
Proceedings of Machine Learning Research 153:237–250, 2021 Proceedings of the 15th ICGI

The complexity of learning linear temporal formulas
from examples

Nathanaël Fijalkow nfijalkow@turing.ac.uk
CNRS, LaBRI, Université de Bordeaux, France, and The Alan Turing Institute, London, United
Kingdom

Guillaume Lagarde guillaume.lagarde@labri.fr

CNRS, LaBRI, Université de Bordeaux

Editors: Jane Chandlee, Rémi Eyraud, Jeffrey Heinz, Adam Jardine, and Menno van Zaanen

Abstract

In this paper we initiate the study of the computational complexity of learning linear
temporal logic (LTL) formulas from examples. We construct approximation algorithms
for fragments of LTL and prove hardness results; in particular we obtain tight bounds for
the fragment containing only the next operator and conjunctions, and prove NP-hardness
results for many fragments.

Keywords: passive learning, automata learning, linear temporal logic, approximation
algorithms

1. Introduction

We are interested in the complexity of learning formulas of Linear Temporal Logic (LTL)
from examples, in a passive scenario: from a set of positive and negative words, the objective
is to construct a formula, as small as possible, which satisfies the positive words and does
not satisfy the negative words.

Passive learning of languages has a long history paved with negative results. Learning
automata is notoriously difficult from a theoretical perspective, as witnessed by the original
NP-hardness result of learning a Deterministic Finite Automaton (DFA) from examples by
Gold (1978). This line of hardness results culminates with the inapproximability result
of Pitt and Warmuth (1993) stating that there is no polynomial time algorithm (unless
P = NP) for learning a DFA from examples even up to a polynomial approximation of their
size.

One approach to cope with such hardness results is to change representation, replacing
automata by logical formulas: their syntactic structures make them more amenable to
principled search algorithms. There is a range of potential logical formalisms to choose
from depending on the application domain. Linear Temporal Logic (Pnueli, 1977) is a
prominent logic for specifying temporal properties over words. It has become a de facto
standard in many fields such as model checking, program analysis, and motion planning
for robotics. A key property making LTL a strong candidate as a concept class is that its
syntax does not include variables, contributing to the fact that LTL formulas are typically
easy to interpret and therefore useful as explanations.

© 2021 N. Fijalkow & G. Lagarde.

Learning linear temporal formulas from examples

Over the past five to ten years learning temporal logics (of which LTL is the core)
has become an active research area, with applications in program specification (Lemieux
et al., 2015) and anomaly and fault detections (Bombara et al., 2016). A number of dif-
ferent approaches have been proposed, leveraging SAT solvers (Neider and Gavran, 2018),
automata (Camacho and McIlraith, 2019), and Bayesian inference (Kim et al., 2019), and
extended to more expressive logics such as Property Specification Language (PSL) (Roy
et al., 2020) and Computational Tree Logic (CTL) (Ehlers et al., 2020).

Nothing is known about the computational complexity of the underlying problem; indeed
the works cited above focused on constructing efficient algorithms for practical applications.
The goal of this paper is to initiate the study of the complexity of learning LTL formulas
from examples.

Our contributions. We present a set of results for three fragments of LTL. For all
three fragments we show that the learning problem is NP-complete. As usual for negative
complexity statements of this form, they are conditional in that they assume that P 6= NP.
The parameter n below is the number of positive (or negative) words in the input.

• In Section 3 we study LTL(X,∧), which is the fragment containing only the next
operator and conjunctions. We obtain matching upper and lower bounds on approxi-
mation algorithms: we show that there exists a polynomial time log(n)-approximation
algorithm for learning LTL(X,∧), and that the approximation ratio cannot be im-
proved for polynomial time algorithms.

• In Section 4 we study LTL(F,∧), which is the fragment containing only the eventually
operator and conjunctions. We construct an n-approximation algorithm and show that
there is no polynomial time (1− o(1)) · log(n)-approximation algorithm.

• In Section 5 we study LTL(F,X,∧,∨), which is the fragment containing the eventually
and next operators, conjunctions and disjunctions.

We conclude in Section 6, listing remaining open problems.

2. Preliminaries

Unless otherwise specified we use the alphabet Σ = {a, b} of size 2. We index words from
position 1 (not 0) and the letter at position i in the word w is w(i), so w = w(1) . . . w(`).
The empty word is ε.

The syntax1 of Linear Temporal Logic (LTL) includes atomic formulas c ∈ Σ, the
boolean operators ∧ and ∨, and the temporal operators X and F. The semantics of LTL
over finite words is defined inductively over formulas, through the notation w, i |= φ where
w ∈ Σ∗ is a word of length `, i ∈ [1, `] is a position in w, and φ an LTL formula. The
definition is given below for the atomic formulas and temporal operators X and F, with
boolean operators interpreted as usual.

