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Abstract

We extend a recent consistent strong learning algorithm for a subclass of probabilistic
context-free grammars in Chomsky normal form, (Clark and Fijalkow, 2020) to a much
larger class of grammars by weakening the normal form constraints to allow for a richer class
of derivation structures that are not necessarily binary branching, including among other
possibilities unary branching trees which introduce some technical difficulties. By modifying
the structural conditions appropriately we obtain an algorithm which is computationally
efficient, and a consistent estimator for the class of grammars defined.

Keywords: context-free grammars; probabilistic learning; consistent estimator; strong
learning.

1. Introduction

Recently Clark and Fijalkow (2020), (CF after this) presented an algorithm for strong
learning of Probabilistic Context-Free Grammars (PCFGs). In this learning framework,
which was initiated by Horning (1969), we have some class of PCFGs and the learner
receives a sample of strings generated by some unknown PCFG in the class, and must
return a PCFG where the underlying CFG is isomorphic to the target PCFG and where
the parameters are close to the original, using a standard ε,δ convergence. This is strong
learning where we have to learn the correct structure of the grammar and distribution over
trees, not weak learning where all we want is the correct distribution over strings.

The class of PCFGs studied by CF consists of all PCFGs where the underlying CFG is
in Chomsky Normal Form and which satisfy three structural conditions: being anchored,
strictly upward monotonic (sum) and locally unambiguous (lua), which conditions we
define below. Here we keep the three structural conditions more or less unchanged and
weaken the CNF condition, allowing CFGs that have non binary branching productions,
and treating the start symbol differently. This requires a weakening of the sum condition.

There are several motivations for this approach: firstly while CNF is a normal form for
the whole class of CFGs, in the sense that every context-free language can be defined by
a grammar in CNF, in the strong learning setting the change in rule formats changes the
classes of languages in significant respects, so this modification greatly enlarges the classes
of grammars and languages that can be learned. Secondly, adding unary rules allow one
to have grammars which have a hierarchy of nonterminals that can represent, partially,
sets of feature structures which are essential for modeling syntax (φ-features in syntactic
terms). Finally, while CFGs have a fairly simple type of rules, and CNF is a natural normal
form, more linguistically adequate formalisms like Multiple Context-Free Grammars (Seki
et al., 1991) have much more complex families of rules and it’s crucial to understand how
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to manipulate the sets of allowable rule types while maintaining learnability, and this is
best started with a more tractable formalism. For example, Tree-Adjoining Grammars,
considered as tree grammars (Kepser and Rogers, 2011) typically have productions whose
right hand sides are quite large, and therefore a “minimal” normal form may be inadequate
for the purposes of strong learning (Clark, 2021).

In the context of syntax, the binary branching restriction is fairly standard (Kayne,
1984), but CFGs are widely used in other problem domains with hierarchical structure, and
in any event there are a number of phenomena in natural language which naturally require
non binary branching structures.

2. Technical Preliminaries

A CFG is as usual a tuple 〈Σ, V, S, P 〉 where Σ is a nonempty finite set of symbols, called
the terminal symbols, V is a nonempty finite set of nonterminal symbols, disjoint from Σ,
S is a distinguished element of V called the start symbol, and P ⊆ V × (V ∪Σ)∗ is a finite
set of productions, where a production π is written as A → α for A ∈ V , α ∈ (V ∪ Σ)∗.
Throughout we will use upper case letters A,B,C, . . . for nonterminals and lower case
letters for terminals, and α, β, γ for strings of nonterminals and terminals.

A grammar is in Chomsky Normal Form (CNF) if the productions are a subset of
V × (Σ ∪ (V \ {S})2). We exclude epsilon productions in this paper.

We will weaken the CNF condition later but in this paper we will maintain the restriction
that productions either have a nonempty string of nonterminals or a single terminal on
their right hand side, and that S occurs only on the left hand side of a production. So the
productions are a subset of V × (Σ ∪ (V \ {S})+).

