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Abstract

Work on the learnability of tier-based string-to-string functions has so far been limited
to those that operate over a single tier. Such functions are, however, generally incapable
of modelling multiple simultaneous processes. It is relatively easy to define a class of
multi-tiered functions that can handle more than one process at a time, but doing so
has negative consequences for learnability. Namely, we conjecture that it is difficult if
not impossible to efficiently learn any arbitrary set of tiers from positive data alone. We
thus describe the strongly target-specified subclass of multi-tiered functions, whose tiers
can be efficiently identified from positive data. In these functions, each input element is
associated with a single tier that on its own can fully determine what the element is mapped
to. When the tiers act independently in this way, we can learn them in isolation from each
other. A transducer representation of the target function can then be constructed using
the discovered tiers.

Keywords: long-distance phonology; subregular functions; locality; tiers

1. Introduction

Much recent work in computational phonology has focused on representing phonological
patterns using hierarchies of subregular formal languages and functions. At the bottom of
the language hierarchy are the Strictly Local (SL) languages, which model local phonotactic
restrictions by disallowing specific contiguous strings of symbols (Rogers and Pullum, 2011;
Rogers et al., 2013). These SL languages form the basis of the Input Strictly Local (ISL)
and Output Strictly Local (OSL) functions, which model processes with local triggering
contexts (Chandlee, 2014; Chandlee et al., 2014, 2015). The SL languages cannot, however,
model non-local phonotactics, nor can the ISL or OSL functions model non-local processes.
To address this limitation, a class of languages known as the Tier-based Strictly Local (TSL)
languages were developed, which operate like SL languages except over a tier projection,
allowing them to enforce non-local restrictions (Heinz et al., 2011; McMullin and Hansson,
2016). These TSL languages were in turn given functional extensions that can compute
processes with non-local contexts (Burness and McMullin, 2019; Hao and Andersson, 2019;
Hao and Bowers, 2019). An important result upon which this paper will expand comes
from Burness and McMullin (2019). They showed that any TSL function can be efficiently
learned from positive data when the tier is known a priori, and furthermore showed that
the tier itself can be efficiently learned from positive data for total T'SL functions operating
over a window of size 2.

Despite the successes of the TSL languages and functions, they suffer from a major
drawback. Specifically, the standard definitions of TSL languages and functions allow one
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and only one tier. Consequently, standard TSL languages and functions are ill-equipped to
deal with multiple, simultaneous long-distance dependencies. Recent work by Aksénova and
Deskmukh (2018) and McMullin et al. (2019) has looked at the properties and learnability
of TSL languages operating over multiple tiers. This paper will show that the tiers of
a multi-tiered function are efficiently learnable from positive data provided that all tiers
operate over a window of size 2, and provided that the output corresponding to a given
input element is determined by exactly one of the multiple tiers.

The rest of this paper is structured as follows. Section 2 introduces the notation that will
be used throughout the paper. Section 3 presents the TSL functions as they are currently
defined. Section 4 presents the Muliple Tiered-based Strictly Local (MTSL) functions, as
well as the subclass thereof that our algorithm is designed to learn. Section 5 discusses the
properties of the target MTSL subclass that allow for efficient learning. Section 6 presents
our algorithm for learning multiple tiers and demonstrates that it is efficient in terms of
its run time and the amount of data it needs to succeed. Finally, Section 7 concludes and
provides directions for future research.

2. Preliminaries

To start, let 3 be an alphabet of symbols. A string w is a finite contiguous sequence of
symbols from ¥, and |w| denotes the length of w. We write A for the unique “empty” string
of length 0. We use X* to denote the set of all strings of any length that can be made
from elements in X, including the empty string. Given two strings v and v, we write u - v
to denote their concatenation, though will often simply write uv when context permits. A
prefix of some string w € ¥* is any string p such that w = p -z and x,p € ¥*. A suffix
of some string w € ¥* is any string s such that w = z - s and z,s € ¥*. When |w| > n,
suff”(w) denotes the unique suffix of w with a length of n; when |w| < n, it simply denotes
w itself. We write prefixes(w) to refer to the set of all prefixes in w. Given a string w
and one of its prefixes © we write ™! - w to denote w with u removed from its front. For
example, (ab)~! - abcde = cde. Finally, given a set of strings S, we write 1cp(S) to denote
the longest common prefix of S, which is the string u such that u is a prefix of every w € S,
and there exists no other string v such that |v| > |u| and v is also a prefix of every w € S.