1. LTL also includes a Globally operator G which is dual to F, and an Until operator U extending both
F and G. In this paper we only consider fragments of LTL(F,X,∧,∨).

238

Learning linear temporal formulas from examples

• w, i |= c if w(i) = c.

• Next: w, i |= Xφ if i < ` and w, i+ 1 |= φ.

• Eventually: w, i |= Fφ if w, i′ |= φ for some i′ ∈ [i, `].

We then write w |= φ if w, 1 |= φ and say that w satisfies φ. We consider fragments of LTL
by specifying which boolean connectives and temporal operators are allowed. For instance
LTL(X,∧) is the set of all LTL formulas using only atomic formulas, conjunctions, and
the next operator. The full logic we consider here is LTL = LTL(F,G,X,∧,∨). The size
of a formula is the size of its syntactic tree, so for instance the size of Fφ is the size of φ
plus one, and the size of φ1 ∧ φ2 is the sum of the sizes of φ1 and φ2 plus one. We say that
two formulas are equivalent if they have the same semantics.

The LTL learning problem. The LTL learning decision problem is:

INPUT: u1, . . . , un, v1, . . . , vm ∈ Σ∗ and k ∈ N,
QUESTION: does there exist an LTL formula φ of size at most k

such that for all j ∈ [1, n], we have uj |= φ,
and for all j ∈ [1,m], we have vj 6|= φ?

In that case we say that φ separates u1, . . . , un from v1, . . . , vm, or simply that φ is a
separating formula if the words are clear from the context. We call u1, . . . , un the positive
words, and v1, . . . , vm the negative words. The LTL learning problem is analogously defined
for any fragment of LTL.

Parameters for complexity analysis. Without loss of generality we can assume that
n = m (adding duplicate identical words to have an equal number of positive and negative
words). We also assume for technical convenience that all words have the same length `.
Therefore the three important parameters for the complexity of the LTL learning problem
are: the number of words n, the length of the words `, and the required formula size k.

Representation. The words given as input are represented in the natural way by listing
the letters. We emphasise a subtlety on the representation of k: it can be given in binary
(a standard assumption) or in unary.

In the first case, the input size is O(n · ` + log(k)), so the formula φ we are looking
for may be exponential in the input size. Therefore it is not clear a priori that the LTL
learning problem is in NP. Opting for a unary encoding, the input size becomes O(n ·`+k),
and in that case an easy argument shows that the LTL learning problem is in NP.

We follow the standard representation: k is given in binary, and therefore it is not
immediate that the LTL learning problem is in NP.

Convention. Typically i ∈ [1, `] is a position in a word and j ∈ [1, n] is used for indexing
words.

239

Learning linear temporal formulas from examples

A naive algorithm. Let us start our complexity analysis of the learning LTL problem
by constructing a naive algorithm for the whole logic.

Theorem 1 There exists an algorithm for learning LTL in time and space O(exp(k) ·n ·`),
where exp(k) is exponential in k.

Notice that the dependence of the algorithm presented in Theorem 1 is linear in n and
`, and it is exponential only in k, but since k is represented in binary this is potentially a
doubly-exponential algorithm.
Proof For a formula φ ∈ LTL, we write 〈φ〉 : {u1, . . . , un, v1, . . . , vn} → {0, 1}` for the
function defined by

〈φ〉(w)(i) =

{
1 if w, i |= φ,

0 if w, i 6|= φ,

for w ∈ {u1, . . . , un, v1, . . . , vn}.
Note that φ is separating if and only if 〈φ〉(uj)(1) = 1 and 〈φ〉(vj)(1) = 0 for all

j ∈ [1, n]. The algorithm simply consists in enumerating all formulas φ of LTL of size
at most k inductively, constructing 〈φ〉, and checking whether φ is separating. Initially,
we construct 〈a〉 and 〈b〉, and then once we have computed 〈φ〉 and 〈ψ〉, we can compute
〈φ ∧ ψ〉, 〈φ ∨ ψ〉, 〈Xφ〉 and 〈Fφ〉 in time O(n · `). To conclude, we note that the number of
formulas2 of LTL of size at most k is exponential in k.

Approximation algorithms. The goal of this paper is to understand the complexity
of learning fragments of LTL and to construct efficient approximation algorithms. An α-
approximation algorithm for learning LTL (or some fragment of LTL) does the following:
the algorithm either determines that there are no separating formulas, or constructs a
separating formula φ which has size at most α ·m with m the size of a minimal separating
formula.

