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Abstract

Multi-domain text classification (MDTC)
aims to leverage all available resources from
multiple domains to learn a predictive model
that can generalize well on these domains.
Recently, many MDTC methods adopt ad-
versarial learning, shared-private paradigm,
and entropy minimization to yield state-of-
the-art results. However, these approaches
face three issues: (1) Minimizing domain di-
vergence can not fully guarantee the success
of domain alignment; (2) Aligning marginal
feature distributions can not fully guaran-
tee the discriminability of the learned fea-
tures; (3) Standard entropy minimization
may make the predictions on unlabeled
data over-confident, deteriorating the dis-
criminability of the learned features. In or-
der to address the above issues, we pro-
pose a co-regularized adversarial learning
(CRAL) mechanism for MDTC. This ap-
proach constructs two diverse shared latent
spaces, performs domain alignment in each
of them, and punishes the disagreements of
these two alignments with respect to the
predictions on unlabeled data. Moreover,
virtual adversarial training (VAT) with en-
tropy minimization is incorporated to im-
pose consistency regularization to the CRAL
method. Experiments show that our model
outperforms state-of-the-art methods on two
MDTC benchmarks.

1 INTRODUCTION

Text classification is a fundamental task in natural
language processing (NLP) (Young et al., 2018) and
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has attracted constant attention in recent years. It
has been widely used to reshape business via un-
derstanding customers’ emotional tendencies (Smith
and Linden, 2017) and conduct spam detection (Ngai
et al., 2011). With the advent of deep learning, text
classification obtains impressive achievements in var-
ious applications (Kowsari et al., 2019; Wu et al.,
2021b). However, these achievements always rely on
large amounts of labeled training data. In many real-
world scenarios, abundant labeled training data is not
commonly available and data labeling is always ex-
pensive and time-consuming. Therefore, it is of great
significance to investigate how to improve the classi-
fication accuracy of the target domain by leveraging
available resources from related domains.

Currently, there are three categories to address the
above problem. The first one is the domain-agnostic
method, which combines all available labeled data
from existing domains as the training set, ignoring do-
main differences. Unfortunately, text classification is
a highly domain-dependent task where the same word
in different domains may express different sentiments.
For example, the word easy frequently indicates posi-
tive sentiment in an electronic device review (e.g. the
camera is easy to use), while expressing negative re-
mark in a movie review (e.g. the ending of this movie
is easy to guess). Thus, this method fails to produce
a satisfactory result (Chen and Cardie, 2018). The
second one is to fine-tune large pre-trained language
models (Zheng et al., 2018), such as BERT (Devlin
et al., 2019) and OpenAI GPT (Radford et al., 2018),
on the target domain. The large language models
can effectively express context information of a word
compared to general word embedding and yield re-
markable performance in various NLP tasks (Devlin
et al., 2019). The third one is multi-domain text clas-
sification (MDTC) (Li and Zong, 2008), which tack-
les the scenario where texts come from multiple do-
mains, each with limited amounts of labeled data and
large amounts of unlabeled data. Many recent MDTC
methods (Liu et al., 2017; Chen and Cardie, 2018;
Zheng et al., 2018; Wu and Guo, 2020; Wu et al.,
2021a,b) adopt the adversarial learning, shared-private
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paradigm, and entropy minimization to yield state-
of-the-art results. Adversarial learning performs fea-
ture alignment through reducing domain divergence
to learn domain-invariant features, these features are
supposed to be both transferable and discriminative
(Ganin et al., 2016; Wu et al., 2021c). Shared-private
paradigm consists of two types of feature extractors:
the shared feature extractor constructs the shared la-
tent space to learn domain-invariant features, and a
set of domain-specific feature extractors, one per do-
main, each of which captures domain-specific knowl-
edge (Liu et al., 2017). Entropy minimization is often
employed to regularize the model output and mini-
mize the uncertainty of predictions on unlabeled data
(Long et al., 2018; Wu et al., 2021a). However, these
MDTC methods still face three major issues: First,
minimizing domain divergence can not fully guaran-
tee the success of domain alignment. Second, align-
ing marginal feature distributions may match samples
with different classes, leading to corrupted classifica-
tion accuracy. Third, entropy minimization may make
the predictions on unlabeled data over-confident, de-
teriorating the discriminability of the learned feature
representations.

