏Q
q=1 ProbG(Wq) increases monotonically at each iteration, and the algorithm converges

to the value at a stationary point of
∏Q

q=1 ProbG(Wq) (as a function of φ), not necessarily to a local
maximum.
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a1 ai aj an

S

A

inside(A, i, j)

outside(A, i, j)

(a)

x : [1, 2] ` x : [1, 2] x : [3, 4] ` x : [3, 4]

x : [1, 2], x : [3, 4] ` x · x : [1, 4]

` F : {[1, 2], [3, 4]} → [1, 4]

...
x : [1, 1], x : [2, 2] ` x · x : [1, 2]

...
x : [3, 3], x : [4, 4] ` x · x : [3, 4]

x : [1, 1], . . . , x : [4, 4] ` F (x · x) : [1, 4]

` F : {[1, 1], [2, 2], [3, 3], [4, 4]} → [1, 4] ` a : [1, 1] · · · ` a : [4, 4]

` F a : [1, 4]

` S : [1, 4]

inside(` F : {[1, 2], [3, 4]} → [1, 4])

outside(` F : {[1, 2], [3, 4]} → [1, 4])

(b)

Figure 1: Inside and outside probabilities for SCFG (a) and SMG (b)

fact, types have recently been used for analyzing higher-order grammars (of which an MG
can be considered a special case) (Kobayashi, 2013b; Kobayashi et al., 2013).

Remark 7 It would be possible to formalize an inside-outside algorithm without using the
notion of types, but the resulting formalization would be more awkward. Also, we expect that
the use of types allows us to extend the inside-outside algorithm for higher-order grammars
of arbitrary orders, although it is left for future work.

We now define a type system. Below we fix an SMG G = (A,N ,R, S, φ) and a word
W = a1 · · · an ∈ A∗. We write W [i, j] (where 1 ≤ i ≤ j ≤ n) for the subword ai · · · aj .

The set of types, ranged over by τ , is defined by:

τ ::= [i, j] | σ → τ σ ::= {[i1, j1], . . . , [ik, jk]}.

Intuitively, [i, j] is the type of a term that may be used to generate W [i, j]. For example, if
W = a4, then aa has types [1, 2], [2, 3], and [3, 4]. The type σ → τ describes a function that
takes an argument that has every type τ ′ ∈ σ, and returns a value of type τ . For example,
if there is a rule F x→ x · x, F has type {[1, 2], [3, 4]} → [1, 4]. We require that a function
of type σ → τ must use the argument once for each τ ′ ∈ σ. Thus, the function G with rule
G x → a · a · x has type {[3, 4]} → [1, 4], but not {[1, 2], [3, 4]} → [1, 4] (because x is used
to generate only W [3, 4], not W [1, 2]). A set of types of the form {[i1, j1], . . . , [ik, jk]} is
so called an intersection type in the terminology of programming languages; we sometimes
write [i1, j1] ∧ · · · ∧ [ik, jk] for it. We also just write [i, j] for {[i, j]}, and > for ∅.

We restrict the shape of types as follows. We define τ# by:

[i, j]# = {x ∈ Nat | i ≤ x ≤ j}
({[i1, j1], . . . , [ik, jk]} → τ)# = τ# \ ([i1, j1]# ∪ · · · ∪ [ik, jk]

#)
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x : [i, j] `W x : [i, j]
(T-Var) W [i, i] = a

`W a : [i, i]
(T-Term)

Γ1 `W t1 : [i, j] Γ2 `W t2 : [j + 1, k]

Γ1 ] Γ2 `W t1 · t2 : [i, k]
(T-Concat)

`W F : σ1 → · · · → σN (F ) → [i, j] Γk,τ `W tk : τ for each k ∈ {1, . . . ,N (F )}, τ ∈ σk
]k∈{1,...,N (F )},τ∈σkΓk,τ `W F t1 · · · tN (F ) : [i, j]

(T-App)
F x1 · · · xk → t ∈ R x1 : σ1, . . . , xk : σk `W t : [i, j]

`W F : σ1 → · · · → σk → [i, j]
(T-Rule)

Figure 2: Typing rules

where Nat is the set of natural numbers. Intuitively, τ# denotes the set of positions
generated by a term of type τ . We require: (i) in [i, j], it must be the case that i ≤ j,
and (ii) in {[i1, j1], . . . , [ik, jk]} → [i, j], [i`, j`]

# ∩ [i`′ , j`′ ]
# = ∅ for any 1 ≤ ` < `′ ≤ k,

and (
⋃
`∈{1,...,k}[i`, j`]

#) ⊆ [i, j]#. Henceforth, we consider only types that satisfy the above
restriction.