As is standard we will define ⇒G as a string rewriting relation between strings over
(V ∪ Σ)∗, where βAγ ⇒G βαγ if A → α ∈ P , and ⇒∗ as the reflexive transive closure of

⇒. Using this semantics the language defined by the grammar is {w ∈ Σ∗ | S ∗⇒ w}. A
language here is just a subset of Σ∗, the set of all finite length strings of elements from Σ.

We will also give a tree based semantics for the CFG formalism, since PCFGs define
a distribution over trees. We will treat the set of productions as a ranked alphabet where
the rank of each production is the number of nonterminals on the right hand side of the
production. We also add a set of context symbols {�B | B ∈ V }, which have rank 0. The
sort of a production B → α and a context symbol �B is B. The sort of a tree is the sort
of the label of the root of the tree. We define Ω(G) to be the set of trees over this ranked
alphabet, including the context symbols, which satisfy the obvious compatibility constraint
that if a production π labels a node, then the ith nonterminal on the right hand side of π
is the sort of the ith child of that node. We can also write trees using prefix notation so
π(τ1, τ2) for example refers to the tree whose root is labeled with π a production of rank
2, with two child subtrees τ1 and τ2, and we will lift this to sets in the natural way: so
π(Ω1,Ω2) = {π(τ1, τ2) | τ1 ∈ Ω1, τ2 ∈ Ω2}.
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We define the yield of a tree, y(τ), to be the left to right sequence of leaves of τ ,
interpreting the context symbols �B as a distinguished gap symbol, �, not in Σ.

y(π(τ1, . . . , τk)) = y(τ1) · · · · · y(τk) if rank of π > 0

y(π) = a if π = A→ a

y(�B) = �

A context l�r can be combined with a string u using the operation � defined as l�r� u =
lur. We need to count things in trees so we write f(π; τ) for the number of times the
production π occurs in τ . The set Ω(G,B, Y ) is the set of trees in Ω(G) of sort B where
the yield is in Y for some set of strings Y . We define L(G,A) = {y(τ) | τ ∈ Ω(G,A,Σ∗)},
and the language defined by G is L(G,S).

The set Ξ(G,B) is the set of derivation contexts of B. These are trees of sort S which
have exactly one occurrence of the symbol �B in and no other occurrences of context
symbols. These will have yields in Σ∗�Σ∗. We define C(G,A) = {y(τ) | τ ∈ Ξ(G,A)}.

We can combine a context ξ ∈ Ξ(G,B) with a tree τ ∈ Ω(G,B) by replacing the
occurrence of �B with τ , to get a tree in Ω(G,S), we write this as ξ ⊕ τ . Note that
y(ξ ⊕ τ) = y(ξ)� y(τ).

2.1. Weighted CFGs

A stochastic language is a function P from Σ∗ → [0, 1] such that
∑

w∈Σ∗ P(w) = 1. Given
such a language the expected number of times a string u ∈ Σ∗ occurs is defined to be
E(u) =

∑
l,r∈Σ∗ P(lur). We also can define the pointwise mutual information of a string

w = a1 . . . ak to be

PMI(w) = log
E(w)∏
i E(ai)

A Weighted CFG (WCFG) G; θ is a CFG together with a function θ from the set of
productions to positive real numbers. The weight of a tree is defined as

w(τ ; θ) =
∏
π∈P

θ(π)f(π;τ)

Note that for matching contexts ξ and trees τ , w(ξ ⊕ τ) = w(ξ)w(τ). The weight of a set
of trees is the sum of the weights of the trees in the set. This may be infinite if the set is
infinite. For a nonterminal A we define the inside and outside normalisation factors to be:

I(A) = w(Ω(G,A,Σ∗))

O(A) = w(Ξ(G,A))

If I(S) = 1, the grammar defines a probability distribution over Ω(G,S,Σ∗) and via that
a stochastic language whose support is equal to L(G), where P(u) = w(Ω(G,S, {u}). With
respect to this distribution we can define expectations of productions and nonterminals:

E(π) =
∑
τ

w(τ)f(π; τ)
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The expectation of a nonterminal is just the natural sum: E(A) =
∑