3. LTL(X,∧)

Normalisation

We first state and prove a normalisation lemma for formulas in LTL(X,∧).
We define the class of “patterns” as formulas generated by the following grammar:

P
.
= Xic | Xi(c ∧ P) with i ≥ 0 and c ∈ Σ.

Unravelling the definition we get the following general form for patterns:

P = Xi1−1(c1 ∧Xi2−i1(· · · ∧Xip−ip−1cp) · · ·),

with 1 ≤ i1 < i2 < · · · < ip and c1, . . . , cp ∈ Σ. It is equivalent to the (larger in size) formula∧
q∈[1,p]X

iq−1cq, which states that for each q ∈ [1, p], the letter in position iq is cq.

2. The asymptotics can be obtained using classical techniques from Analytic Combinatorics, see Flajolet

and Sedgewick (2008): the number of LTL formulas of size k is asymptotically equivalent to
√
14·7k

2
√
πk3

.

240

Learning linear temporal formulas from examples

To determine the size of a pattern P we look at two parameters: its last position
last(P) = ip and its width width(P) = p. The size of P is last(P) + 2(width(P) − 1).
The two parameters of a pattern, last position and width, hint at the key trade-off we will
have to face in learning LTL(X,∧) formulas: do we increase the last position, to reach
further letters in the words, or the width, to further restrict the set of satisfying words?

Lemma 2 For every formula φ ∈ LTL(X,∧) there exists an equivalent pattern of size
smaller than or equal to φ.

Proof We proceed by induction on φ.

• Atomic formulas are already a special case of patterns.

• If φ = Xφ′, then by induction we get a pattern P equivalent to φ′, and XP is a
pattern and equivalent to φ.

• If φ = φ1 ∧φ2, then by induction we get two patterns P1 and P2 equivalent to φ1 and
φ2. We use the inductive definition for patterns to show that P1 ∧ P2 is equivalent to
another pattern. We focus on the case P1 = Xi1(c1 ∧ P ′1) and P2 = Xi2(c2 ∧ P ′2), the
other cases are simpler instances of this one.

There are two cases: i1 = i2 or i1 6= i2.

If i1 = i2, either c1 6= c2 and then P1 ∧ P2 is equivalent to false, which is the pattern
c1 ∧ c2, or c1 = c2, and then P1 ∧ P2 is equivalent to Xi1(c1 ∧ P ′1 ∧ P ′2). Since P ′1 is
smaller than φ1 and P ′2 is smaller than φ2, P

′
1 ∧P ′2 is smaller than φ, so we can apply

the induction hypothesis; P ′1 ∧ P ′2 is equivalent to a pattern P ′. Thus the pattern
Xi1(c1 ∧ P ′) is equivalent to P1 ∧ P2, hence to φ.

If i1 6= i2, without loss of generality i1 < i2, then P1 ∧ P2 is equivalent to Xi1(c1 ∧
P ′1 ∧Xi2−i1(c2 ∧P ′2)). Since P ′1 is smaller than φ1 and Xi2−i1(c2 ∧P ′2) is smaller than
φ2, P

′
1 ∧Xi2−i1(c2 ∧ P ′2) is smaller than φ, so we can apply the induction hypothesis;

P ′1 ∧Xi2−i1(c2 ∧ P ′2) is equivalent to a pattern P ′. Thus the pattern Xi1(c1 ∧ P ′) is
equivalent to P1 ∧ P2, hence to φ.

The first simple corollary of Lemma 2 is a non-deterministic polynomial time algorithm.

Theorem 3 The learning problem for LTL(X,∧) is in NP.

An approximation algorithm

Let us start by giving a polynomial time approximation algorithm: it constructs a separating
formula which is at most log(n) times larger than the smallest separating formula.

Theorem 4 There exists a O(n · `2) time log(n)-approximation algorithm for learning
LTL(X,∧).

241

Learning linear temporal formulas from examples

Algorithm 1: The greedy algorithm returning a log(n)-approximation of a minimal
separating LTL(X,∧)-formula with last position equal to the length of the words.

Data: Words u1, . . . , un, v1, . . . , vn of length `.
X ← {i ∈ [1, `] : ∃c ∈ Σ, ∀j ∈ [1, n], uj(i) = c}
for i ∈ X do

Yi ← {j ∈ [1, n] : vj(i) 6= u1(i) = u2(i) = · · · = un(i)}
end
I0 ← ∅
C0 ← ∅
x← 0
repeat

ix ← argmax {Card(Yi \ Cx) : i ∈ X \ Ix} ;
Ix+1 ← Ix ∪ {ix} ;
Cx+1 ← Cx ∪ Yix ;
x← x+ 1 ;

until Cx = [1, n] or Ix = X;
if Cx = [1, n] then

return The pattern corresponding to Ix
else

return No separating pattern with last position `
end

Proof Let u1, . . . , un, v1, . . . , vn be a set of 2n words of length `. Thanks to Lemma 2 we
are looking for a separating pattern:

P = Xi1−1(c1 ∧Xi2−i1(· · · ∧Xip−ip−1cp) · · ·).