We consider a type judgment of the form Γ `W t : τ , where Γ, called a type environment,
is a set of bindings of the form x : [i, j]. Each binding x : [i, j] in a type environment
means that x must be used as a value of type [i, j], i.e., may be used to generate W [i, j].
A type environment may contain more than one binding for each variable; for example,
{x : [1, 2], x : [3, 4]} means that x must be used for generating W [1, 2], and also for generating
W [3, 4]. We sometimes write x : σ to mean the type environment

⋃
[i,j]∈σ{x : [i, j]}. The

judgment Γ `W t : τ means that assuming that the variables in t are used according to
Γ, t behaves as a value of type τ . For example, {x : [1, 2], x : [3, 4]} `a4 x · x : [1, 4] is
a valid judgment. We often omit brackets and just write x1 : [i1, j1], . . . , xk : [ik, jk] for
{x1 : [i1, j1], . . . , xk : [ik, jk]}. When Γ is empty, we just write `W t : τ for ∅ `W t : τ . We
usually fix W and omit the subscript W .

The typing rules for deriving valid type judgments are given in Figure 2. In the figure,
] denotes the disjoint union: Γ1 ] Γ2 is defined to be Γ1 ∪ Γ2 only if Γ1 ∩ Γ2 = ∅.

Figure 1 (b) shows a type derivation tree for `W S : [1, 4] for the SMG in Example 2
and W = a4. The type derivation tree corresponds to the derivation sequence S ⇒S→F a

F a ⇒F x→F (x·x) F (a · a) ⇒F x→x·x aaaa. The judgment ` F : {[1, 2], [3, 4]} → [1, 4] in the
type derivation tree corresponds to the second use of F (in F (a · a)) and represents that
the argument a · a is used for generating the subwords W [1, 2] and W [3, 4]. This is not
a coincidence. Every type derivation tree for `W S : [1, |W |] corresponds to a derivation
sequence for W , and vice versa. Thus, we can calculate the probability ProbG(W ) by
summing up the probabilities of type derivation trees, instead of considering derivation
sequences, as discussed below.
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We write T for a type derivation tree, and DT(Γ ` t : τ) for the set of type derivation
trees whose conclusion is Γ ` t : τ .3 We write occ(T, F → α) for the number of times the
rule F → α is used in (applications of the rule T-Rule) T . The probability Prob(T ) of a
type derivation tree T is defined by:

Prob(T ) =
∏

F→α∈R
φ(F → α)occ(T,F→α).

For a type judgment Γ `W t : τ , its inside probability inside(Γ `W t : τ) is defined by:

inside(Γ `W t : τ) =
∑

T∈DT(Γ`W t:τ)

Prob(T ).

Thus, the inside probability inside(Γ `W t : τ) is analogous to the inside probability for
SCFG, where derivation trees have been replaced by type derivation trees. The theorem
below guarantees that our inside probability correctly models the probability that a word
is generated. A proof is given in Kambe et al. (2021).

Theorem 8 Let G = (A,N ,R, S, φ) be an SMG and W ∈ A∗. Then ProbG(W ) =
inside(`W S : [1, |W |]).

For a type environment Γ, we write Γ↓[i,j] for the restricted type environment {x :
[i′, j′] ∈ Γ | i ≤ i′ ≤ j′ ≤ j}; Γ↓[i,j] is undefined if there exists x : [i′, j′] ∈ Γ such that

[i, j]# ∩ [i′, j′]# 6= ∅ but [i′, j′]# 6⊆ [i, j]#. We write TyW for the set of (valid) types, where
all the indexes i occurring in them must satisfy 1 ≤ i ≤ |W | (so that they are valid indexes
for W ). As in the case for SCFG, the inside probability inside(Γ ` t : τ) can be inductively
calculated as follows.

inside(x : [i, j] `W x : [i, j]) = 1

inside(`W a : [i, i]) =

{
1 if a = W [i, i]
0 otherwise

inside(Γ `W t1 · t2 : [i, j]) =∑
i≤k<j

inside(Γ↓[i,k] `W t1 : [i, k])× inside(Γ↓[k+1,j] `W t2 : [k + 1, j])

inside(Γ `W F t1 · · · tk : [i, j]) =∑
σ1→···→σk→[i,j]∈TyW

(
inside(`W F : σ1 → · · · → σk → [i, j])

×
∏

1≤`≤k,[i′,j′]∈σ`

inside(Γ↓[i′,j′] `W t` : [i′, j′])
)

inside(`W F : σ1 → · · · → σk → [i, j]) =∑
Fx1...xk→t∈R

φ(Fx1 . . . xk → t)× inside(x1 : σ1, . . . , xk : σk `W t : [i, j])

