
Proceedings of Machine Learning Research 153:217–236, 2021 Proceedings of the 15th ICGI

Learning DFAs by Evolving Short Sequences of Merges
Kristian Guillaumier kristian.guillaumier@um.edu.mt
Dept. of Artificial Intelligence, Faculty of ICT, University of Malta, Msida, Malta

John Abela john.abela@um.edu.mt

Dept. of Computer Information Systems, Faculty of ICT, University of Malta, Msida, Malta

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

The grammatical inference community has been studying evolutionary methods for DFA
learning for almost three decades. These methods typically operate by learning a repre-
sentation of the target DFA either as a partitioning the states of a prefix tree acceptor or
as an encoding of its transition matrix. In this paper, we present an alternative approach
for learning random DFAs over binary alphabets from sparse training data. We first con-
ducted several experiments on thousands of problem instances to study their behaviour
and to better understand the conditions under which state merging algorithms succeed or
fail. Motivated by these observations, we implemented an evolutionary algorithm in which
the chromosomes encode short sequences of merges selected from a subset of high state-
reduction merges. The fitness of a chromosome is then measured by extending it using the
EDSM heuristic and the size of the final hypothesis is used to score the entire sequence.
To improve runtime performance, we use a method that can reliably estimate the fitness of
a sequence of merges without extending it completely. We use the state-of-the-art EDSM
algorithm as a baseline to compare our results to and observe that we can find low-error
hypotheses or the exact target DFAs with a considerably higher likelihood.

Keywords: Grammatical Inference, Deterministic Finite-State Automata, Formal Lan-
guages, Genetic Algorithms, Greedy Search, Pattern Analysis, Regular Languages.

1. Introduction

DFA learning is the task of inferring a minimum-state deterministic finite-state automaton
from positive and negative training data. The hardness of this task has been extensively
studied (Gold, 1978) and the academic community has proposed several challenges to pro-
mote research in the area and encourage the development of new and better algorithms.
Examples include Abbadingo One for learning DFAs from sparse training data (Abb, 1997;
Lang et al., 1998), Gowachin and GECCO which allowed for noise (Gow, 1997; GEC, 2004),
Zulu for learning DFAs from membership queries (Combe et al., 2010), and StaMInA for
learning DFAs having large alphabets (Walkinshaw et al., 2010).

Among the most successful approaches are state merging algorithms which iteratively
select and merge pairs of states starting from a highly specific hypothesis until a more
compact solution consistent with the training data is found (Wieczorek and Unold, 2014).
Since each merge choice imposes constraints on subsequent ones, the quality of the results
found using such methods is sensitive to the initial choices made by the algorithm (Lang
et al., 1998). In this paper, we describe an evolutionary approach which attempts to find
an initial sequence of high-quality merges which, when extended using a state merging
algorithm, would considerably increase the likelihood of finding good solutions. To test the
effectiveness of our method, we use EDSM as a baseline1.

1. Datasets, results, and code are available at https://github.com/kguil2/ICGI2020-21.

© 2021 K. Guillaumier & J. Abela.

Learning DFAs by Evolving Short Sequences of Merges

This paper is organised as follows. In §2, we highlight several evolutionary methods
used in DFA learning. In §3, we present the necessary preliminaries. In §4, we discuss
the observations we made from the experiments that motivated our approach. In §5, we
describe our genetic algorithm (GA). §6 and §7 describe our experimental setup, results,
and observations. Conclusions, limitations, and research perspectives are presented in §8.

2. Related Work

An early evolutionary method, due to Dupont (1994), attempts to find an optimal (small-
est cardinality) partitioning of the states in a highly specific automaton constructed from
the training data. This method has been shown to be successful and comparable to the
RPNI algorithm (Oncina and Garćıa, 1992) on problems whose target DFAs had up to 5
states. Lucas and Reynolds (2005) proposed an approach called smart state labelling where
a candidate DFA is represented by a transition matrix. A multistart, random hill-climber
is used to modify the candidate until it either fits the training data well or a maximum
number of evaluations are performed. In their experiments, they found that their algorithm
outperforms EDSM (Lang et al., 1998) on target DFAs having between 4 and 16 states
created according to the protocol of the Abbadingo One learning competition. Shayani and
Bentley (2007) proposed a novel representation scheme based on gene regulatory networks
to successfully evolve automata having between 2 and 16 states. They used a similar sta-
tistical method to that of Lucas and Reynolds to learn the output function of the DFA.
Rather than using randomly created DFAs to create a training set, the authors used DFAs
which represent modulo-N up/down counters. Tsarev and Egorov (2011) describe a method
where an initial population of random n-state finite-state machines is created and a model
checking approach, inspired by Johnson (2007), is used to determine their fitness. Chro-
mosomes are encoded as vectors of transitions, and crossover was implemented by either
selecting transitions from the parents after they have been randomly shuffled or by choos-
ing transitions from the parents based on a statistical test. Mutation involved randomly
changing the initial state, or randomly changing a transition, or adding/deleting transitions
according to a mutation rate. The method was applied to automata having 6 states and
7 transitions for a simple real-world problem. More recently, Oğuz (2020) has proposed a
genetic algorithm which runs on a graphical processing unit (GPU) for evolving DFAs that
serve as robot controllers in the Tartarus2 environment. Chromosomes encode DFAs as
vectors of transitions and uniform crossover is used. Rather than searching for a minimum
state DFA, the number of states is fixed and the fitness function is a score of how well the
robot performed after eighty moves. Target DFAs had between 4 and 12 states.