For a pattern P we define I(P) = {i1, i2, . . . , ip}. Note that last(P) = max I(P) and
width(P) = Card(I(P)).

We define the setX = {i ∈ [1, `] : ∃c ∈ Σ, ∀j ∈ [1, n], uj(i) = c} holding the indices where
the positive words all agree. If P satisfies u1, . . . , un, then I(P) ⊆ X. Further, given I ⊆ X,
we can construct a pattern P such that I(P) = I and P satisfies u1, . . . , un: we simply
choose cq = u1(iq) = · · · = un(iq) for q ∈ [1, p]. We call P the pattern corresponding to I.

Recall that the size of the pattern P is last(P) + 2(width(P)−1). This makes the task
of minimising it difficult: there is a trade-off between minimising the last position last(P)
and the width width(P).

Let us consider the following easier problem: construct a log(n)-approximation of a
minimal separating pattern with last position equal to the length of the words. Assuming
we have such an algorithm, we obtain a log(n)-approximation of a minimal separating
pattern by running the previous algorithm on prefixes of length `′ for each `′ ∈ [1, `].

We now focus on the question of constructing a log(n)-approximation of a minimal sep-
arating pattern with last position equal to the length of the words. We refer to Algorithm 1
for the pseudocode. For a set I, we write CI =

⋃
{Yi : i ∈ I}: the pattern corresponding to

I does not satisfy vj if and only if j ∈ CI . In particular, the pattern corresponding to I is
separating if and only if CI = [1, n].

242

Learning linear temporal formulas from examples

The algorithm constructs a set I incrementally through the sequence (Ix)x≥0, with the
following easy invariant: for x ≥ 0, we have Cx = CIx . The algorithm is greedy: Ix is
augmented with i ∈ X \ Ix maximising the number of word indices added to Cx by adding
i, which is the cardinality of Yi \ Cx.

We now prove that this yields a log(n)-approximation algorithm. Let Popt be a minimal
separating pattern with last position `, inducing Iopt = I(Popt) ⊆ [1, `] of cardinal m. Note
that CIopt = [1, n].

We let nx = n− |Cx| and show the following by induction on x ≥ 0:

nx+1 ≤ nx ·
(

1− 1

m

)
= nx ·

m− 1

m
.

We claim that there exists i ∈ X \ Ix such that Card(Yi \ Cx) ≥ nx
m . Indeed, assume

towards contradiction that for all i ∈ X \ Ix we have Card(Yi \ Cx) < nx
m . In this case,

for any case subset I of cardinality m, I ′ = I ∪ Ix is such that |CI′ | < |Cx| + |I| · nxm ≤
(n − nx) + mnx

m ≤ n, contradicting the existence of Iopt. Thus there exists i ∈ X \ Ix
such that Card(Yi \ Cx) ≥ nx

m , implying that the algorithm chooses such an i and nx+1 ≤
nx − nx

m = nx ·
(
1− 1

m

)
.

The proved inequality implies nx ≤ n ·
(
1− 1

m

)x
. This quantity is less than 1 for

x ≥ log(n)·m, implying that the algorithm stops after at most log(n)·m steps. Consequently,
the pattern corresponding to I has size at most log(n) · |Popt|, completing the claim on
approximation.

A naive complexity analysis yields an implementation of Algorithm 1 running in time
O(n · `), leading to an overall complexity of O(n · `2) by running Algorithm 1 on the prefixes
of length `′ of u1, . . . , un, v1, . . . , vn for each `′ ∈ [1, `].

Hardness results

The algorithm we just constructed implied a log(n)-approximation, begging the question
whether this can be improved. We prove here, conditionally to very standard complexity
assumptions, that the approximation ratio is optimal.

Theorem 5 The LTL(X,∧) learning problem is NP-hard, and there are no (1 − o(1)) ·
log(n) polynomial time approximation algorithms unless P = NP, even for a single positive
word.

Note that Theorem 4 and Theorem 5 yield matching upper and lower bounds on ap-
proximation algorithms for learning LTL(X,∧).

The hardness result stated in Theorem 5 follows from a reduction to the set cover
problem, which we define now. The set cover decision problem is: given S1, . . . , S` subsets
of [1, n] and k ∈ N, does there exists I ⊆ [1, `] of size at most k such that

⋃
i∈I Si = [1, n]?