α E(A → α). The
following identities follow:

E(A) = O(A)I(A)

E(A→ B1 . . . Bk) = O(A)θ(A→ B1 . . . Bk)
∏
i

I(Bi)

E(A→ a) = O(A)θ(A→ a)

There are as CF observe, two natural parameterisations: one is the standard PCFG model
where I(A) = 1 for all nonterminals A, and the other is the bottom up model, where
O(A) = 1 and I(A) = E(A) under which assumptions the parameters take the values:

θ(A→ B1 . . . Bk) =
E(A→ B1 . . . Bk)∏

i E(Bi)

θ(A→ a) = E(A→ a).

We can convert between the two formalisms by numerically solving various systems of
equations (Nederhof and Satta, 2009).

The advantage of the bottom up model, in the context of learning, is that this gives a
well defined probability distribution over the contexts, rather than the yields; as we shall
see, the learning method we use depends on modeling exactly these context distributions.

3. Distributional learning

We use a family of algorithms broadly called distributional learning, as surveyed in Clark
and Yoshinaka (2016), which operate by modeling the Galois connection between derivation
contexts and derivation yields: in the case of CFGs, the contexts of a nonterminal A are l�r
and the yields are simple substrings: note that by the context-free property of the grammar:
C(G,A)�L(G,A) ⊆ L for any nonterminal A. We can learn therefore by locating suitable
sets of contexts and strings that satisfy this condition. For a set of strings W we define its
distribution in a language to be:

W . = {l�r | l�r �W ⊆ L}

In the case of a single string w we write w. for {w}.. For a set of contexts C we define:

C/ = {w | C � w ⊆ L}

Together the function (·)./ form a closure operator on the set of strings Σ∗. Note that
L is always a closed set of strings in that L = L./.

Various learning algorithms have been proposed using this lattice directly or indirectly:
here we are concerned with so-called primal algorithms, where a nonterminal is defined by
a string or set of strings: given a string w, we define a nonterminal that can or should
generate all strings in w./.

Given a stochastic language whose support is L, a string u with E(u) > 0 defines a
probability distribution over its contexts which we denote u, whose support is u., where
for l�r,

u(l�r) =
P(lur)

E(u)
.
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To measure similarity between two such distributions we need to use a generalization of
the familiar Kullback-Liebler divergence called the Rényi divergence with α =∞, which is
defined as:

R∞ (u‖v) = sup
l�r∈u.

log
u(l�r)
v(l�r)

The need for this divergence rather than some other measure of distributional similarity is
explained below in Subsection 4.1.

4. Structural Conditions and Grammar Format

We can now define the class of grammars that we will consider; we start by defining the
normal form that we use: for any r ≥ 2 the class of grammars Gr consists of all CFGs with
productions of the type:

• A→ B1, . . . Bk where 1 ≤ k ≤ r, where Bi 6= S

• A→ a, where a is a terminal symbol, and A 6= S

For a grammar G we define P (G, r) to be the (finite) set of all possible rules using the
nonterminals and terminals in G that are in the class Gr; the actual set of productions P
is a subset of this. It’s clear that (modulo the empty string) for any r each of these classes
can define all context-free languages. G2 differs from CNF in two respects: we allow unary
rules, and there are no lexical productions with the start symbol on the left hand side.

We now define three structural conditions: the most fundamental is anchoring (Stratos
et al., 2016).

Definition 1 A grammar is anchored if for every nonterminal A, apart from S, there is
some terminal a such that A→ a is in the grammar and no other production using a is in
the grammar. In this case we will say that a is an anchor for the nonterminal A.

If this assumption holds, then distributionally the terminal a will behave like the non-
terminal A that it anchors in the sense that a. = C(G,A). We can therefore infer something
about the parameters of productions involving A from the distributional properties of a.