A string-to-string function is a relation that pairs every w € ¥* with one y € A*, where
> and A are the input alphabet and output alphabet respectively. Given a set of input
strings I C ¥* and a string-to-string total function f, f(I) = J;c;{f(7)} is the set of all
outputs associated to at least one of the inputs. An important concept is that of the tails
of an input string w with respect to a function f. In words, tailss(w) pairs every possible
string y € ¥* with the portion of f(wy) that is directly attributable to y. That is, the tails
of w are its effect on the output of any subsequent string of input symbols. We say that two
strings wy and wy are tail-equivalent with respect to f when tailsy(wi) = tailsy(ws).
Note that tail equivalency acts as a partition on 3*.

Definition 1 Tails (Oncina and Garcia, 1991)
Given a string-to-string function f and an input w € ¥*:

tailsy(w) = {(y,v) | f(wy) =wv A u= lep(f(wE™))}
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Definition 2 Tail equivalency
Given a string-to-string function f, two string wy,ws € X* are tail-equivalent with respect
to f if and only if tailsy(w1) = tailsy(wa)

Throughout the rest of this paper, we will need to be able to pick out the portion of
the output that corresponds to actual input material. Viewed from another perspective, we
need to be able to ignore the portion of the output that would correspond to a word-end
symbol. To make this distinction, Chandlee et al. (2015) defined the prefix function f?
associated with a function f as shown below. An example where f(w) and fP(w) differ
would be a function that appends a to the end of every input string. In this case, fP is
simply the identity map, so fP(abc) = abc whereas f(abc) = abca.

Definition 3 Prefix function (Chandlee et al., 2015)
Given a function f, its associated prefiz function fP is such that fP(w) = lep(f(wX*)).

3. SL and TSL functions

Like their name suggests, the Input Strictly Local (ISL) and Output Strictly Local (OSL)
functions take the Strictly Local (SL) languages as their base. The property of the SL lan-
guages that allowed for the jump to ISL and OSL functions is known as Suffix Substitution
Closure (SSC; Rogers and Pullum, 2011; Rogers et al., 2013). Informally, if two grammat-
ical strings share a middle portion of at least length £ — 1 (i.e., if w1 = axb, wy = cxd,
and |x| > k — 1|), then we can substitute the suffixes that come after the overlap without
causing ungrammaticality. A corollary of SSC is that any two grammatical strings from an
SLj language that end in the same k£ — 1 (or more) symbols can be legally continued by
the exact same set of strings (Chandlee et al., 2015). The definitions of the ISL and OSL
functions take this corollary and adapt it so that it applies to functional tails. Informally,
a function f is ISL if the tail-equivalence classes of f correspond to input suffixes, and a
function f is OSL if the tail-equivalence classes of f correspond to suffixes of fP. In the
interest of space, we henceforth focus entirely on output-oriented functions. The learning
results below also hold for input-oriented functions with minimal changes.

Definition 4 Output Strictly k-Local Functions (Chandlee et al., 2015)
A function f is OSLy if for all pairs wy,wq in 3*:

suf P (fP(wr)) = suf T (fP(wa)) = tailsy(wi) = tasilsy(ws)

Chandlee (2014) and Chandlee et al. (2014, 2015) show that most iterative phono-
logical processes can be modelled with an OSL function, an important exception being
long-distance iterative processes like consonant harmony. This is parallel to the fact that
long-distance phonotactics cannot be represented with an SL stringset, which motivated
Heinz et al. (2011) to define the Tier-based Strictly Local (TSL) languages—stringsets that
are SL after an erasure function has applied, masking all symbols that are irrelevant to the
restrictions that the language places on its strings (i.e., all symbols that do not belong to the
specified tier). Note that the erasure function is sometimes called the projection function.
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Definition 5 FErasure function
Given a tier T C 3, the erasure function applied by T on ¥* is such that:

eraser(\) = A\
eraser(w) = eraser(u)-o if w=u-cANoc€T
eraser(w) = eraser(u) if w=u-cNo¢T