3. Preliminaries

A DFA is 5-tuple A = 〈Σ, Q, q0, δ, F 〉, where Σ is a finite set of symbols, Q is a finite set
of states, the state q0 ∈ Q is distinguished as the starting state, δ : Q × Σ → Q is the set
of transitions, and F ⊆ Q is the set of accepting states. States that are not accepting are,
by definition, rejecting. Informally, a string s is accepted by a DFA if for every character
in s starting from q0, the automaton moves from one state to the next using δ until a

2. A grid-based problem proposed by Teller (1994) used as a benchmark problem in evolutionary algorithms.

218

Learning DFAs by Evolving Short Sequences of Merges

state in F is reached for the last character in the string. The string is, otherwise, rejected.
In the context of DFA learning, it is sometimes useful to consider states that are neither
accepting nor rejecting. A DFA is then defined as A = 〈Σ, Q, q0, δ, FA, FR〉, where FA ⊆ Q
and FR ⊆ Q are the disjoint sets of accepting and rejecting states respectively. States in Q
which are neither in FA nor in FR are called unlabelled states.

Consider a DFA A and a partition π of its states. Two states are said to be equivalent
or merged together if they belong to the same block (subset) in π. The partition π induces
an equivalence relation on the states of A (de la Higuera, 2010). A quotient automaton,
denoted by A/π, is an automaton derived from A with respect to the partition π, where its
states are the equivalence classes defined by π (Dupont et al., 1994).

Let S+ and S− be two finite disjoint sets of strings which are accepted and rejected by a
DFA respectively. We call S+ the set of positive samples, and S− the set of negative samples.
The pair 〈S+, S−〉 is called a training set. A DFA is consistent with 〈S+, S−〉 if it accepts
all the strings in S+ and rejects all the strings in S−. The prefix tree acceptor PTA(S+) is
the smallest tree-shaped DFA which accepts exactly the strings in S+. Likewise, the prefix
tree acceptor PTA(S−) is the smallest tree-shaped DFA which rejects exactly the strings
in S−. The augmented prefix tree acceptor, or APTA, is the superposition of PTA(S+) and
PTA(S−) (Coste and Nicolas, 1997). A set of positive samples S+ is said to be structurally
complete with respect to a DFA if every transition is exercised and every final state is
reached when parsing the strings in S+ (Dupont et al., 1994). This idea can be extended to
symmetrical structural completeness where every transition must be exercised by the strings
in S+ ∪ S−. We further require that all final rejecting states are reached by the strings in
S− (de la Higuera, 2010).

3.1. State Merging

A commonly used approach in DFA learning is to first construct an APTA from the train-
ing data and then iteratively selecting and merging pairs of states until a DFA is obtained
where no further merges are possible. When a pair of states is merged, we must ensure that
the merge is valid (the automaton remains consistent with the training data). Additionally,
merging a pair of states may introduce non-determinism. This is resolved by recursively
merging the successor states having the same symbol. A rigorous description of this con-
straint may be found in Coste and Nicolas (1997) and pseudo-code for the procedure may
be found in López and Garćıa (2016). Throughout this document, whenever we refer to a
merge, we are always merging for determinisation.

A DFA that contains one or more valid merges is called a partial hypothesis. Otherwise,
the DFA is called a final hypothesis and is usually the result returned by a state merging
algorithm. In a partial hypothesis that contains more than one possible valid merge, a state
merging algorithm must choose which one of these merges to proceed with. Algorithms
such as RPNI (Oncina and Garćıa, 1992) make this choice by imposing an order on the set
of all pairs of the states in a DFA and then selecting the first valid merge in that order.
Algorithms such as EDSM (Lang et al., 1998) use a heuristic to score merges and choose
the one having the highest score. Such methods perform a greedy search in a space of
DFAs starting from a highly specific hypothesis (the APTA) and select merges without
backtracking until a final hypothesis is reached. The target DFA is guaranteed to be in the

219

Learning DFAs by Evolving Short Sequences of Merges

search space if the training data is structurally complete with respect to it (Dupont et al.,
1994; de la Higuera, 2010).

3.2. Evidence Driven State Merging (EDSM)

Whenever a merge is performed, states are being grouped together. If a labelled state is
grouped with one having the same label, this is considered to be evidence supporting that
merge and the EDSM score is incremented by one for each such match. Since we are merging
for determinisation, successor states may be also merged contributing to the label matching
count. EDSM is commonly considered to be a state-of-the-art state merging algorithm in
DFA learning (Heule and Verwer, 2013; López and Garćıa, 2016) and is used as a supporting
heuristic by other algorithms such as Ed-Beam (Lang, 1999), SAGE (Juillé and Pollack,
1998), TBW-EDSM (Cicchello, 2002), S-EDSM (Abela et al., 2004), and dfasat (Heule and
Verwer, 2013). As such, EDSM is typically used as a baseline for comparing other DFA
learning techniques to.

3.3. Colour-Compatible Merges

Consider the target DFA and APTA shown in Figure 1 (i) and (ii) respectively.3 For the
moment we can ignore the state colours. In the APTA, merging the unlabelled state 4 with
the labelled state 8 is valid and is therefore a candidate for selection by a state merging
algorithm. However, the resulting DFA is no longer consistent with the target DFA since it
now classifies the string ab as accepting whereas the target DFA rejects it. After this merge
is performed, no further sequence of merges can possibly lead to the target DFA since the
unlabelled state 4 is now labelled as accepting when it really should be rejecting. In such a
case, we could say that, although valid, this is a ‘wrong’ merge.

(i)

(ii)

Red GreenBlueb
a

b

a

a

b

0
Red

1
Blue

2
Blue

3
Green

4
Red

8
Green

5
Green

6
Red

a

a a

b

b

b

b

7
Blue

b

(iii)

0
Red

1
Blue

2
Blue

3
Green

4,8
Mixed

5
Green

6
Red

a

a a

b

b

b

b

7
Blue

b

Figure 1: A coloured target DFA (i), the APTA (ii) for the training set S+ = {aa, abb, b, bab}
and S− = {bb}, and (iii) merging the state 4 with 8 results in mixed colours.

3. By convention, states having a double outline are accepting, states having a thick outline are rejecting,
and states with a single thin outline are unlabelled states.