This definition differs from CF only in that we don’t require the start symbol to be
anchored: indeed it can’t be anchored in this formalism since we cannot have a production
like S → a. However we will define a terminal symbol s not in Σ, and stipulate that
s/ = {�}; s is then the distribution that assigns probability 1 to this empty context. This
allows us to treat the start and non-start symbols uniformly. If the terminal symbol a is an
anchor we will write [[a]] for the nonterminal symbol anchored by a. Note the important
distinction between a production like [[a]]→ b, which is a rank 0 production with a terminal
on the right hand side, and [[a]]→ [[b]] which is a rank 1 production with a nonterminal on
the right hand side. Conversely, an anchoring of a grammar is a function φ : V → Σ ∪ {s}
such that φ(S) = s and φ(A) is an anchor for a for all other nonterminals; in other words it
just replaces the nonterminal symbols with their anchors. We extend this to a function from
V ∪Σ by saying that φ is the identity on Σ, and then to (V ∪Σ)∗ → Σ∗ homomorphically.

Definition 2 A production π in a grammar G, defining a language L, is locally unambigu-
ous ( lua) if
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• when π is A→ a, there is a string w ∈ L that decomposes as w = lar such that

Ω(G,S, {w}) = Ξ(G,A, {l�r})⊕ π

• when π is of the form A → B1, . . . , Bk then there is a string w ∈ L that decomposes
as w = lu1 . . . ukr such that if we write Ωi = Ω(G,Bi, {ui}) then

Ω(G,S, {w}) = Ξ(G,A, {l�r})⊕ π(Ω1, . . . ,Ωk)

A grammar is lua iff every one of its productions is lua.

This condition is a weak bound on the degree of ambiguity of a grammar; it is satisfied
if for example every production is used in the tree of an unambiguous sentence, or if the
grammar is unambiguous, but also allows many ambiguous grammars, as long as they are,
informally, not too ambiguous. This condition ensures that in the computation of the Rényi
divergence between two context distributions there is a context which attains a minimal
value which correctly isolates a particular production.

Now clearly we have a problem with the combination of the lua condition and this
grammar format. Suppose we have productions A → BC and C → DE and A → BDE.
Any occurrence of the production A→ BDE can be replaced with occurrences of the other
two: so A→ BDE cannot be lua. The problem here is that the production A→ BDE is
redundant, which we make precise below.

Definition 3 Given an anchored grammar in Gr with anchoring φ, defining a language L,
a production A→ α ∈ P (G, r) is valid if φ(A). ⊆ φ(α)..

CF use a condition strict upward monotonicity (sum) which says that adding any new
production to the grammar must increase the set of strings defined by the grammar. This
is equivalent, in an anchored grammar, to saying that the grammar contains all valid rules.
The identity production A → A is of course always valid and we need to exclude this
explicitly either at the grammar format level or elsewhere.

Definition 4 A production A→ α is redundant if there are two valid non-identity produc-
tions, A→ βBγ and B → δ such that α = βδγ.

We say that a grammar G is complete in a Gr if P is the set of all productions in P (G, r)
that are valid and not redundant.

Similar conditions are defined in Clark (2015). In such a grammar, every valid produc-
tion is either in the grammar, or can be derived using other productions in the grammar.
This replaces the sum condition; it coincides on the class of CNF grammars, since adding
any invalid production will generate additional strings; and there are no redundant produc-
tions in the CNF rule format.

Definition 5 An anchored grammar in Gr is minimal if there is no other anchored grammar
in Gr with fewer nonterminals that defines the same language.
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We can now define the classes of grammars that will be learnable with the algorithm we
present in section 5.

Definition 6 Let Gr be the set of all CFGs in Gr which are anchored, minimal, complete
and lua. Let Pr be the class of all PCFGs where the underlying CFG is in Gr and which
have finite expected length, and Wr be the same class of WCFGs where the parameters are
in bottom up form.

We now prove some lemmas that will lead up to theorem 10. We start by showing that
the anchors will be defined by a simple language theoretic criterion: this guarantees that
all grammars in the class for the same language will have equivalent sets of nonterminals.

Definition 7 A terminal a is essential in a language if there is a context l�r ∈ a. such
that there is no terminal b such that b. ⊂ a. and l�r ∈ b..