As it turns out, the TSL languages also exhibit a form of Suffix Substitution Closure
(Lambert and Rogers, 2020). In light of this fact, the legal continuations of any string w
in a TSLj language can be inferred simply by looking at the & — 1 suffix of eraser(w).
Just as we did for the SL functions, then, we can define the TSL functions according to
how they partition ¥* into tail-equivalence classes. Informally, a function f is TSL if the
tail-equivalence classes of f correspond to tier suffixes (where the tier is a subset of the
relevant alphabet A). For convenience, we will write suff’.(w) to mean suff”(eraser(w))
in what follows.

Definition 6 Output Tier-based Strictly k-Local Functions (Burness and McMullin, 2019)
A function f is OTSLy if there is a tier T C A such that for all wy,ws in X*:

suff]%_l(fp(wl)) = suff]%_l(fp(wg)) = tailsy(wi) = tailsy(ws)

4. Multi-tiered Functions

As discussed in Burness and McMullin (2019), the TSL functions are quite versatile, being
able to model long-distance harmony and long-distance dissimilation, both with and without
blocking effects. This is, however, only the case when we model each phonological process
of a language in isolation. Consider the Kikongo language, which contains a process of
progressive height harmony affecting vowels and a process of progressive nasal harmony
affecting /d/ (Aksénova and Deskmukh, 2018; Ao, 1991; Hyman, 1998). The processes apply
independently, but may potentially co-occur, as seen in the behaviour of the perfective active
suffix /-idi/. When the suffix attaches to a base that contains neither a [—high] vowel nor a
[+nasal| stop, it surfaces faithfully as in /suk-idi/ — [suk-idi] ‘wash-PERF.ACT’. When the
suffix attaches to a base that contains a [+nasal] stop but does not contain a [—high] vowel,
it undergoes nasal harmony but not height harmony as in /nik-idi/ — [nik-ini] ‘ground-
PERF.ACT’. Finally, when the suffix attaches to a base containing both a [—high] vowel
and a [+nasal] consonant, it undergoes both harmonies simultaneously as in /meng-idi/ —
[meng-ene| ‘hate-PERF.ACT’.

The combination of height harmony and nasal harmony cannot be computed by a single
TSL function. To see why, consider what happens when we try with an OTSLy function
whose tier consists of vowels and nasal consonants. Producing a vowel will push the most
recent nasal consonant (if any) out of the £ — 1 window, and producing a nasal consonant
will push the most recent vowel (if any) out of the £ — 1 window. At any given point,
then, we can only know how to correctly map an input vowel or only know how to correctly
map an input /d/. Increasing k does not eliminate the issue, since any number of vowels
can in principle occur between two nasal consonants, and any number of nasal consonants
can in principle occur between two vowels. There is no reason, however, why we cannot
let a single function operate over multiple tiers. Doing so very easily allows us to model
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the separate height harmony and nasal harmony at the same time. Burness and McMullin
(2020) defined such Multi-Tiered Strictly k-Local (MTSLy) functions as follows.

Definition 7 Output Multi-Tiered Strictly k-Local functions
A function f is OMTSL;, if there is a finite set © of tiers T C A such that for all wy,wy €
hI

[\ Isurfr H(fP(wn)) = suffp (£ (w2))]] = [tailsy(wi) = tatlsy(ws)]

TeO

In words, there is a finite set of tiers such that if two input strings share a k& — 1 suffix
on all tiers, then they will have the same tails. For reasons of space we do not provide
an automata-theoretic characterization of this function class, although it is worth a brief
discussion. Chandlee et al. (2015) showed that the OSLj functions exactly correspond
to finite-state transducers wherein the current state acts as a record of the last up to
k — 1 symbols written to the output string. Burness and McMullin (2019) showed that to
generalize this result to the OTSLy, functions, we need only ensure that the current state acts
as a record of the last up to k —1 tier symbols written to the output string. Generalizing to
the OMTSL;, functions requires, as one might expect, that the current state acts as a record
of the last up to k — 1 symbols on each tier. Where each state label is a single raw string
in the OSL case and a single tier string in the OTSL case, each state label in an OMTSL
transducer would be a collection of tier strings, one for each of the given tiers. A reviewer
also points out that tier projection is reminiscent of indexed grammars and asks whether
the tier-projection mechanism could be better reflected by more sophisticated automata.
One possibility would be to use a registered automaton (Cohen-Sygal and Wintner, 2006)
with one register per tier. Such a transducer would write to these registers throughout the
course of a derivation, updating them to reflect the suffix on the relevant tier, essentially
constructing the state space of the naive transducer on the fly.