220

Learning DFAs by Evolving Short Sequences of Merges

In our preliminary experiments we investigated when state merging algorithms such as
EDSM choose such wrong merges. That is, a merge that is valid but that misclassifies
strings not in the training set. We were inspired by the work of Coste and Nicolas (1997)
who pose the DFA learning task as a graph colouring problem. Since, by construction, every
state in an APTA maps to a state in the corresponding target DFA, if a distinct colour is
assigned to every state in the target, then every state in the APTA will map to one of these
colours. Any valid merge that merges states having different colours will then be a wrong
merge. Back to the example in Figure 1, the state 4 in the APTA maps to the red state in
the target DFA while state 8 maps to the green one. Although both states can be validly
merged together, the merge is not colour-compatible as can be seen in (iii).

Of course, during real-world DFA learning, we are not privy to the colours of the states
in the APTA. However, let us suppose that for the purpose of experimentation only, an
Oracle does reveal this colouring information to us. This would allow us to always choose
merges which are not only valid but are also colour-compatible. If a state merging algorithm
is to converge to the target DFA it must, somehow, select only colour-compatible merges
although many valid merges are not.

3.4. Oracle-Assisted Heuristics

We will refer to any heuristic which used extra information not in the training set as an
Oracle-assisted heuristic. While it is not possible to use such a heuristic in real-world
DFA learning, using such a heuristic allows us to analyze, and better understand, the
behaviour of a state-merging algorithm by studying the conditions under which it succeeds
or fails. We implemented two algorithms that use such a heuristic - Col-EDSM which is a
modified version of EDSM where the highest-scoring merge is the one which has the highest
EDSM score and is also colour-compatible and FullCol-EDSM which behaves exactly like
Col-EDSM but also fully labels the states in the APTA using the Oracle.

4. Experimental Observations

In our experiments, all problem instances are constructed according to the Abbadingo One
competition specification as described in Abb (1997) and Lang et al. (1998). The unknown
target DFAs each have n states and the training sets are at the sparsest density.

1. In the first experiment, we observed that the target DFA is never found in fewer than
n + 1 merge steps. Furthermore, hypotheses which have ≤ 1% error on a testing set
were always found in close to n+1 merge steps. In general, as the length of a sequence
of merges increases, so does the error of the final hypothesis in the testing set. We
observe a similar correlation between the size of the hypothesis DFA found and the
error of that hypothesis in the testing set. These relationships are shown in Figures
4 and 5 in Appendix A.

2. The importance of the initial merge choices made by a state merging algorithm has
been stressed in the literature (Lang et al., 1998). Cicchello and Kremer (2002) use a
stochastic search to attempt to quantify how important these first moves are. In this
experiment, we build on this work by using Col-EDSM to efficiently select the first k

221

Learning DFAs by Evolving Short Sequences of Merges

highest scoring and colour-compatible merges before proceeding with EDSM to obtain
a final hypothesis. As expected, our experiments show that as k increases, so does
the likelihood of finding a low-error hypothesis. For example, over 1,024 instances
of 64-state target DFA problems at the sparsest density of 1,521 training samples,
when the first 8 merges are guaranteed to be colour-compatible, we find low-error
hypotheses about 48% of the time, compared to 15% using EDSM.

3. Whenever a merge is performed, there is a reduction in the number of states. The
reduction count is therefore the size of the resulting DFA subtracted from the size
of the DFA before the merge. When studying merge sequences having exactly n + 1
merge steps which lead to the exact target (constructed using FullCol-EDSM), we
observe that merges having very low reduction counts are avoided in the initial merge
steps. An example of this can be seen in Figure 6 which shows that during the first
eight merge choices in a sequence leading to the target DFA, merges reducing the
partial hypothesis by fewer than 64 states are never selected.

4. Following observations 2 and 3, let the APTA reduction table T , be the set of all
valid merges in an APTA whose reduction count is at least some value α and whose
EDSM score is at least some value β. We observe that while the set of merges in T is
substantially smaller than the set of all possible merges in the APTA, it nonetheless
contains many colour-compatible merges. For example, over 256 problem instances
of 64-state target DFAs at the sparsest density, APTAs contain around 26 million
possible merges, while the corresponding APTA reduction tables for α ≥ 60 and
β ≥ 1 contain, on average, only 1,291 merges out of which 74 are colour-compatible.

5. The merges selected by an Oracle-assisted heuristic such as FullCol-EDSM are all
colour-compatible. Our experiments show that there is a significant overlap between
the merges in an APTA reduction table and the colour-compatible merges in a se-
quence leading to the target DFA from that APTA. For example, over 1,024 instances
of 64-state target DFA problems, over 97% of APTA reduction tables for α ≥ 60 and
β ≥ 1 contain at least 8 colour-compatible merges in common with the corresponding
FullCol-EDSM sequence leading to the target DFA. The significance of this is that,
with high likelihood, a search in the considerably smaller space of merges in the APTA
reduction table can allow us to identify sufficiently long sequences of colour-compatible
merges which establish enough constraints that greatly improve our chances of finding
low-error hypotheses (see point 2 above).

6. Consider a sequence of merges starting from an APTA which lead to a final hypoth-
esis. There exists a strong correlation between the size of that hypothesis and the
cumulative EDSM score of the partial hypothesis at merge step n+ 1 in the sequence.
In other words, using simple linear regression, we can reliably guess the size of a final
hypothesis after performing only the first n + 1 merge steps of the entire sequence
leading to that hypothesis. Figure 7 in Appendix A shows this correlation.

222

Learning DFAs by Evolving Short Sequences of Merges

4.1. Adversarial Cases

EDSM always selects the highest scoring merge available and, when more than one merge
shares a highest score, a random one is chosen from that rank.4 When EDSM makes a wrong
(non-colour-compatible) choice, it is either because a colour-compatible merge has a highest
score but another equally high scoring (but not colour-compatible) merge was selected
during tie-breaking, or because the colour-compatible merge was ‘outside’ of the highest
scoring rank. These two situations are illustrated in Figure 2. During our experimentation,
we identified three scenarios which increase the likelihood of EDSM making merge choices
that are not colour-compatible. These adversarial cases are when the target DFA does not
contain any loop transitions (a transition from a state to itself), when the training set is
not structurally complete with respect to the target DFA, and when none of the highest
EDSM-scoring merges in the APTA (the ties) are colour-compatible. In these scenarios we
observe a considerable drop in EDSM’s performance, and we also note that the likelihood
of randomly creating such adversarial problem instances is significant.