In that case we say that I is a cover. An α-approximation algorithm returns a cover of size
at most α · k where k is the size of a minimal cover. The following results form the state of
the art for solving exact and approximate variants of the set cover problem.

243

Learning linear temporal formulas from examples

Theorem 6 (Dinur and Steurer (2014)) The set cover problem is NP-complete, and
there are no (1− o(1)) · log(n) polynomial time approximation algorithms unless P = NP.

We proceed with proving Theorem 5.
Proof We construct a reduction from set cover. Let S1, . . . , S` be subsets of [1, n] and
k ∈ N.

Let us consider the word u = a`+1, and for each j ∈ [1, n] and i ∈ [1, `], writing vj(i) for
the ith letter of vj :

vj(i) =

{
b if j ∈ Si,
a if j /∈ Si,

and we set vj(`+ 1) = a for any j ∈ [1, n]. We also add vn+1 = a`b.
We claim that there is a cover of size k if and only if there is a formula of size `+ 2k− 1

separating u from v1, . . . , vn+1.
Thanks to Lemma 2 we can restrict our attention to patterns, i.e formulas of the form

(we adjust the indexing for technical convenience)

φ = Xi1−1(c1 ∧Xi2−i1(· · · ∧Xip+1−ipcp+1) · · ·),

for some positions i1 ≤ · · · ≤ ip+1 and letters c1, . . . , cp+1 ∈ Σ. If φ satisfies u, then
necessarily c1 = · · · = cp+1 = a. This implies that if φ does not satisfy vn+1, then necessarily
ip+1 = `+ 1.

We associate to φ the set I = {i1 ≤ · · · ≤ ip}. Note that φ is equivalent to the larger
formula

∧
q∈[1,p]X

iq−1a ∧X`a, and its size is `+ 1 + 2(|I| − 1).
By construction, φ separates u from v1, . . . , vn+1 if and only if I is a cover. Indeed, I

is a cover if and only if for every j ∈ [1, n] there exists i ∈ I such that j ∈ Si. This is
equivalent to the fact that for every j ∈ [1, n] we have vj 6|= φ.

4. LTL(F,∧)

As we will see, LTL(F,∧) over an alphabet of size 2 is very weak. This degeneracy vanishes
when considering alphabets of size at least 3. Let us fix a (finite) alphabet Σ.

Minimal formulas

Instead of defining a normal form as we did for LTL(X,∧) we characterise the expressive
power of LTL(F,∧) and construct for each property expressible in this logic a minimal
formula.

Let us consider two words u = u(1) . . . u(`′) and v = v(1) . . . v(`). We say that u is a
subsequence of v if there exists φ : [1, `′] → [1, `] increasing such that v(φ(i)) = u(i). For
example abba is a subsequence of babaaaaba. We say that a word is non-repeating if every
two consecutive letters are different.

Lemma 7 For every formula φ ∈ LTL(F,∧), either it is equivalent to false or there exists
a finite set of non-repeating words w1, . . . , wp and c ∈ Σ ∪ {ε} such that for every word z,

z |= φ if and only if

{
for all q ∈ [1, p], wq is a subsequence of z,

and z starts with c.

244

Learning linear temporal formulas from examples

Lemma 7 gives a characterisation of the properties expressible in LTL(F,∧). It implies
that over an alphabet of size 2 the fragment LTL(F,∧) is very weak. Indeed, there are
very few non-repeating words over the alphabet Σ = {a, b}: only prefixes of abab . . . and
baba This implies that formulas in LTL(F,∧) over Σ = {a, b} can only place lower
bounds on the number of alternations between a and b (starting from a or from b) and
check whether the word starts with a or b. In particular, the LTL(F,∧) learning problem
over this alphabet is (almost) trivial and thus not interesting. Hence we now assume that
Σ has size at least 3.

We move back from semantics to syntax, and show how to construct minimal formulas.
Let w1, . . . , wp be a finite set of non-repeating words and c ∈ Σ ∪ {ε}. We define a formula
φ as follows.

Let us first associate to w1, . . . , wp an acyclic directed graph: the set of vertices is the
set of words w which are prefixes of some w1, . . . , wp, and there is an edge from w to wc
for any word w and letter c. Note that the graph is acyclic (since following an edge we add
a letter), so it is a forest, meaning a set of trees. We interpret each tree t as a formula φt
in LTL(F,∧) as follows, in an inductive fashion: if the tree consists of only a leaf wa, then
we let φt = a, and otherwise let wa the root of t and t1, . . . , tq its subtrees, then

φt = F(a ∧
∧
i

φti).