The above definition of OMTSLg functions allows any finite number of tiers and allows
any conceivable relationship between their contents. We conjecture that this lack of restric-
tions renders efficient tier learning incredibly difficult, if not outright impossible. In order
to restrict the hypothesis space in a manner conducive to efficient tier learning, we start by
referencing the contribution of each o € ¥ separately, rather than referencing the entirety of
tailsy. Informally, the contribution of o relative to w is the portion of f(wo) uniquely and
directly attributable to a (e.g., it is what we would append to the output upon reading a in
a transducer after having read w). We also consider the contribution of a special word-end
symbol x to handle functions where fP(w) # f(w).

Definition 8 Contribution
Given a string-to-string function f, and some w € ¥*:

o for o €%, conts(o,w) = Lep(f(wE*))™! lep(f(woX*)) = fP(w)~! - fP(wo)
o for x & 5, conty(x,w) = lep(f(wE*)) ™" f(w) = fP(w)~" - f(w)

Using this notion of single-element contributions, we can pick out a non-trivial subset
of the OMTSL,, functions that are efficiently learnable from positive data. For the func-
tions in this subset, the outcome of a given singular input element depends on exactly one
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tier. Viewed from another perspective, each input element (i.e., each potential target of
one or more processes) specifies the tier that it wants to track, and the contribution of an
input element can always be determined by tracking only its specified tier; tracking other
tiers provides information that is either redundant or irrelevant. Burness and McMullin
(2020) singled out a similar but more permissive subset of the MTSL functions by defining
a restriction that they call target specification. To fulfill their restriction, it must always
be possible to link the behaviour of a given input element back to a fixed superset-subset
hierarchy of tiers (in other words, each target specifies a fixed hierarchy to which it pays
exclusive attention). The functions we define here are a special case of Burness and Mc-
Mullin’s (2020) restriction, since the single tier responsible for an input element’s behaviour
vacuously forms a superset-subset hierarchy. Accordingly, we call the functions to be learned
by our algorithm below the strongly target-specified functions.

Definition 9 Strong target specification
An OMTSLy, function f is strongly target specified if for each © € ¥ U {x} there is a tier
T C A such that for all wi,wy € ¥*:

[suffi ' (fP(w1)) = suffy ' (fP(ws))] = [conty(z, wi) = conty(w,ws)]

The Kikongo data presented above can be analyzed using a strongly target-specified
OMTSLy function. The input element /i/ is associated with (or specifies that it wishes
to track) the tier 7; which contains all and only the vowels of the language. The input
element /d/ is associated (or specifies that it wishes to track) the tier Ty which contains
all and only the nasal consonants. The simultaneous computation of the two rules is shown
pictorially in Figure 1 for the word /meng-idi/ — [meng-ene] ‘hate-PERF.ACT’. The string
in the center shows how each input element gets transformed by the function. Solid lines
represent projection to an output tier and dashed lines represent an output tier element’s
influence on an input element.

Figure 1: Simultaneous height harmony and nasal harmony in Kikongo.

5. Previous Learning Results

The tier-induction strategy of Burness and McMullin (2019) relied on some important prop-
erties of OTSLy functions. We outline these below and show how they transfer over to the
strongly target-specified OMTSLy functions in such a way that the learning algorithm of
Burness and McMullin (2019) can be extended to our particular multi-tiered case.
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First, we note that many OTSLy functions can be described using a variety of tiers. For
example, the identity map can be described using any subset of the output alphabet as the
tier. Burness and McMullin (2019) showed that, given an OTSLs function, taking the union
of two potential tiers will result in another potential tier (i.e., potential tiers can be freely
combined). This property holds, with appropriate modifications, for the strongly target-
specified OMTSLs functions as well. Let an z-tier be any tier that can uniquely determine
the contribution of x € X U {x}. The following lemma shows that, given a strongly target-
specified OMTSLs function, combining any of its potential z-tiers will result in another
potential z-tier.