3. We view type derivation trees as unordered trees, where the order of children of each node is irrelevant.

For example,
T1 T2

Γ ` t : τ
and

T2 T1

Γ ` t : τ
are considered the same trees.
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Here, inside(Γ `W t : τ) = 0 if it does not match any of the above definitions (e.g.,
inside(x : [1, 2] `W x : [1, 3]) = 0). Each equation for inside(Γ `W t : τ) sums up the
probabilities of all the possible derivations for Γ `W t : τ . In the fourth clause, we assume
k > 0; the case where t is an arity-0 non-terminal is covered by the last clause. The
correctness of this calculation is discussed in Kambe et al. (2021).

Remark 9 A careful reader may notice that the above algorithm for calculating inside(Γ `
t : τ) is circular: in the definition of inside(`W F : σ1 → · · · → σk → [i, j]), F may occur
in t, so that inside(`W F : σ1 → · · · → σk → [i, j]) may show up again in the calculation
of inside(x1 : σ1, . . . , xk : σk `W t : [i, j]). This is actually not a problem. Thanks to the
restriction to expansive grammars (recall Definition 4), we can actually prove that in any
type derivation tree T , each type judgment may occur at most once. Thus, when recursively
calculating inside(Γ `W t : τ), we can consider that inside(Γ `W t : τ) = 0 when it
is encountered again. Without the restriction to expansive grammars, we would need to
compute the least fixpoint of the equations above, which is computationally more expensive.

The outside probability outside(Γ `W t : τ), which intuitively expresses the probability
that `W S : [1, |W |] is derived from Γ `W t : τ , can also be calculated analogously to the
case of SCFG. Let TermsG be the set of terms that occur in the rewriting rules of G. Then
outside(Γ `W t : τ) is given by:

outside(`W S : [1, |W |]) = 1 ,
outside(Γ `W t : [i, j]) =(∑

t·t′∈TermsG ,j+1≤k,Γ′↓[i,j]=Γ

outside(Γ′ `W t · t′ : [i, k])× inside(Γ′↓[j+1,k] `W t′ : [j + 1, k])
)

+
(∑

t′·t∈TermsG ,k≤i−1,Γ′↓[i,j]=Γ

outside(Γ′ `W t′ · t : [k, j])× inside(Γ′↓[k,i−1] `W t′ : [k, i− 1])
)

+
(∑

F x̃→t∈R,Γ={x1:σ1,...,xk:σk} φ(Fx̃→ t)× outside(`W F : σ1 → · · · → σk → [i, j])
)

+
(∑

F t1 ··· tk∈TermsG ,t=t`,Γ′↓[i,j]=Γ,σ1→···→σ`]{[i,j]}→···→σk→[i′,j′]∈TyW

outside(Γ′ `W F t1 · · · tk : [i′, j′])
×inside(`W F : σ1 → · · · → σ` ] {[i, j]} → · · · → σk → [i′, j′])
×
∏

1≤m≤k,[i′′,j′′]∈σm inside(Γ′↓[i′′,j′′] `W tm : [i′′, j′′])
)
, (if t 6= S)

outside(`W F : σ1 → · · · → σk → [i, j]) =∑
F t1 ··· tk∈TermsG ,Γ

outside(Γ `W F t1 · · · tk : [i, j])

×
∏

1≤m≤k,[i′,j′]∈σm inside(Γ↓[i′,j′] `W tm : [i′, j′])
)
. (if k > 0)

Although the equations above may look complicated, they can systematically be ob-
tained from the intuition on outside probabilities. Unlike inside probabilities, the case
where t is an arity-0 non-terminal is covered by the second clause since such t as a premise
does not appear in T-Rule except when t = S.

Now we are ready to describe our inside-outside algorithm, which takes a set of words
W = {W1, . . . ,WQ} and an SMG G = (A,N ,R, S, φ) as inputs, and output an SMG
G′ = (A,N ,R, S, φ′). The overall algorithm is shown in Algorithm 1.
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In Step 1, c(F → α) denotes the expected number of times the rule F → α is used for
deriving W1, . . . ,WQ. It is calculated by:

c(F → α) =

Q∑
q=1

φ(F → α)

ProbG(Wq)

∑
σ1→···→σk→[i,j]∈TyWq

outside(`Wq F : σ1 → · · · → σk → [i, j])× inside(x1 : σ1, · · · , xk : σk `Wq t : [i, j]).