Lemma 8 If G ∈ Gr, then if a is essential then it is an anchor.

Proof Let R(a) be the set of anchors for all nonterminals such that A → a is in the
grammar.

So a. =
⋃
b∈R(a) b

.. But a is essential so there is some l�r ∈ a. that is not in the
distribution of any terminal with smaller distribution. And there is some b ∈ R(a) such
that l�r ∈ b.. So b. = a. and b is an anchor, so a is an anchor.

Lemma 9 If G ∈ Gr, and G is minimal, then if a is an anchor it is essential.

Proof We show that if a is an anchor for A and not essential then A would appear only on
the right hand sides of unary rules: in which case we can remove it, by adding productions
Bi → αj for all Bi → A and A → αj ; the resulting grammar is still anchored and has one
less nonterminal.

Suppose we have a production π = B → αAβ. By lua there is a string w where
every derivation of w is of the form Ξ(G,A, {l�r}) ⊕ Ω(G,A, u), and where the bottom
production of the context is π. Let τ = ξA ⊕ τA be one such derivation. Since a is not
essential there is there is some bi such that l�r ∈ b.i . Pick some nonterminal [[c]] such that

[[c]]
∗⇒ bi and l�r ∈ c.. Let ξc ∈ Ξ(G, [[c]], l�r); since c. ⊇ a., we must have C

∗⇒ A,

so let π1(π2 . . . (πk(�A))) be some derivation of C
∗⇒ A. Then ξb ⊕ π1(π2 . . . (πk(τA))) is a

derivation of w. This will violate lua unless π = πk, so π is unary.

Theorem 10 Suppose G and G′ are in Gr and L(G) = L(G′): then they are isomorphic.

Proof By previous lemmas, the anchors in both grammars must correspond to the set of
essential terminals. Therefore there is a natural bijection ψ between the nonterminals given
by ψ(A) = A′ iff C(G,A) = C(G′, A′). Given this the sets of productions must be exactly
the valid productions that are not redundant, and so the two grammars are isomorphic.
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4.1. Parameters

It is straightforward to extend the parameter identities of CF to this more general case; the
proofs are exactly the same as those in CF. In this section we use θ to refer to the bottom
up parameters of a WCFG. Suppose we have a production S → A1, . . . Ak. Let ai be an
anchor for Ai. Then the string w = a1 . . . ak is unambiguous, by lua.

P(w) = θ(S → A1 . . . Ak)
∏
i

θ(A→ ai)

therefore log θ(S → A1 . . . Ak) = logP(w) −
∑

i logE(ai), or using the s symbol, we can
write this as

log θ(S → A1 . . . Ak) = PMI(w)−R∞ (s‖w)

Considering now productions with a non start nonterminal on the left hand side; for a
lexical production the parameter is:

log θ(A→ b) = logE(b)−R∞ (a‖b)

For productions of the form A → B1 . . . Bk, k ≥ 1 assuming anchors a, b1, . . . , bk, we have
by the same process:

log θ(A→ B1 . . . Bk) = PMI(b1 . . . bk)−R∞ (a‖b1 . . . bk)

The special case of unary rules A → B, anchored by a and b respectively, reduces to the
trivial equation

log θ(A→ B) = −R∞ (a‖b) . (1)

Since this sort of rule does not occur in the CF model, we will give a proof of this
identity. First note that for any context l�r

Ω(G,S, {lbr}) ⊇ Ξ(G,A, {l�r})⊕ (A→ B)⊕ (B → b)

Therefore
P(lbr) ≥ w(Ξ(G,A, {l�r})θ(A→ B)θ(B → b) (2)

By the properties of the bottom up parameterisation, θ(B → b) = E(B → b) = E(b) since
b is an anchor, and

w(Ξ(G,A, {l�r}) =
P(lar)

E(a)

Rearranging eq. (2) using these two identities gives:

θ(A→ B) ≤ P(lbr)E(a)

E(b)P(lar)
=

b(l�r)
a(l�r)

.