Lemma 10 Free combination of tiers
Given a strongly target-specified OMTSLy function f, if A C A and B C A are both x-tiers
for f, then Q = AU B 1is also an x-tier for f.

Proof If suff((fP(w1)) = suff(fP(wa)) = t, then t € Aort € B. If t € A, then
suffl (fP(w1)) = suffl(fP(w2)) and therefore cont¢(x,w;) = conty(z,ws) since A is an
z-tier for f. If t € B, then suffh(fP(w1)) = suffL(fP(ws)) and therefore conts(z,w:)
= contf(z,ws) since B is an z-tier for f. Therefore, suffl,(fP(w1)) = sufff,(fP(w2)) =
cont ¢(z,w1) = cont ¢(x,ws), which means that Q is an z-tier for f. [ ]

Burness and McMullin (2019) demonstrated that the OTSLy version of Lemma 10 (their
Lemma 4) implies the existence of a unique largest tier for any OTSLs function that is a
superset of its other possible tiers (if any others exist). Similarly, we point out that Lemma
10 implies that there exists a unique largest x-tier for any strongly target-specified OMTSLo
function. Parallel to Burness and McMullin (2019), we call this the canonical z-tier for f.

Definition 11 Canonical z-tier
Given a strongly target-specified OMTSLs function f, the x-tier T C A is the canonical
x-tier for f if and only if there is no other x-tier @ C A for f such that |Q2| > |T|.

Burness and McMullin (2019) go on to show that, if one attempts to describe an OTSLy
function using a superset of its canonical tier, then there will always be at least one input-
output pair which acts as evidence that one of the superfluous tier elements cannot be a

member of any tier for f. An analogous statement holds true for strongly target-specified
OMTSL;, functions, as follows.

Lemma 12 Absolute non-tier status

Let f be a strongly target-specified OMTSLo function where T C A is the canonical x-tier
forx € XU{x}. For every Q such that T C Q there will exist a € (2 —T) and wi, wy € ¥*
such that suffs(fP(w1)) = suffy(fP(w2)) = a and contp(x,wy) # conts(z, ws).

Proof By contradiction. Suppose that the lemma is false. This means that for all symbols
a € (2 —T) and for all pairs of words wy,wy € X* it is the case that suffl(f(w;)) =
suff{,(f(w2)) = a implies that contf(x,w;) = conts(z,ws). Now, since T is an z-tier for
f, it is also the case that for all symbols b € T" and for all pairs of words wy,ws € ¥* it is
the case that suffd(f(w1)) = suffl(f(ws)) = b implies that cont ;(z,w1) = cont s(x,ws).
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Together these imply that for all symbols ¢ € Q2 and for all pairs of words wy,we € X* it is
the case that suff{,(f(w1)) = suff},(f(w2)) = ¢ implies that cont ¢(z,w1) = conts(z, ws).
This means that € is an z-tier for f, but |Q| > |T'|, contradicting the initial premise that
T is the canonical z-tier for f. |

Putting the above results together implies a method guaranteed to find the canonical
z-tier for any strongly target-specified OMTSLo function and one of its input elements zx.
We begin by hypothesizing that the canonical tier is equal to the entire output alphabet A
and look through our sample for evidence that some element cannot be on the tier. If such
an element is found, we remove it from the hypothesized tier, and continue verifying the
tier contents until we reach a point where none of the elements can be flagged for removal.
At this point, we will have found the canonical tier we were looking for. This is precisely
the strategy used by Burness and McMullin (2019) use to find the single canonical tier of a
OTSLy function. The major difference in the multiple tier case is that we must implement
the strategy once per input element.