(1)

In Step 2, φ(F → α) is re-estimated by:

φ′(F → α) =
c(F → α)∑

F→β∈R c(F → β)
. (2)

The probability function φ is repeatedly updated until the change in
∏Q
q=1 ProbG(Wq) is

less than the given threshold ε.

Algorithm 1: The Inside-Outside Algorithm

Given an SMG G = (A,N ,R, S, φ), a set of words W = {W1, . . . ,WQ}, and a threshold ε

1. For each F → α ∈ R, calculate c(F → α) by equation 1

2. For each F → α ∈ R, calculate φ′(F → α) by equation 2

3. G′ ← (A,N ,R, S, φ′)

4. If
∏Q

q=1 ProbG′ (Wq)∏Q
q=1 ProbG(Wq)

< 1 + ε, then output G′;

otherwise let G ← G′ and go back to step 1

Like the inside-outside algorithm for SCFG (Lafferty, 2000), our algorithm for SMG can
be viewed as an instance of EM algorithm, hence satisfies the following property.

Theorem 10 (correctness of the inside-outside algorithm) In Algorithm 1, the value
of
∏Q
q=1 ProbG(Wq) increases monotonically at each iteration.

See Kambe et al. (2021) for a proof.

Remark 11 If the arity of every non-terminal is 0 and all the rules in R are in Chomsky
normal form, then our algorithm coincides with the standard inside-outside algorithm for
SCFG. See Kambe et al. (2021) for more details.

As for the complexity of the algorithm, the worst-case complexity for computing the
inside probabilities for a word W is exponential in |W |, unfortunately. This is because in
general we need to consider a type of the form σ1 → · · · → σk → [i, j] for each non-terminal
of arity k, and each σi is a set of intervals of the form [i′, j′]. Even under the well-formed
condition, there are as many as kO(|W |) possible types, hence also kO(|W |) possible type
judgements to be considered when computing the inside and outside probabilities. This
problem is similar to that of the extremely high complexity of higher-order model checking
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(and related problems on higher-order grammars) (Ong, 2006; Kobayashi and Ong, 2011). In
practice, however, we expect that we can often avoid the exponential blow-up by considering
only relevant types, as in practical algorithms for higher-order model checking (Kobayashi,
2013b; Broadbent and Kobayashi, 2013; Ramsay et al., 2014).

4. Experiments

We have implemented the inside-outside algorithm for SMGs, and applied it to learning
of MGs. Given a set of words W = {W1, . . . ,WQ}, the goal is to obtain an SMG G =

(A,N ,R, S, φ) such that the probability
∏Q
q=1 ProbG(Wq) is high. To this end, we apply

the following procedure.

1. Fix N , the set of non-terminals and their arities.

2. Let R be the set of all the possible rewriting rules (modulo certain constraints on the
shape of rules, to ensure that the number of rules is finite; see below for details).

3. Randomly assign the initial probability to each rule.

4. Run the inside-outside algorithm (Algorithm 1, with the threshold ε = 10−5).

5. Remove the rules whose probabilities are 102 times smaller than the average of the
probabilities of rules of the same non-terminal, and output the resulting grammar.

Since the inside-outside algorithm is not guaranteed to converge to the global maximum,
we ran the steps 3-5 above ten times, and output the grammar with the largest value of∏Q
q=1 ProbG(Wq).

As the benchmark set, we picked the languages La2
n = {a2n | n ≥ 0}, Lww = {ww | w ∈

{a, b}+}, Lwaw = {waw | w ∈ {a, b}+}, Laww = {aww | w ∈ {a, b}+}, and Lwww = {www |
w ∈ {a, b}+}, and for each language, we set W to the subset of the language consisting of
words of length up to 9. For example, W was set to {a, aa, a4, a8} for La2

n . We fixed N to
{S 7→ 0, F 7→ 1}.

To ensure that the number of rewriting rules is finite, we restricted the right-hand side
of each rule to one of the following forms for certain constants c1 and c2:

(i) the concatenation t1 · . . . · tk of terms t1, . . . , tk, where k ≤ c1, and at most one of
t1, . . . , tk may be an application F u1 . . . u` (with u1, . . . , u` are variables or terminals);
all the other ti’s must be variables or terminals.

(ii) F t1 . . . tk, where the number of symbols occurring in the term is less than or equal
to c2.

In the experiments, c1 was set to 2 for La2
n , and 3 for the other languages. We set c2 = 3

for all the languages. For example, for La2
n , possible right-hand sides that match (i) are:

x, a, x · x, x · a, a · x, a · a, x · F x, a · F x, x · F a, . . . ,

and those that match (ii) are:

F x, F a, F (x · x), F (a · x), F (x · a), ...
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These are ad hoc restrictions introduced to avoid an explosion of the number of rewriting
rules; our algorithm itself works without these restrictions (as long as the number of rules
is finite).