Scenario 2:
The C.C. merge
is not among
the highest scoring

Merge 1
Merge 2
Merge 3
Merge 4
Merge 5
Merge 6

CC Merge 7

Merge n
...

Hi
gh

es
t

sc
or

in
g

me
rg

esScenario 1:
A non-C.C. merge is
randomly selected
during tie-breaking
instead of the
correct C.C. merge

Merge 1
Merge 2
Merge 3

CC Merge 4
Merge 5
Merge 6
Merge 7

Merge n
...

Hi
gh

es
t

sc
or

in
g

me
rg

es

Figure 2: How EDSM can select a merge which is not colour-compatible.

5. Evolving Merge Sequences

An APTA reduction table is the collection of valid merges in an APTA having some min-
imum reduction count and a minimum EDSM score. While this table contains substan-
tially fewer merges than the set of all possible merges, experiments 4 and 5 in §4 indicate
that it will, typically, still contain many colour-compatible ones. Since initial sequences of
colour-compatible merges considerably increase the likelihood of finding the target DFA or
a low-error hypothesis (result 2 in §4), the GA attempts to find such a sequence while only
searching in the APTA reduction table.5 Given a problem instance consisting of a training
set, the GA works as follows:

1. Setup: an APTA is created from the training set. An APTA reduction table for
hyperparameters α and β is created from the valid merges in the APTA.

2. Chromosome representation: a chromosome consists of a sequence of k merges drawn
from the APTA reduction table. When creating and manipulating chromosomes, the
following two situations must be considered:

4. A rank is a set of merges having the same EDSM score.
5. The GA does not know which merges are colour-compatible.

223

Learning DFAs by Evolving Short Sequences of Merges

• A merge in a chromosome may cause a subsequent one to be a null operation.
This happens when the states in a subsequent merge have already been merged
by a previous one. Such merges should be avoided in favour of ‘useful’ ones.

• If after performing a merge, a subsequent one becomes invalid, we say that the
two merges block each other (this relation between merges is symmetric since
merge order is not important6). This happens when one merge labels some
previously unlabelled state, and the second merge requires that same unlabelled
state to be labelled differently. Clearly, these two merges cannot exist in the
same chromosome sequence.

3. Initialisation: the initial population consists of chromosomes each consisting of k
random merges selected from the APTA reduction table subject to the two conditions
described in Point 2 above.

4. Fitness evaluation: the fitness of a chromosome is computed in two steps. Firstly, the
merges in a chromosome are executed in the APTA to obtain a partial hypothesis. The
partial hypothesis is then extended using windowed EDSM to reach a final hypothesis
having size m. The score of a chromosome is given by ABS(m − n) where n is the
size of the target DFA. A chromosome having a lower score is fitter than one having
a higher score since it is closer in size to the target DFA.

5. Crossover : since the order in which merges are performed is unimportant, we use a
variation of uniform crossover (Goldberg, 1989) where the k+k merges in two parents
are pooled together and k distinct merges (an offspring) are randomly selected from
the pool subject to the previous two conditions.

6. Mutation: involves picking a random merge in a chromosome and substituting it with
a random one from the APTA reduction table also subject to the previous conditions.

7. Fitness evaluation and genetic operators are illustrated in Figure 3.

8. Selection: to select parents for crossover, we use deterministic tournament selection
where the fittest chromosome is selected from a random subset of t chromosomes in
the population (Blickle and Thiele, 1997). Hyperparameter t is the tournament size.

9. New generation: the composition of a new generation is determined by the size p of
the initial population, and the crossover and elitism rates which are both ratios whose
sum is ≤ 1%. Specifically, a new population consists of:

• p×CrossoverRate offspring chromosomes obtained by selecting parents using
deterministic tournament selection and mating them. Each offspring is mutated
with a probability determined by a mutation rate.

• p×ElitismRate fittest chromosomes in the previous generation are carried over.

• In the interest of diversity, random chromosomes are created and added to the
new population until its size reaches p.

6. Since set union is associative over an arbitrary finite number of sets (Halmos, 1960).

224

Learning DFAs by Evolving Short Sequences of Merges

10. Termination condition: the GA terminates either when an extended chromosome
having a fitness score of zero is found (the hypothesis is equal in size to the target
DFA) or when a maximum number of generations have elapsed. In this second case,
the hypothesis corresponding to the fittest extended chromosome is returned.

m1 m2 m3 m4 m5 m6Parent 1:

m1 m2 m3 m4 m5 m6Parent 2:

Pool and shuffle

m1
m2

m3m4
m5 m6

m1m2 m3
m4

m5m6

Random select

m2 m3 m1 m4 m5 m1Offspring:

m1 m2 m3 m4 m5 m6Chromosome:

Delete random merge

m1 m2 m3 m4 m6

Substitute

m1 m2 m3 m4 m5 m6

APTA Reduction
Table for !,"

(i) (ii) (iii)

m1 m2 m3 ... mk

Execute k merges in
chromosome

APTA

Start
from APTA

Partial

Partial
hypothesis

Final

Extend using
W-EDSM

Final
hypothesis

1 2 3 4 5

ABS(Size final - Size target)

Score the
chromosome

6

Training Set

APTA Reduction
Table for !,"

m1 m2 m3 ... mk

Select merges

APTA

(iv)

Figure 3: (i) A chromosome consists of merges drawn from the APTA reduction table, (ii)
crossover, (iii) mutation, and (iv) the fitness computation of a chromosome.