6. Learning Multiple Tiers

This section presents a learning algorithm that identifies the canonical x-tiers of any total
strongly target-specified OMTSLy function. Once the tiers are known, they can be used
along with a training sample to construct a transducer that computes the target function,
a step which we sketch further below. Our criterion for successful learning is exact iden-
tification from positive data (Gold, 1967) with polynomial bounds on time and data (de
la Higuera, 1997). Before we can work towards identifying tiers, we must gain as much
information as possible about the prefix function f? corresponding to f, based only on the
evidence provided in the training sample. To do this, the estimate_fp procedure of Bur-
ness and McMullin (2019), shown in Algorithm 1, goes through every string pref that is
the prefix of at least one input string in the training data, and for every o € ¥, it checks
whether pref - ¢ is also a prefix of some input string. If this is the case, there is enough
information to determine fP(pref), and the algorithm does so.

Function estimate fp(S):

P10

X < {pref | pref € prefixes(w) where (w,u) € S}

Y + {pref € X | (Vo € X)[pref - 0 € X]}

for each y € Y do
z < lep({u | (w,u) € S where y € prefixes(w)})
P« PU{(y,2)}

end

return P
Algorithm 1: Prefix function estimation (Burness and McMullin, 2019)

Now we can determine the z-tiers independently of each other. This is accomplished
by the function get_tiers, a modified version of the tier induction procedure in Burness
and McMullin (2019). When determining 7, it looks through the set P constructed by
estimate_fp for any evidence that some a € T} needs to be removed. To do this, it builds
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an auxiliary set match that contains every (p, fP(p)) € P for which suff} (f2(p)) = a
under the current hypothesis for T,. It then checks whether cont(z,p) is the same for
all (p, fP(p)) € match. If this is the case, a is added to the set keep. However, if there
is more than one value found for the contribution of some z € ¥ U {x}, it will instead
remove a from T,. If at any point some symbol gets removed from a tier, the set keep
is immediately emptied. The algorithm will continue working on 7, until every a in the
current hypothesis for T, gets added to the set keep. The paragraphs below establish that
the get_tiers function identifies the canonical tiers of any total strongly target-specified
OMTSL; function in polynomial time and data.

Function get_tiers(S5):
P «+ estimate fp(S)
tiers < )
for each x € XU {x} do
T, + A
keep < ()
while keep # T, do
for each a € T, do
match < {(p,q) € P | suffy, (q) = a}
if x € ¥ then

| C+{q" y|(p,g) €match A (pr,y) € P}
else

| C+{g" -y | (p,g) €matchA(p,y) € S}
end
if |C| > 1 then

T, T, —{a}
keep < ()

end
if a € T, then

| keep < keep U {a}
end

end

end

tiers < tiers U {7}
end

return tiers
Algorithm 2: Tier induction

Lemma 13 Polynomial time
For any input sample S, get_tiers(S) runs in time polynomial in the size of S.

Proof We begin by calling estimate_fp. This step is unchanged from Burness and Mc-
Mullin (2019), who showed that its computation time is quartic in the size of the sample.
We now run the portion of Burness and McMullin’s (2019) algorithm that determines the
tiers, to which we’ve made two changes. The first change is that some steps from within the
“while” loop were removed. The second change is that the scope of “for each z € XU {ix}”
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13

was enlarged to encompass the “while” loop, rather than being encompassed by it. These
changes do not affect the time complexity of the procedure, which Burness and McMullin
(2019) showed was quintic in the size of the sample. [ |

The remaining lemmas of this section will show that for each total strongly target-
specified OMTSLy function f, there is a finite kernel of data consistent with f that is
a characteristic set for the algorithm (i.e., if the training set subsumes this kernel, the
algorithm is guaranteed to succeed). The OMTSLy, functions divide ¥* into a finite number
of equivalence classes according to sets of tails, meaning that the OMTSL; functions are
also subsequential functions. Oncina and Garcia (1991) show how the finite partition of
>* lets us build the smallest finite-state transducer that computes a given subsequential
function. Given a state ¢ in this canonical transducer M, we write w, to denote the length-
lexicographically earliest input string that reaches the state q.