As an example, consider the set of words ab, ac, bab. The forest corresponding to ab, ac, bab
contains two trees: one contains the nodes b, ba, bab, and the other one the nodes a, ab, ac.
The two corresponding formulas are

F(b ∧ F(a ∧ Fb)) ; F(a ∧ Fb ∧ Fc).

To obtain the minimal formula equivalent to φ, we make the following case distinction:
if c = ε, then the formula associated to w1, . . . , wp and c is the conjunction of the formulas
for each tree of the forest, and if c ∈ Σ, then the formula additionally has a conjunct c. For
instance, the formula corresponding to the set of words ab, ac, bab, and the letter a is

a ∧ F(b ∧ F(a ∧ Fb)) ∧ F(a ∧ Fb ∧ Fc).

Lemma 8 For every set of non-repeating words w1, . . . , wp and c ∈ Σ ∪ {ε}, the formula
φ constructed above is minimal, meaning there are no smaller equivalent formulas.

Applying the construction above to a single non-repeating word w = c1 . . . cp we obtain
what we call a “fattern” (pattern with an F):

F = F(c1 ∧ F(· · · ∧ Fcp) · · ·),

We say that the non-repeating word w induces the fattern F above, and conversely that the
fattern F induces the word w. The size of a fattern F is 3|w| − 1. Adding the initial letter
we obtain a grounded fattern c∧F , in that case the letter c is added at the beginning of w
and the size is 3|w| − 2.

A first corollary of Lemmas 7 and 8 is a non-deterministic polynomial time algorithm.

245

Learning linear temporal formulas from examples

Theorem 9 The learning problem for LTL(F,∧) is in NP.

The following two normalisation lemmas show the role of fatterns for separating formulas
in LTL(F,∧).

Lemma 10 Let u1, . . . , un, v1, . . . , vn be a set of 2n words. If there exists φ ∈ LTL(F,∧)
separating u1, . . . , un from v1, . . . , vn, then there exists a conjunction of at most n fatterns
separating u1, . . . , un from v1, . . . , vn.

Lemma 11 Let u, v1, . . . , vn be a set of n + 1 words. If there exists φ ∈ LTL(F,∧)
separating u from v1, . . . , vn, then there exists a fattern of size smaller than or equal to φ
separating u from v1, . . . , vn.

A dynamic programming algorithm

Let us define the following intermediate problem called shortest subsequence: given a set
of 2n words u1, . . . , un, v1, . . . , vn, the goal is to find the shortest word w such that for all
j ∈ [1, n], w is a subsequence of uj and not a subsequence of vj .

Lemma 10 and Lemma 11 imply that learning LTL(F,∧) in both cases of a single
positive word and a single negative word is equivalent to the shortest subsequence problem,
since minimising the size of a fattern is equivalent to minimising the size of the word it
induces. In particular, this implies that the shortest subsequence problem is in NP. Let us
construct an algorithm for solving the shortest subsequence problem and then discuss its
consequences for learning LTL(F,∧).

Lemma 12 There exists an algorithm solving the shortest subsequence problem running
in time O(n · (2` + |Σ| · `)).

Proof We use Python-inspired notation for suffixes: we let w(k :) denote the word obtained
from w starting at position k.

Let us write i = (i1, i2, . . . , in, i
′
1, i
′
2, . . . , i

′
n) for a tuple of positions in each of the 2n

words. We include the special position ω and for w a word, a a letter and i a position we
define ind(w, a, i) = min{i′ : w(i′) = a, i′ ≥ i} with the convention that ind(w, a, i) = ω if
there is no such i′. Let R(i) be the length of a shortest word w such that for all j ∈ [1, n],
w is a subsequence of uj(ij :) and not a subsequence of vj(i

′
j :). We construct a dynamic

programming algorithm populating the table R; the goal is to compute R(1, 1, . . . , 1).
The key equality on which the algorithm relies is

R(i) = min

{
1 + R(i1 + 1, ni2, . . . , nin, ni

′
1, . . . , ni

′
n)

R(i1 + 1, i2, . . . , in, i
′
1, . . . , i

′
n)

,

where nij = ind(uj , u1(i1), ij) and ni′j = ind(vj , u1(i1), i
′
j). It corresponds to the following

case distinction: we consider the shortest subsequence w from i together with the functions
φi mapping w to each u1, . . . , un, v1, . . . , vn. Then

• either φ1(1) = i1, and then necessarily φi(1) ≥ nii for i ∈ [2, n] and φi′(1) ≥ ni′i, so
w(2 :) is the shortest subsequence starting from (i1 + 1, ni2, . . . , nin, ni

′
1, . . . , ni

′
n),

246

Learning linear temporal formulas from examples

• or φ1(1) > i1, and then w is the shortest subsequence starting from the tuple (i1 +
1, i2, . . . , in, i

′
1, . . . , i

′
n).