The vast majority of the computational resources expended by the GA are used to
evaluate the fitness of chromosomes in a population. This is because computing the fitness of
a chromosome involves first performing its merges and then extending the partial hypothesis
completely until a candidate DFA is identified. Since the candidate DFA is only needed to
determine its size, we can exploit the correlation discussed in point 6 in §4 to estimate this
size while performing fewer merge steps. The method works as follows:

• All the merges in the chromosome are applied to the APTA. The partial hypothesis
is extended using windowed EDSM until a maximum of n+ 1 merges are performed.

• The cumulative EDSM score of every n+ 1 merge is computed.

• Linear regression is used to estimate the size of the candidate DFA from the cumulative
EDSM score of the n+ 1 merges.

225

Learning DFAs by Evolving Short Sequences of Merges

• The regression coefficients are determined by creating 1,024 random problem instances
and correlating the cumulative EDSM score at merge step n + 1 and the final DFA
size. An example of this is shown in Figure 7.

6. Experimental Setup

Problem instances are randomly generated according to the Abbadingo One competition
protocol (Lang et al., 1998). In this setup, target DFAs will have n states and a depth of
2 log2 n−2. Training and testing sets are created by drawing samples uniformly and without
replacement from the set of all binary strings having length between 0 and 2 log2 n+3. The
proportion of positive and negative strings in a training set is not allowed to differ by more
than 20% to avoid rare cases where the set may be disproportionately composed of strings
of one class. Testing sets consist of 1,800 strings not in the training set.

We evaluate our methods on instances of target DFAs having exactly 32 and 64 states
and having training sets at the sparsest density. Abbadingo specifies that the sparsest
training set for 64-state target DFA problems is 1,521 strings but does not specify the
number of training strings for 32-state problems. For 32-state problems we use training
sets of 607 strings. This number has been found experimentally so that the likelihood of
identifying low-error hypotheses using EDSM is similar to that of sparse 64-state problems.
Since randomly created problem instances may vary in difficulty, each experiment is eval-
uated against exactly the same sets of problems. Additionally, in order to better study
the behaviour of each experiment, the problems are grouped into sets according to their
characteristics. Training sets may or may not be structurally complete, the target DFA
may or may not have loop transitions, and the highest EDSM-scoring merges in the first
step (at the APTA) may or may not contain a colour-compatible merge.

In Table 1, we describe the GA configurations which are used to evaluate our sets of
problem instances. Each configuration specifies the chromosome length k, the population
size p, the maximum number of generations allowed g, the tournament size t, the APTA
reduction table parameters α and β, the crossover rate c, the mutation rate m, and the
elitism rate e. Configurations marked with a dagger symbol (such as 32v1†) use the perfor-
mance optimisation described in §5. The hyperparameters were chosen by inspecting the
merges contained in APTA reduction tables as well as by trial-and-error.

In order to better evaluate the effectiveness with which our fitness function is directing
the search, we also compare our results to a ‘blind’ variant of the GA. This works by
selecting parents for crossover randomly without considering their fitness. Specifically, an
initial population is created containing p random chromosomes. Two parents are selected
randomly and an offspring is created using crossover. The offspring is mutated according
to the mutation rate and is added to the current population. This is repeated until the
population size grows to p×g chromosomes, where g is the maximum number of generations.
This means that the algorithm will evaluate p×g chromosomes which is, at least, the number
of chromosomes evaluated by the fitness-directed GA described earlier. The smallest DFA
obtained after extending every chromosome is returned as the final hypothesis.

226

Learning DFAs by Evolving Short Sequences of Merges

For 32-state target DFAs, 607 training strings

k p g t α, β c m e

32v1 8 100 50 5 25,1 0.8 0.01 0.1
32v2 best of two runs of 32v1
32v3 8 200 100 5 25,1 0.8 0.01 0.1
32v3† 8 200 100 5 25,1 0.8 0.01 0.1

For 64-state target DFAs, 1,521 training strings

k p g t α, β c m e

64v1 6 100 50 5 60,1 0.8 0.01 0.1
64v2 6 200 50 5 60,1 0.8 0.01 0.1
64v2† 6 200 50 5 60,1 0.8 0.01 0.1

Table 1: Genetic algorithm hyperparameters.

7. Results and Observations

In this section, we summarise and discuss the results that we obtained when running our
GA in the configurations described in the previous section. A complete breakdown of these
results as well as a description of the problem sets used can be found in Appendix A.

• On structurally complete training data, the GA is, compared to EDSM, much more
successful in finding low-error (≤ 1%) hypotheses compared to EDSM. For 32-state
target DFA problems (see Table 2), the GA in configuration 32v3 identifies low-error
DFAs in 88 out of 128 problem instances (69%) compared to EDSM which does so
in 21 out of the same problems (16%).It must be pointed out that 20 out of the 21
low-error hypotheses found by EDSM were also found by the GA. When the target
DFA increases to 64 states (see Table 3), 64v2 finds low-error DFAs in 36 out of 64
problem instances (56%) while EDSM does so in 8 out of the same problems (13%).
Again, 7 out of the 8 hypotheses found by EDSM were also found by the GA. Similar
observation as above can be made with respect to finding the exact target DFA where
in its best parameter configuration the GA substantially outperforms EDSM.

• Using the faster estimation method to compute the fitness of a chromosome affects
the quality of our results. When using the true fitness configuration 32v3 we find
low-error DFAs in 88 out of 128 problem instances (69%). Using the exact same
GA configuration 32v3† which estimates fitness we find 75 low-error DFAs out of
128 problems (59%). In spite of this, the fitness-estimation method can still find low-
error DFAs with considerably higher likelihood than EDSM while running significantly
faster. A similar trade-off applies to 64-state target DFA problems.

• Tuning the parameters of the GA can yield noticeably better results. This can be
seen in the parameter sets 32v1 and 32v3 where the population size and the maximum
generations allowed parameters are doubled.