Definition 14 Characteristic set
A sample S contains a characteristic set if it contains the following for each state q in M:

1. The input-output pair (wg, f(wg)).
2. For all triples a,b,c € X

i. some input-output pair (wqa, f(wqa)),
ii. some input-output pair (wqab, f(wgab)), and

iii. some input-output pair (wgabcv, f(wqabcv)), where v € X*

Lemma 15 Evidence availability
If a learning sample S contains a characteristic set, then estimate_fp(S) provides sufficient
information to determine the following for all w € ¥* and all pairs x,y € X:

conts(x,w)

conts(x,w)
conty(y, wx)

(
cont (X, wx)

Proof For any input string w € ¥*, reading w will lead to some state ¢ in M. The target
function is subsequential which means that that either w = w, or else can be replaced
thereby since subsequentiality implies that cont (i, w) = cont (i, w,) for any i € X U {x}.
Now recall that fP(w) = lep({u | v = f(wv) Av € ¥*}). It is sufficient to use a set
containing f(w) and one f(waz) for each a € ¥ (where z € ¥*) because every member of
3* is either A\ or begins with some a € . Let us call such a set a support for determining
fP(w). If a support exists in the sample, estimate_fp(S) adds (p, ) to the set P, where r =
lep({u | (w,u) € SAp € prefixes(w)}) = fP(p). By the definition of the characteristic set,
for every state ¢ in the canonical transducer and for every triple a, b, ¢ € X, the learner will
see Wy, wea, wgab, and wyabcv where v € ¥*. For any input string w, then, the characteristic
set will contain everything necessary to build a support for determining f?(wy,), fP(wqa)
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and fP(wqab) for all pairs a,b € . Finally, recall that cont ¢(o,w) = fP(w)~! - fP(wo) for
o € ¥ and that cont¢(x,w) = fP(w)~! - f(w). For each pair z,y € ¥, the algorithm can
thus calculate:

cont f(z,wy) = fP(wy) ™'+ fP(wyz) = conts(z,w)

(
cont ¢(X,wy) = fp(wq) - f(wg) = cont ¢(x,w)
cont f(y, wyx) = fP(wex) ™"+ fP(wery) = cont(y, wr)

(

cont (X, wgz) = fP(wez) ™ - flwgz) = cont (X, wx)

Lemma 16 Tier convergence
If a learning sample S contains a characteristic set, then get_tiers(S) will return the
canonical tiers of f.

Proof Let T be the canonical z-tier of f, and let H be the z-tier constructed by the
algorithm. The algorithm begins with H = A, and so either H = T already, or else H D T.
We know from Lemma 12 that if H D T, there will exist a pair of input strings w; and
ws in the domain of f such that cont(x,w;) # conts(z,w2) even though suffl (fP(w))
= suffl (fP(wz)) = a for some a € (H — T). We know from Lemma 15 that, given a
characteristic set, the algorithm will be able to calculate and check all possible sequences of
two contributions out of each tail-equivalence class in the target function. The algorithm
will thus flag and remove at least one a € (H —7T) when H D T. Conversely, there
will be no pair of input strings w3 and wy in the domain of f such that conty(x,ws) #
cont ¢(x,ws) when suffl, (fP(ws3)) = suffh (fP(wy)) = c for any ¢ € T. When H = T,
then, the algorithm will add all @ € H to keep, at which point keep = H =T |

Lemma 17 Polynomial data
There exists a characteristic set that is polynomial in the size of M.

Proof Let @@ be the set of states in M. The cardinality of @) is finite and is treated
a constant. For item 1 in Definition 14 there are |Q| input-output pairs (wg, f(wg)) in a
characteristic set. For each of these pairs, it is the case that |w,| < |Q] and it is the case
that | f(wg)| is less than or equal to the summed length of the output edges of the machine’s
transitions. We write this sum as x, and note that it is linear in the size of the transducer.
The overall length of the inputs contributed by item 1 is thus in O(]Q|?) and the overall
length of the outputs contributed by item 1 is thus in O(|Q|-x,). Both of these are quadratic
in the size of M.

For items 2i, 2ii, and 2iii in Definition 14, there are respectively |%|, |2|? and |X|?
corresponding input-output pairs per state ¢ € Q). Factoring out the constants gives us |Q
pairs. For the pairs contributed by item 2c, we restrict ourselves without loss of generality
to pairs (wqabe, f(wqabc)). For each pair from item 2, the length of the input is less than
or equal to |Q|+ 3. For each pair from item 2, the length of the output is less than or equal
to x plus three times the longest output edge in the machine. We write this quantity as
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Yo and note that g, is linear in the size of the transducer. The overall length of the inputs
contributed by item 2 is in O(|Q|?) and the overall length of the outputs contributed by
item 2 is in O(|Q] - y»). Both of these are quadratic in the size of M. [ |

Theorem 18 get_tiers(S) identifies the canonical tiers of any total strongly target-
specified OMTSLo function in polynomial time and data.