In this paper, we propose a co-regularized adversar-
ial learning (CRAL) mechanism to alleviate the afore-
mentioned issues. The proposed CRAL method con-
structs two diverse shared latent spaces and aligns
class-conditional feature distributions in each of them
to improve the system performance. These two align-
ments are enforced to agree with each other with re-
spect to the predictions on unlabeled data, which helps
in shrinking the search space of possible alignments
while preserving the correct set of alignments. More-
over, virtual adversarial training (VAT) (Miyato et al.,
2018) with entropy minimization is also incorporated
to impose the consistency regularization to our model,
ruling out redundant hypothesis classes that abruptly
change predictions in the vicinity of the training data
(Chapelle and Zien, 2005). Experimental results show
that our proposed approach can outperform the state-
of-the-art MDTC methods on two benchmarks. Fur-
ther experiments on the multi-source unsupervised do-
main adaptation (MS-UDA) scenario where we train
the model on multiple domains and evaluate the model
on an unseen domain demonstrate that CRAL has a
good ability to generalize the learned knowledge to un-
seen domains. The contributions of our work are listed
as follows:

• We propose a co-regularized adversarial learning
(CRAL) method for multi-domain text classifica-
tion which constructs two diverse shared latent
spaces, performs adversarial alignment in each of
them, penalizes the disagreements of their predic-

tions on unlabeled data, and incorporates virtual
adversarial training with entropy minimization to
improve the system performance.

• We demonstrate the effectiveness of the CRAL
method on two MDTC benchmarks. The ex-
perimental results show that our method out-
performs the state-of-the-art methods on both
datasets. Further experiments on multi-source
unsupervised domain adaptation reveal the gen-
eralization ability of our model.

• We also conduct ablation studies and parameter
sensitivity analyses to explore the contributions
of different components of the CRAL method and
how each hyperparameter influences the perfor-
mance of our method.

2 RELATED WORK

Multi-Domain Text Classification aims to leverage
available resources from multiple domains to improve
the classification accuracy over all domains (Li and
Zong, 2008). More recently, deep neural networks
have significantly advanced the performance of MDTC
models. The multi-task convolutional neural network
(MT-CNN) uses a convolutional layer to enable bet-
ter word embedding (Collobert and Weston, 2008).
The collaborative multi-domain sentiment classifica-
tion (CMSC) approach constructs domain-specific pre-
dictive modules to enhance the predictions of the
shared classifier (Wu and Huang, 2015). The multi-
task deep neural network (MT-DNN) establishes a
low-dimensional latent space to generate semantic vec-
tor representations for the downstream classification.
(Liu et al., 2015).