Complexity analysis. There are at most 2` subsequences and processing each is done
in time O(n) since we need to query the values ind(uj , u1(i1), ij) and ind(vj , u1(i1), i

′
j)

for j ∈ [1, n]. The naive algorithm to compute all the values ind(w, c, i) runs in time
O(n · |Σ| · `2) but this can be easily reduced to a running time of O(n · |Σ| · `).

We now show how to instantiate the previous algorithm for learning LTL(F,∧).

Theorem 13

• There exists a O(n · (2` + |Σ| · `)) time algorithm for learning LTL(F,∧) with a single
negative word.

• There exists a O(n · (2` + |Σ| · `)) time algorithm for learning LTL(F,∧) with a single
positive word.

• There exists a O(n2 · (2` + |Σ| · `))) time n-approximation algorithm for learning
LTL(F,∧).

Hardness results

Theorem 14 The LTL(F,∧) learning problem is NP-hard, and there are no (1 − o(1)) ·
log(n) polynomial time approximation algorithms unless P = NP, even with a single positive
word.

The result follows from a reduction from the hitting set problem. The hitting set decision
problem is: given C1, . . . , Cn subsets of [1, `] and k ∈ N, does there exist H subset of [1, `]
of size at most k such that for every j ∈ [1, n] we have H ∩Cj 6= ∅. In that case we say that
H is a hitting set.

The hitting set problem is an equivalent formulation of the set cover problem, but it
is here technically more convenient to construct a reduction from the hitting set problem.
The hardness results stated in Theorem 6 apply to the hitting set problem.

We can now prove Theorem 14.
Proof We construct a reduction from the hitting set problem. Let C1, . . . , Cn be subsets
of [1, `] and k ∈ N. Let us consider the alphabet [0, `]. We define the word u = 012 . . . `.
For each j ∈ [1, n] we let [1, `] \ Cj =

{
aj,1 < · · · < aj,mj

}
, and define vj = 0aj,1 . . . aj,mj .

We claim that there exists a hitting set of size at most k if and only if there exists a
formula in LTL(F,∧) of size at most 3k − 1 separating u from v1, . . . , vn.

Let H = {c1, . . . , ck} be a hitting set of size k with c1 < c2 < · · · < ck. We construct
the (non-grounded) fattern induced by w = c1 . . . ck, it separates u from v1, . . . , vn and has
size 3k − 1.

Conversely, let φ be a formula in LTL(F,∧) of size 3k− 1 separating u from v1, . . . , vn.
Thanks to Lemma 11 we can assume that φ is a fattern. Let w = c1 . . . ck be the non-
repeating word it induces. Necessarily c1 < c2 < · · · < ck. If φ is grounded then c1 = 0, but
then the (non-grounded) fattern induced by c2 . . . ck is also separating, so we can assume

247

Learning linear temporal formulas from examples

that φ is not grounded. We let H = {c1, . . . , ck}, and argue that H is a hitting set. Indeed,
H is a hitting set if and only if for every j ∈ [1, n] we have H ∩Cj 6= ∅, which is equivalent
to for every j ∈ [1, n] we have vj 6|= φ; indeed for ci ∈ H ∩ Cj by definition ci does not
appear in vj so vj 6|= Fci.

5. LTL(F,X,∧,∨)

Theorem 15 The learning problem for LTL(F,X,∧,∨) is in NP.

A closer inspection at this proof shows that the argument applies to any fragment
containing X,∧, and ∨; in particular this shows that the learning problem for LTL =
LTL(G,F,X,∧,∨) is in NP.

Hardness result

We show that the reduction constructed in Section 3 extends to LTL(F,X,∧,∨).

Theorem 16 The LTL(F,X,∧,∨) learning problem is NP-hard, and there are no (1 −
o(1)) · log(n) polynomial time approximation algorithms unless P = NP, even for a single
positive word.

To prove Theorem 16, we show that the reduction constructed in Theorem 5 is also a
reduction from set cover to the LTL(F,X,∧,∨) learning problem.

To prove this result we need a reduction lemma for disjunctions that we state now. Let
φ ∈ LTL(F,X,∧,∨). We define D(φ) ⊆ LTL(F,X,∧) by induction:

• If φ = c then D(φ) = {c}.

• If φ = φ1 ∧ φ2 then D(φ) = {ψ1 ∧ ψ2 : ψ1 ∈ D(φ1), ψ2 ∈ D(φ2)}.

• If φ = φ1 ∨ φ2 then D(φ) = D(φ1) ∪D(φ2).

• If φ = Xφ′ then D(φ) = {Xψ : ψ ∈ D(φ′)}.