Proof Immediate from Lemmas 13, 16, and 17. [ |

Once the tiers are known, it is relatively easy to construct a finite-state transducer
computing the target function. Chandlee et al. (2015) present an efficient and correct
algorithm for bulding OSLj transducers from positive data. The algorithm operates in a
breadth-first manner, computing all transitions out of one state before moving to the next,
and since the algorithm assumes that the function to be learned is OSLg, it labels the
landing state of each transition with the appropriate output suffix. Burness and McMullin
(2019) show that the same overall strategy can be used to construct OTSLy transducers
once the tier is known, the only difference being that the state labelling step must use the
appropriate tier suffix. It is almost certainly the case that with knowledge of the required
tiers, we can also adopt the strategy for OMTSL; transducers if the state labelling step
considers the appropriate collection of tier suffixes. The strategy takes time quadratic in
the size of the sample, and the amount of necessary data is quadratic in the size of the
target transducer (Chandlee et al., 2015).

To close this section, it is worth noting, as pointed out by a reviewer, that our learn-
ing result is not entirely novel since the OMTSLy functions are a strict subclass of the
subsequential functions, and so the Onward Subsequential Transducer Inference Algorithm
(OSTIA) developed by Oncina et al. (1993) is capable of learning them. The novelty of
our algorithm instead lies in the fact that it is designed to learn a particular subclass of
subsequential functions that are motivated by the typology of phonological processes. Also,
while OSTTA runs in cubic time and would be more time efficient than discovering a set
of tiers in quintic time and then building a transducer in quadratic time, there are to our
knowledge no analyses of OSTIA’s data complexity. It may well be that the reduction from
quintic to cubic time that would come from adopting OSTIA over our algorithm is offset
by an even larger increase in the size of the necessary data sample.

7. Discussion and Conclusion

The strongly target-specified OMTSLy functions introduced in this paper are capable of
modelling multiple long-distance phonological processes simultaneously, provided that the
processes do not interact with each other. We imposed this criterion of independence as it
permits efficient identification of the requisite tiers from positive data. Once these tiers are
known, the Output Strictly Local Function Inference Algorithm of Chandlee et al. (2015)
can be modified to construct a transducer that computes the target function. We need
only change the criteria for determining state labels and determining the states in which
transitions land (see Burness and McMullin (2019) for a demonstration of how this holds
for single-tiered functions).
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Of course, phonological processes very often interact with each other, and long-distance
processes are by no means exempt. To cite just one case, the Samala language is well-
known for its process of regressive sibilant harmony, whereby the anteriority of the rightmost
sibilant overrides the anteriority of all sibilants to the left (e.g., /s/ becomes [f] if followed by
[/])- The language contains an additional rule affecting the sibilant /s/, according to which
it palatalizes to [f] when immediately followed by [t], [n], or [l] as in /s-ni?/ — [[-ni?] ‘his
neck’ (Applegate, 1972; McMullin, 2016). The long-distance process is given priority here,
such that the local sequences [sn], [st] and [sl] are permitted precisely when palatalization
would create a disharmonic sequence of non-local sibilants as in /s-net-us/ — [s-net-us]
‘he does it to him’ (Applegate, 1972; McMullin, 2016). We could try to model this with a
strongly target-specified OMTSLy function reading from right to left, but we need at least
two tiers for /s/. In order to know whether input /s/ should harmonize we need to ignore
everything that is not a sibilant, and to know whether input /s/ should palatalize we we
cannot ignore anything. Burness and McMullin (2020) defined a weaker form of target
specification than the one used in this paper, and this weaker form is capable of modelling
the Samala interaction, among other interesting cases. Future work will explore whether
various means of permitting input elements to track more than one tier (such as the weaker
form of target specification) can maintain efficient learnability.
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