Since this is true for any context l�r, we can minimize over the contexts giving:

θ(A→ B) ≤ min
l�r

b(l�r)
a(l�r)

= exp(−R∞ (a‖b)).
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The lua condition then guarantees that this minimum is attained and so the inequality
is in fact an equality giving eq. (1). The justification for the use of the Rényi divergence
rather than any other measure of distributional similarity is given by these equations: other
divergences such as the KL divergence will not satisfy these identities.

These identities all define the parameters of the grammar in terms of the properties of
the distribution over strings. Therefore if two grammars in Wr define the same distribution
over strings, they must be isomorphic by theorem 10, and the parameters must also be the
same. Therefore the same holds for Pr, since there is a bijection between Pr and Wr.

5. Algorithm

Identifiability from strings says that Pr is learnable from strings in a very abstract sense:
we also need to show that it can be learned using an explicit and efficient computation.
The algorithm takes as input a sample of N strings w1, . . . , wN , each sampled from the
distribution of strings defined by a PCFG, and a hyperparameter r that bounds the length
of right hand sides. We write n(w) for the number of times that wi = w. As in CF we use
the naive maximum likelihood estimators of E(u) and P(u) which we write as ÊN (u) and

P̂N (u). We also define for a string w = a1 . . . ak, the quantity P̂MIN (w) = log Ê(w)∏
i Ê(ai)

as

the estimate of PMI(w) and

R̂N (u‖v) = log
Ê(v)

Ê(u)
max

r:n(lar)≥
√
N

n(lur)

n(lvr)

as the estimate of the divergence.
In the initial phase we only want to estimate whether R∞ (a‖b) is infinite or not, which

in the finite sample case reduces to whether there is a l�r in the support of a. and not
in b.. We also need to test, given a finite set of b1, . . . , bk as we shall see whether there
is a l�r in a. and not in

⋃
i(b

.
i ). So we define the following boolean estimators B̂N (u‖v)

which returns false if there is some l�r such that n(lur) ≥
√
N and n(lvr) = 0, and is

true otherwise. Intuitively this is true if [[u]] → [[v]] is a possible rule. If u = s, then this
is equivalent to n(v) > 0. We also define for a set of strings V , B̂N (u‖V ) which returns
false if there is some l�r such that n(lur) ≥

√
N and n(lvr) = 0 for all v ∈ V , and is true

otherwise. This is used to test whether u is essential; with the right choice of V , this will
be false iff u is essential.

Algorithmically we need two changes to the CF algorithm. First we need to identify a
set of essential terminals that can serve as anchors: pseudocode is presented in algorithm 1.
Secondly we need to construct the grammar excluding redundant nonterminals, presented
in algorithm 2. The full algorithm then takes the input data; extracts the observed set
of terminals; applies algorithm 1 to get a set of anchors and unary productions. Then it
applies algorithm 2, which outputs a WCFG. We then convert this to a PCFG by using one
iteration of the inside-outside algorithm (Eisner, 2016) on the input data. If the WCFG is
divergent (I(S) =∞) then the algorithm outputs an empty grammar.

The key difference from CF is in algorithm 1; we will prove this lemma:
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Data: Terminals Σ, samples w1, . . . , wN
Result: Set of anchors V , set of lexical productions PL, unary productions PU
V = {s}, H = Σ, PL = ∅, PU = ∅
while H 6= ∅ do

/* Find the terminals of minimal distribution in H */

Construct the set of terminals a ∈ H with no terminal b ∈ H such that B̂N (b‖a) but
not B̂N (a‖b)

Divide these into ∼-equivalence classes where a ∼ b if B̂N (a‖b) and B̂N (b‖a).
for each equivalence class E do

/* These are equivalence classes of anchors */

Let a be the the most frequent terminal in E;
Add a to V ;
for each b ∈ E do

add [[a]]→ b to PL and remove b from H.
end
for each b ∈ V do

if B̂N (b‖a) then
Add [[b]]→ [[a]] to PU

end

end

end
for each a in H do

let Va be the set of all terminals b ∈ V such that B̂N (b‖a).
if B̂N (a‖Va) then

/* a is not essential as a. =
⋃
b∈Va b

. */

remove a from H
for each b ∈ Va do

add [[b]]→ a to PL.
end

end

end

end
return V and PU and PL

Algorithm 1: Selecting anchors, unary productions and lexical productions.