227

Learning DFAs by Evolving Short Sequences of Merges

≤ 1% Exact Mean Error Mean Size
Error Target (SD) (SD)

Set A.32: Structurally complete problem set

EDSM 21 5 18% (19.5) 72 (27)
32v2 80 21 2.1% (6.2) 35 (10)
32v3 88 21 1.8% (6) 34 (8)

32v3† 75 21 3.7% (9.5) 37 (14)

Table 2: Summary of results for 32-state target problems. Configurations with † use the
optimisation described in §5.

≤ 1% Exact Mean Error Mean Size
Error Target (SD) (SD)

Set A.64: Structurally complete problem set

EDSM 8 1 32.3% (20.4) 161 (60)
64v2 36 3 5.9% (12) 86 (40)

64v2† 28 4 8.6% (15.3) 95 (50)

Table 3: Summary results for 64-state target problems. Configurations with † use the op-
timisation described in §5.

• In each of the three adversarial cases we described earlier, the GA outperforms EDSM
by a considerable margin. The mean error and hypothesis size over all problem in-
stances is also greatly reduced. In all cases, the performance characteristics of the
GA on 64-state target DFA problems are similar to those obtained on 32-state target
DFA problems. This indicates that this method scales well to larger problems.

• Analysing the rate with which the GA converges on 32-state target DFA problems,
shows that low-error hypotheses are found in an average of 23 generations. Interest-
ingly, in 27% of the cases where the GA was not able to find a low-error hypothesis, the
sizes of those hypotheses were still equal to the target DFA. If our criterion for success
is finding a DFA equal in size to the target, this approach is even more promising.

• We also evaluate performance against a purely random search as well as the blind
variant which does not use a fitness-directed search. On the same set of problems, the
configuration 32v3 finds 88 out of 128 low-error DFAs whereas both a random search
and the blind variant never manage to do so in spite of the fact that the blind variant
is performing at least the same number of extensions as the GA. This confirms our
intuition that the selection pressure applied by the fitness function is directing the
search towards more productive regions of the search space. Interestingly, the mean
error and DFA sizes of the hypotheses found by the blind variant are much better
than those obtained by a random search. This result supports our belief that starting
searches with high-reduction merges is a promising approach.

228

Learning DFAs by Evolving Short Sequences of Merges

• On our hardware,7 the optimised version of the GA using the best parameter config-
uration on 32-state problems takes an average of 19 seconds and 3,195 fitness evalu-
ations to run. For 64-state problems, the algorithm takes an average of 295 seconds
and 4,542 fitness evaluations. A direct runtime performance comparison with other
evolutionary methods is not meaningful since the chromosome encoding schemes and
fitness functions are completely different. For example, on noise-free training data, the
method by Lucas and Reynolds (2005) performed a maximum of 1,000,000 evaluations
×50 trials using a simpler and faster fitness function.

8. Conclusion

In this paper, we have described a GA that evolves short initial sequences of merges which,
when extended using a greedy heuristic based on EDSM, results in a much higher likelihood
of finding a low-error hypothesis. Our work is mostly comparable to Lucas and Reynolds
(2005) since we also focused on Abbadingo-style problem instances and used a similar eval-
uation strategy. Their experiments show that their smart state labelling approach performs
better than EDSM on target DFAs having between 4 and 16 states but is outperformed by
EDSM on 32-state target DFA problems at a density of 3,275 training strings. In compar-
ison, we evaluated our method on larger 32-state and 64-state target DFAs and find that
it consistently outperforms EDSM. Moreover, we used just 607 training strings to learn
32-state target DFAs from. On the other hand, their method can deal with noisy data
whereas we have not considered this challenge as yet.

We have also evaluated how our method behaves in several scenarios that are adver-
sarial to EDSM and found that it outperforms EDSM in all these cases too. We have
also proposed an optimisation strategy which can reliably estimate the size of a final hy-
pothesis without needing to complete an entire merge sequence. This technique results in
a significant speedup and may be applicable to other methods such as SAGE (Juillé and
Pollack, 1998), Ed-Beam (Lang, 1999), and dfasat (Heule and Verwer, 2013) which all rely
on constructing and evaluating large numbers of merge sequences to find good hypotheses.

Despite the promising results that we have obtained, the main weakness of our method
lies in the high computational cost associated with computing the fitness of a candidate
solution. Every chromosome (sequence of merges) must be extended using EDSM and,
therefore, the number of times that EDSM is called equals the population size multipled
by the number of generations. Although this cost is somewhat alleviated using our opti-
misation, we are now exploring new techniques to make our GA computationally feasible
on target DFAs having 128 states or larger. These improvements will also allow us to per-
form more effective grid searches for better hyperparameters. Another enhancement we are
currently investigating is modifying our algorithm to deal with noise in the training data.
The techniques for dealing with noisy data used by Habrard et al. (2003) and Lucas and
Reynolds (2005) are likely starting points for this investigation.

7. iMac 2019 with a six-core Intel i5 CPU running at 3.7 GHz and 24GB of DDR4 memory.

229

Learning DFAs by Evolving Short Sequences of Merges

References

Abbadingo One: Dfa learning competition. http://abbadingo.cs.nuim.ie, 1997. Ac-
cessed: 2017-05-19.

The Gowachin dfa learning benchmark. http://www.irisa.fr/Gowachin, 1997. Accessed:
2020-09-01.

Gecco: Learning dfas from noisy samples. http://cswww.essex.ac.uk/staff/sml/gecco/
NoisyDFA.html, 2004. Accessed: 2017-05-19.

John Abela, François Coste, and Sandro Spina. Mutually compatible and incompatible
merges for the search of the smallest consistent dfa. In International Colloquium on
Grammatical Inference, pages 28–39. Springer, 2004.

Tobias Blickle and Lothar Thiele. A comparison of selection schemes used in evolutionary
algorithms. Evolutionary Computation, 4:361–394, 1997.

Orlando Cicchello. A new limited search approach to learning abbadingo-style finite state
automata. Master’s thesis, The Faculty of Graduate Studies, University of Guelph, 2002.