• If φ = Fφ′ then D(φ) = {Fψ : ψ ∈ D(φ′)}.

Lemma 17 For any u, v1, . . . , vn, if φ separates u from v1, . . . , vn, then there exists ψ ∈
D(φ) which separates u from v1, . . . , vn.

6. Open problems

Open problem 1:
Does there exist a polynomial time o(n)-approximation algorithm for learning LTL(F,∧)?

We have proved that the learning problem is NP-complete for LTL(X,∧),LTL(F,∧),
and LTL(F,X,∧,∨). These complexity results do not extend to larger fragments: the
complexity might be either lower or higher, since the logic is a priori more expressive.
In this paper we restricted ourselves to the temporal operators X and F; let us call ‘full

248

Learning linear temporal formulas from examples

LTL’ the logic obtained by adding the globally operator G and the until operator U. The
reduction used for proving the last result does not extend to full LTL (indeed Ga separates
u from v1, . . . , vn+1).

Open problem 2:
Is the learning problem NP-complete for full LTL?

Acknowledgments

We thank Daniel Neider for introducing us to this fascinating question, and the reviewers
for their very useful comments.

References

Giuseppe Bombara, Cristian Ioan Vasile, Francisco Penedo Alvarez, Hirotoshi Yasuoka,
and Calin Belta. A Decision Tree Approach to Data Classification using Signal Temporal
Logic. In Hybrid Systems: Computation and Control, HSCC, 2016. URL https://doi.

org/10.1145/2883817.2883843.

Alberto Camacho and Sheila A. McIlraith. Learning interpretable models expressed in linear
temporal logic. International Conference on Automated Planning and Scheduling, ICAPS,
29, 2019. URL https://ojs.aaai.org/index.php/ICAPS/article/view/3529.

Irit Dinur and David Steurer. Analytical approach to parallel repetition. In Symposium on
Theory of Computing, STOC, pages 624–633, 2014. URL https://doi.org/10.1145/

2591796.2591884.

Rüdiger Ehlers, Ivan Gavran, and Daniel Neider. Learning properties in LTL ∩ ACTL from
positive examples only. In Formal Methods in Computer Aided Design, FMCAD, 2020.
URL https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_17.

Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge Univer-
sity Press, 2008. URL http://algo.inria.fr/flajolet/Publications/AnaCombi/

anacombi.html.

E. Mark Gold. Complexity of automaton identification from given data. Information
and Control, 37(3):302–320, 1978. URL https://doi.org/10.1016/S0019-9958(78)

90562-4.

Joseph Kim, Christian Muise, Ankit Shah, Shubham Agarwal, and Julie Shah. Bayesian
inference of linear temporal logic specifications for contrastive explanations. In In-
ternational Joint Conference on Artificial Intelligence, IJCAI, 2019. URL https:

//doi.org/10.24963/ijcai.2019/776.

Caroline Lemieux, Dennis Park, and Ivan Beschastnikh. General LTL specification min-
ing. In International Conference on Automated Software Engineering, ASE, 2015. URL
https://doi.org/10.1109/ASE.2015.71.

249

https://doi.org/10.1145/2883817.2883843
https://doi.org/10.1145/2883817.2883843
https://ojs.aaai.org/index.php/ICAPS/article/view/3529
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.1145/2591796.2591884
https://doi.org/10.34727/2020/isbn.978-3-85448-042-6_17
http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html
http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.1016/S0019-9958(78)90562-4
https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.24963/ijcai.2019/776
https://doi.org/10.1109/ASE.2015.71

Learning linear temporal formulas from examples

Daniel Neider and Ivan Gavran. Learning linear temporal properties. In Formal Methods
in Computer Aided Design, FMCAD, 2018. URL https://doi.org/10.23919/FMCAD.

2018.8603016.

Leonard Pitt and Manfred K. Warmuth. The minimum consistent DFA problem cannot
be approximated within any polynomial. Journal of the ACM, 40(1):95–142, 1993. URL
https://doi.org/10.1145/138027.138042.

Amir Pnueli. The temporal logic of programs. In Symposium on Foundations of Computer
Science, SFCS, 1977. URL https://doi.org/10.1109/SFCS.1977.32.

Rajarshi Roy, Dana Fisman, and Daniel Neider. Learning interpretable models in the prop-
erty specification language. In International Joint Conference on Artificial Intelligence,
IJCAI, 2020. URL https://doi.org/10.24963/ijcai.2020/306.

250

https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.23919/FMCAD.2018.8603016
https://doi.org/10.1145/138027.138042
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.24963/ijcai.2020/306

	Introduction
	Preliminaries
	LTL(X,)
	LTL(F,)
	LTL(F,X,,)
	Open problems