Lemma 11 For every grammar G∗; θ∗ in Pr, for all δ > 0, there is an N such that if
algorithm 1 receives a sample of N > n strings drawn independently from the target PCFG,
then with probability at least 1− δ it will output a correct set of anchors for G∗.

Proof We write “n is large enough for X” to mean that n is big enough that if N > n,
with probability at least 1 − δ/3, X holds. First let n be large enough that all terminals
occur in the sample. Secondly let n be large enough that for all anchors a and for all other
terminals b, and B̂N (b‖a) are both correct.

Write Va for the set of all anchors b such that b. ⊂ a.. Finally, let n be large enough that
for all anchors a with Va nonempty, B̂N (a‖Va) is correct. Given these assumptions, consider
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the main while loop in algorithm 1. In the first iteration, the set constructed will consist
of anchors of nonterminals that are not on the right hand side of any unary rules. These
are all of course essential; since B̂N (a‖b) is correct for all of these, a ∼ b iff a. = b.. So
at the end of the first iteration we will have a correct set of anchors for these nonterminals
of minimal distribution. In subsequent iterations, we maintain the invariant that V always
consists of essential terminals, no two of which are distributionally identical, and that H
consist only of terminals a which have a production A → a for some A not in V . When
this algorithm terminates therefore, V will consist of a set of essential terminals in bijection
with the nonterminals of the target grammar. The chance that one of the assumptions fails
is less than δ.

Formally the convergence of the algorithm is stated in the following theorem.

Theorem 12 This algorithm has the property that for all grammars G∗; θ∗ in Pr, for all
ε, δ > 0 there is an n such that if the algorithm receives a sample of N > n strings drawn
independently from the target PCFG and hyperparameter r, then with probability at least
1−δ it will output a grammar GN ; θN such that GN is isomorphic to G∗ and for all π under
this isomorphism, |θ∗(π) = θN (π)| < ε.

Proof (Sketch) Given the correct set of nonterminals, for sufficiently large N with high
probability all of the R̂N (a‖b1 . . . bk) will be finite iffR∞ (a‖b1 . . . bk) is finite. This suffices
to establish that with high probability the output grammar will be isomorphic to the target
grammar by theorem 10. Convergence of the parameters then follows by the parameter
identities in section 4.1, and the consistency of the Rényi estimators. This establishes that
the WCFG output by algorithm 2 converges to the WCFG equivalent of the target PCFG.
To convert the parameters from the bottom up form to the top down form used in the
PCFG, we use one iteration of the EM algorithm on the training data, and return the
result; this is guaranteed to converge to the correct PCFG.

6. The classes of languages.

Some simple examples of grammars/languages that are in G3 but not in G2 are languages
like {anban | n ≥ 0}, which has the natural ternary branching grammar: S → B, B → ABA,
A→ a, B → b. Similarly the languages Lk = {aknbakn | n ≥ 0}, for any k ≥ 1 are definable
by G2k+1 but not in any smaller class.

It’s natural to ask whether all grammars in Gr are also in Gr′ when r < r′. Clearly
the anchoring condition is satisfied automatically, but the grammar may not be complete
in the larger class as there may be valid productions of rank r′ that are not redundant and
if we add those productions we complete the grammar but the additional productions may
then violate the lua property. So for example consider the grammar G2 with productions
S → EG,S → AF , E → BC G → DF and anchoring rules A → a, . . . , G → g. This
grammar is in G2 and generates the finite language {af, eg, edf, bcg, bcdf}. The rank 3