Orlando Cicchello and Stefan C. Kremer. Beyond edsm. In Pieter W. Adriaans, Henning
Fernau, and Menno van Zaanen, editors, ICGI, volume 2484 of Lecture Notes in Computer
Science, pages 37–48. Springer, 2002. ISBN 3-540-44239-1.

David Combe, Colin de la Higuera, and Jean-Christophe Janodet. Zulu: An interactive
learning competition. In Anssi Yli-Jyrä, András Kornai, Jacques Sakarovitch, and Bruce
Watson, editors, Finite-State Methods and Natural Language Processing, pages 139–146,
Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. ISBN 978-3-642-14684-8.

François Coste and Jacques Nicolas. Regular inference as a graph coloring problem. In
In Workshop on Grammar Inference, Automata Induction, and Language Acquisition
(ICML’ 97), pages 9–7, 1997.

Colin de la Higuera. Grammatical Inference: Learning Automata and Grammars. Cam-
bridge University Press, New York, NY, USA, 2010. ISBN 9780521763165.

P. Dupont, L. Miclet, and E. Vidal. What is the search space of the regular inference?
In Rafael C. Carrasco and Jose Oncina, editors, Grammatical Inference and Applica-
tions, volume 862 of Lecture Notes in Computer Science, pages 25–37. Springer Berlin
Heidelberg, 1994. ISBN 978-3-540-58473-5.

Pierre Dupont. Regular Grammatical Inference from Positive and Negative Samples by
Genetic Search: the GIG Method, pages 236–245. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1994. ISBN 978-3-540-48985-6.

E Mark Gold. Complexity of automaton identification from given data. Information and
Control, 37(3):302–320, 1978. ISSN 0019-9958.

230

http://abbadingo.cs.nuim.ie
http://www.irisa.fr/Gowachin
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html
http://cswww.essex.ac.uk/staff/sml/gecco/NoisyDFA.html

Learning DFAs by Evolving Short Sequences of Merges

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1st edition, 1989.
ISBN 0201157675.

Amaury Habrard, Marc Bernard, and Marc Sebban. Improvement of the state merging rule
on noisy data in probabilistic grammatical inference. In Proceedings of the 14th European
Conference on Machine Learning, ECML’03, pages 169–180, Berlin, Heidelberg, 2003.
Springer-Verlag. ISBN 978-3-540-20121-2.

Paul Halmos. Naive Set Theory. Van Nostrand, 1960. ISBN 0387900926. Reprinted by
Springer-Verlag, Undergraduate Texts in Mathematics, 1974.

Marijn J. H. Heule and Sicco Verwer. Software model synthesis using satisfiability solvers.
Empirical Software Engineering, 18(4):825–856, 2013.

Colin G. Johnson. Genetic programming with fitness based on model checking. In Marc
Ebner, Michael O’Neill, Anikó Ekárt, Leonardo Vanneschi, and Anna Isabel Esparcia-
Alcázar, editors, Genetic Programming, pages 114–124, Berlin, Heidelberg, 2007. Springer
Berlin Heidelberg. ISBN 978-3-540-71605-1.

Hugues Juillé and Jordan B. Pollack. A sampling-based heuristic for tree search applied
to grammar induction. In Proceedings of the Fifteenth National/Tenth Conference on
Artificial Intelligence/Innovative Applications of Artificial Intelligence, AAAI ’98/IAAI
’98, pages 776–783, Menlo Park, CA, USA, 1998. American Association for Artificial
Intelligence. ISBN 0-262-51098-7.

Kevin J. Lang. Faster algorithms for finding minimal consistent dfas, 1999.

Kevin J. Lang, Barak A. Pearlmutter, and Rodney A. Price. Results of the abbadingo
one dfa learning competition and a new evidence-driven state merging algorithm. In
Vasant Honavar and Giora Slutzki, editors, Grammatical Inference, pages 1–12, Berlin,
Heidelberg, 1998. Springer Berlin Heidelberg. ISBN 978-3-540-68707-8.

Damián López and Pedro Garćıa. On the Inference of Finite State Automata from Positive
and Negative Data, pages 73–112. Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.
ISBN 978-3-662-48395-4.

S. M. Lucas and T. J. Reynolds. Learning deterministic finite automata with a smart state
labeling evolutionary algorithm. 2005.

Jose Oncina and Pedro Garćıa. Identifying regular languages in polynomial time. In Ad-
vances in Structural and Syntactic Pattern Recognition, Volume 5 of the Series in Ma-
chine Perception and Artificial Intelligence, pages 99–108. World Scientific, 1992.

Kaya Oğuz. True scores for tartarus with adaptive gas that evolve fsms on gpu. Information
Sciences, 525:1–15, 2020. ISSN 0020-0255. doi: https://doi.org/10.1016/j.ins.2020.03.072.

Hooman Shayani and Peter J. Bentley. A more bio-plausible approach to the evolutionary
inference of finite state machines. In Proceedings of the 9th Annual Conference Companion

231

Learning DFAs by Evolving Short Sequences of Merges

on Genetic and Evolutionary Computation, GECCO ’07, pages 2937–2944, New York,
NY, USA, 2007. ACM. ISBN 978-1-59593-698-1.

Astro Teller. The evolution of mental models. In Kenneth E. Kinnear, Jr., editor, Advances
in Genetic Programming, chapter 9, pages 199–219. MIT Press, 1994.

Fedor Tsarev and Kirill Egorov. Finite state machine induction using genetic algorithm
based on testing and model checking. In Proceedings of the 13th Annual Conference
Companion on Genetic and Evolutionary Computation, GECCO ’11, pages 759–762, New
York, NY, USA, 2011. Association for Computing Machinery. ISBN 9781450306904.

Neil Walkinshaw, Kirill Bogdanov, Christophe Damas, Bernard Lambeau, and Pierre
Dupont. A framework for the competitive evaluation of model inference techniques.
In Proceedings of the First International Workshop on Model Inference In Testing, MIIT
’10, pages 1–9, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
9781450301473.