Table 1 shows the results of our experiments. The column “ideal grammars” shows
(the rewriting rules of) a simple (expansive) MG for each language. The column “learned
grammars” shows the grammar obtained by our procedure (with the probability of each
rule being omitted). The P column gives the value of

∏
W∈W ProbG(W ) for the learned

grammar. The column “time” gives the total running time of ten runs, measured in seconds.
As seen in the table, our procedure returned correct grammars for all the five languages,

although the learned grammars are a little more complex than ideal ones. Out of the ten
runs of Steps 3–5 of the procedure, the grammars shown in the table were obtained seven
times for Lww, and ten times for other languages. Interestingly, we found that for all the
five languages, the learned grammars have larger values of

∏
W∈W ProbG(W ) than the ideal

grammars (with optimal probability assignment). For example, for the language La2
n , the

value of
∏
W∈W ProbG(W ) for the ideal grammar is 1.6×10−3, which is smaller than that of

the learned grammar. Thus, the learned grammar may actually be preferable to the “ideal”
grammar for the purpose of data compression based on stochastic grammars (Naganuma
et al., 2020).

Table 1: The experimental results
L ideal grammar learned grammar P time

La2
n

S → a | F a

F x→ F (x · x) | x · x
S → a | a · a | F a | F (a · a)
F x→ F (x · x) | x · x 2.3× 10−3 1.1× 104

Lww

S → F a | F b

F x→ F (x · a)
| F (x · b)
| x · x

S → a · a | b · b | F a | F b | F (a · a)
| F (a · b) | F (b · a) | F (b · b)

F x→ F (x · a) | F (x · b)
| F (a · x) | F (b · x) | x · x

2.0× 10−53 1.0× 105

Lwaw

S → F a | F b

F x→ F (x · a)
| F (x · b)
| x · a · x

S → a · a · a | b · a · b | F a | F b

| F (a · a) | F (a · b)
| F (b · a) | F (b · b)

F x→ F (x · a) | F (x · b)
| F (a · x) | F (b · x) | x · a · x

2.0× 10−53 1.9× 105

Laww

S → F a | F b

F x→ F (x · a)
| F (x · b)
| a · x · x

S → a · a · a | a · b · b | F a | F b

| F (a · a) | F (a · b)
| F (b · a) | F (b · b)

F x→ F (x · a) | F (x · b)
| F (a · x) | F (b · x) | a · x · x

2.0× 10−53 1.9× 105

Lwww

S → F a | F b

F x→ F (x · a)
| F (x · b)
| x · x · x

S → a · a · a | b · b · b | F a | F b

| F (a · a) | F (a · b)
| F (b · a) | F (b · b)

Fx→ F (x · a) | F (x · b)
| F (a · x) | F (b · x) | x · x · x

2.7× 10−19 1.4× 105
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We report the result for the language Lww = {ww | w ∈ {a, b}+} in more detail. Here
are the probabilities of rewriting rules obtained for one of the successful runs:

φ(S → a · a) = 0.026, φ(S → b · b) = 0.032, φ(S → F a) = 0.018,

φ(S → F b) = 0.0045, φ(S → F (a · a)) = 0.23, φ(S → F (a · b)) = 0.23,

φ(S → F (b · a)) = 0.23, φ(S → F (b · b)) = 0.23,

φ(Fx→ F (x · a)) = 0.17, φ(Fx→ F (x · b)) = 0.17, φ(Fx→ F (a · x)) = 0.13,

φ(Fx→ F (b · x)) = 0.13, φ(Fx→ x · x) = 0.41.

5. Conclusions

We have developed an inside-outside algorithm for SMGs. The key idea was to consider
type derivations (instead of word derivation sequences), which allowed us to naturally extend
the inside-outside algorithm for stochastic CFGs. We have implemented the algorithm and
applied it to the learning of MGs.

Future work includes an application of the algorithm to data compression based on
stochastic grammars (Naganuma et al., 2020). The use of SMGs would allow us to compress
data more compactly than stochastic CFGs. We also plan to extend the inside-outside
algorithm for higher-order grammars (Damm, 1982; Kobele and Salvati, 2015) (where MGs
correspond to order-2 OI grammars). We expect that our type-based approach can naturally
be extended to deal with grammars of arbitrary order. In practice, the main bottleneck
would be the explosion of the number of types to be considered. We plan to apply techniques
for type-based higher-order model checking (Kobayashi, 2013b; Broadbent and Kobayashi,
2013) to cope with the problem.
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