production A → BCD is valid, but we cannot derive A
∗⇒ BCD. Within the class G3

then, to make the grammar complete, we must add this production to get the grammar G3.
However in this case the grammar is no longer lua, since that production is only used in
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Data: Set of anchors V , set of unary productions PU , and lexical productions PL
Data: Hyperparameter r, sample w1, . . . , wN
Construct a set of nonterminals N = {[[a]] | a ∈ V }
P = ∅
for for every π = [[a]]→ [[b]] in PU do

if π is not redundant in PU then

Add π to P with parameter θ(π) = exp(−R̂N (a‖b)).
end

end
for for every π = [[a]]→ b in PL do

if π is not redundant in PL ∪ PU then

Add π to P with parameter θ(π) = ÊN (b) exp(−R̂N (a‖b)).
end

end
for k = 2 up to r do

for every a ∈ V do
for every b1, . . . , bk ∈ V \ {s} do

π = [[a]]→ [[b1]] . . . [[bk]]
if π is not redundant in P then

α = R̂N (a‖b1 . . . bk)
if α <∞ then

Add π to P with parameter θ(π) = exp(P̂MIN (b1 . . . br)− α).
end

end

end

end

end
return 〈Σ, N, [[s]], p〉; θ

Algorithm 2: Constructing grammar from a given set of anchors and unary and lexical
rules. We assume that s, a special terminal symbol, occurs in V . A production is redundant
in a set of productions if there are two other productions that can be combined to form it.

15



Beyond CNF

the derivation of bcdf which also has a derivation via S → EG. Indeed naively by counting
parameters, the distribution over the 4 strings in the language has 3 free parameters, which
is the same as number of the free parameters in the grammar G2, but G3 has one more, and
is no longer identifiable; there are therefore different parameter values — indeed an infinite
number —which give the same distribution over strings. Thus the additional expressive
power of the higher rank classes comes at a price.

This class does not contain all finite languages. Consider the language {ac, bc, bd}. Since
a. ⊂ b. and d. ⊂ c. the complete grammar for this language is S → AC,S → BD, A→ B,
D → C and A → a,B → b, C → c,D → d. The string bc is then ambiguous, with two
trees which we can write, abusing notation, as [S[A[B[b]]][C[c]]] and [S[B[b]][D[C[c]]]]. This
grammar then is not lua, since the two unary productions are not lua. Finally we note
that the class of grammars learned by CF’s algorithm is a proper subclass of G2.

For two grammars that are in Gr we can efficiently compute strong equivalence which by
theorem 10 is the same as weak equivalence. However, it is natural to ask, as one reviewer
does, whether it is possible to compute for an arbitrary PCFG, whether there is a grammar
in Pr for some r that defines the same distribution. This seems very hard since it is even
difficult to determine whether a given CFG lies in Gr for a given r; while it is easy to test
whether a grammar is anchored, the other criteria depend on properties that seem likely to
be undecidable in general, though we do not have a proof.

7. Conclusion

There are alternative strategies to the minimal anchoring condition: for example one could
make every terminal an anchor, in which case we would have a potentially much larger
set of nonterminals that correspond to congruence classes of terminals. Weakening the
anchoring condition seems to require slightly different techniques. Obviously the syntactic
concepts a./ are prime in the sense of Clark (2015), so it is natural to look for primes of
the form {w}./ where |w| > 1, but algorithmically that seems complicated, without very
strong constraints on the grammars. The general principles applied here though seem quite
general: to identify a minimal set of nonterminals, and then a maximal set of productions
using those nonterminals, subject to redundancy constraints. Though we have left the
anchoring condition intact, of course for r > 2, we can apply a binarisation algorithm to the
learned grammars, and the resulting grammars will no longer be anchored. So indirectly this
approach already defines a learning algorithm for nonanchored grammars. Indeed, other
grammar transformations are possible: it seems therefore that it is enough for a sufficiently
large fraction of the nonterminals to be anchored, and for the non-anchored nonterminals
to be inferred using the anchors as scaffolding.

Many of the ideas in this paper have close technical analogues in the Eastern European
and Soviet traditions of structuralist linguistics (Marcus, 1967): in particular Dobrushin
domination is exactly the property we define as a. ⊇ b..
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