Wojciech Wieczorek and Olgierd Unold. Induction of directed acyclic word graph in a
bioinformatics task. In Alexander Clark, Makoto Kanazawa, and Ryo Yoshinaka, editors,
The 12th International Conference on Grammatical Inference, volume 34 of Proceedings
of Machine Learning Research, pages 207–217, Kyoto, Japan, 2014. PMLR.

Appendix A. Detailed Results and Additional Figures

Table 4 shows the composition of the sets of problem instances used to evaluate our GA.
Sets A.32 through D.32 each contain 128 problem instances for 32-state target DFAs and
training sets containing 607 strings. Sets A.64 through D.64 each contain 64 random prob-
lem instances for 64-state target DFAs and training sets containing 1,521 strings. Each of
the sets A through D are characterised by whether the training sets are or are not struc-
turally complete, whether the target DFA has loop transitions or not, and whether the
rank of highest EDSM-scoring merges in the first step (at the APTA) contains at least one
colour-compatible merge.

Tables 5 and 6 show the results we obtained using various configurations of our GA
and compare them to monotonic EDSM. The tables show the number of problem instances
where the final hypothesis has an error of ≤ 1% on the testing set, the number of problem
instances where we find the exact target DFA, the mean error of the final hypotheses over
all problem instances, and the mean size of the final hypotheses over all problem instances.

232

Learning DFAs by Evolving Short Sequences of Merges

32-state target DFAs

Set Struct. compl. Loops CC merges in 1st step

A.32 Yes Mixed Mixed
B.32 Yes No Mixed
C.32 Yes Mixed No
D.32 No Mixed Mixed

64-state target DFAs

Set Struct. compl. Loops CC merges in 1st step

A.64 Yes Mixed Mixed
B.64 Yes No Mixed
C.64 Yes Mixed No
D.64 No Mixed Mixed

Table 4: The composition of problem instance sets.

≤ 1% Exact Mean Error Mean Size
Error Target (SD) (SD)

Set A.32: Structurally complete problem set

EDSM 21 5 18% (19.5) 72 (27)
Random 0 0 48.7% (2.2) 776 (21)
Blind 0 0 29.6% (10.1) 81 (10)
32v1 60 12 4.4% (8.7) 39 (14)
32v2 80 21 2.1% (6.2) 35 (10)
32v3 88 21 1.8% (6) 34 (8)

32v3† 75 21 3.7% (9.5) 37 (14)

Set B.32: No loops in target DFAs

EDSM 16 1 30.6% (20.3) 74 (27)

32v3† 76 25 5.5% (13.1) 39 (19)

Set C.32: No colour-compatible merge in 1st merge

EDSM 0 0 43.3% (8.3) 92 (9)

32v3† 66 15 6.1% (13.3) 41 (20)

Set D.32: Not structurally complete

EDSM 5 0 31.7% (17.8) 77 (23)

32v3† 52 0 4.2% (10) 36.8 (16)

Table 5: Results for 32-state target problems. Configurations with † use the optimisation
described in §5.

233

Learning DFAs by Evolving Short Sequences of Merges

≤ 1% Exact Mean Error Mean Size
Error Target (SD) (SD)

Set A.64: Structurally complete problem set

EDSM 8 1 32.3% (20.4) 161 (60)
64v1 17 1 12.6% (16) 110 (50)
64v2 36 3 5.9% (12) 86 (40)

64v2† 28 4 8.6% (15.3) 95 (50)

Set B.64: No loops in target DFAs

EDSM 6 0 38.4% (17.6) 179 (50)

64v2† 24 0 14.5% (19.4) 112 (62)

Set C.64: No colour-compatible merge in 1st merge

EDSM 1 0 45.9% (8.1) 200 (23)

64v2† 16 0 18.2% (20.6) 126 (62)

Set D.64: Not structurally complete

EDSM 4 0 35.6% (18.1) 173 (52)

64v2† 22 0 13.5% (18.7) 109 (59)

Table 6: Results for 64-state target problems. Configurations with † use the optimisation
described in §5.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235

Er
ro
r

Number of merges

Path length in merges against error in test set, heuristic=EDSM
64-state targets, 1,521 training strings, 1024 problem instances

Figure 4: The length of a merge sequence against error in testing set.

234

Learning DFAs by Evolving Short Sequences of Merges

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

55%

55 65 75 85 95 105 115 125 135 145 155 165 175 185 195 205 215 225 235

Er
ro
r

Final hypothesis size

Final hypothesis size against error in test set, heuristic=EDSM
64-state targets, 1,521 training strings, 1024 problem instances

Figure 5: The size of a final hypothesis against error in testing set. Data is similar but not
identical to Figure 4.

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65

St
at

es
 r

ed
uc

ed
 a

t
me

rg
e

st
ep

,
lo

g
li

ne
ar

Merge Step

Min Max Avg

State reductions from APTA to target DFA in n+1 steps
64-state targets, 1,521 training strings, 1024 problem instances

Figure 6: The number of states reduced in a partial hypothesis at each merge step.

235

Learning DFAs by Evolving Short Sequences of Merges

Trend Line
y = -0.1464x + 278.23

55

65

75

85

95

105

115

125

135

145

155

165

175

185

195

205

215

400 500 600 700 800 900 1000 1100 1200 1300 1400 1500

Si
ze

 o
f

th
e

Fi
na

l
Hy

po
th

es
is

 O
bt

ai
ne

d
us

in
g

ED
SM

Score of Parital Hypothesis at Merge Step n+1=65

Correlation between EDSM score and the size of the final hypothesis
64-state targets, 1,521 training strings, 1024 problem instances

Figure 7: Cumulative EDSM score of a partial hypothesis at merge step n+ 1 against the
final hypothesis size.

236

	Introduction
	Related Work
	Preliminaries
	State Merging
	Evidence Driven State Merging (EDSM)
	Colour-Compatible Merges
	Oracle-Assisted Heuristics

	Experimental Observations
	Adversarial Cases

	Evolving Merge Sequences
	Experimental Setup
	Results and Observations
	Conclusion
	Detailed Results and Additional Figures