Adversarial Training is first proposed in the gener-
ative adversarial network (GAN) for image genera-
tion (Goodfellow et al., 2014), it adversarially trains
a discriminator against a generator: the discrimina-
tor contrives to distinguish real images from gener-
ated images, while the generator struggles to fool the
discriminator. Then adversarial training is extended
to learn domain-invariant features in domain adapta-
tion (Ganin et al., 2016; Zhao et al., 2017; Wu et al.,
2020). Bousmalis et al. (2016) proposes a shared-
private paradigm to reveal that domain-specific knowl-
edge can capture the unique characteristics of its own
domain and complements domain-invariant features
to enhance their discriminability. Entropy and con-
fidence are reasonable selection criteria for controlling
uncertainty of predictions on unlabeled data (Grand-
valet and Bengio, 2005), minimizing the entropy of
predictions on unlabeled data can impose high priority
to ”easy-to-transfer” instances, facilitating the domain
alignment (Long et al., 2018).
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Many state-of-the-art MDTC approaches adopt adver-
sarial learning, shared-private paradigm, and entropy
minimization. The adversarial multi-task learning
for text classification (ASP-MTL) utilizes orthogonal-
ity constraints to enhance the separations of domain-
invariant features and domain-specific features such
that different aspects of the inputs can be encoded
(Liu et al., 2017). The multinomial adversarial net-
work (MAN) derives the generalization bounds for
adversarial multi-domain text classification with re-
spect to the least square loss and the negative log-
likelihood loss (Chen and Cardie, 2018). The dynamic
attentive sentence encoding (DA-MTL) method uti-
lizes the attention mechanism and introduces a task-
dependent query vector to learn domain-specific fea-
tures to enhance the discriminability of the shared
features (Zheng et al., 2018). The dual adversarial
co-learning (DACL) approach combines discriminator-
based adversarial learning and classifier-based adver-
sarial learning to enhance the discriminability of the
domain-invariant features (Wu and Guo, 2020). The
global and local shared representation-based generic
dual-channel multi-task learning (GLR-MTL) method
deploys adversarial training and mixture-of-experts on
two separate channels to capture global-shared, local-
shared, and private features simultaneously (Su et al.,
2020). The conditional adversarial networks (CANs)
conduct alignment on joint distributions of domain-
invariant features and predictions to enhance the dis-
criminability of the learned features, and use entropy
conditioning to avoid the risk of conditioning on pre-
dictions with low certainty (Wu et al., 2021a).

In contrast with the prior MDTC approaches, our pro-
posed CRAL method penalizes the disagreements of
predictions on unlabeled data induced from two inde-
pendent adversarial training streams to boost the dis-
criminability of the learned features. Moreover, it in-
troduces the virtual adversarial training with entropy
minimization to drive the decision boundary away
from the high-density regions of distributions, impos-
ing consistent prediction constraints to the model.

3 METHOD

The MDTC setting is formulated as follows: Given
M different domains {Di}Mi=1, Di consists of two
parts: a limited amount of labeled instances Li =
{(xj , yj)}lij=1, and a set of unlabeled instances Ui =
{xj}ui

j=1, where li is the number of the labeled sam-
ples and ui is the number of the unlabeled samples.
The main objective of MDTC is to improve the aver-
age classification accuracy across the M domains by
leveraging all available resources.

3.1 Model Architecture

As illustrated in Fig.1, the proposed CRAL model con-
sists of two branches, each branch is composed of four
components: a shared feature extractor Fb

s , a set of

domain-specific feature extractors {F i,b
d }Mi=1, a domain

discriminator Db, and a classifier Cb. b indicates the
branch index (e.g., b ∈ {1, 2}). For simplicity, we ig-
nore the branch index of each component. The fol-
lowing discussion holds for both branches. The shared
feature extractor aims to learn domain-invariant fea-
tures that can generalize across domains. The domain-
specific feature extractor captures domain-specific fea-
tures that are beneficial within their own domain.
These feature extractors can adopt the architecture
of convolutional neural networks (CNNs), recurrent
neural networks (RNNs), transformers, or multi-layer
perceptrons (MLPs), depending on the practical task.
The feature extractors generate feature representa-
tions with a fixed length. The discriminator takes
a shared feature vector as its input, while the clas-
sifier uses the concatenation of a shared feature and a
domain-specific feature.

3.2 Multinomial Adversarial Learning

Multinomial adversarial learning minimizes the f-
divergence (Nowozin et al., 2016) among multiple do-
mains to conduct alignment and has been widely
applied in MDTC (Wu and Guo, 2020; Wu et al.,
2021b,a). In multinomial adversarial learning, the do-
main discriminator and the shared feature extractor
are trained to compete against each other: the do-
main discriminator tries to distinguish features among
different domains, while the shared feature extractor
aims to confuse the domain discriminator. When these
two components reach equilibrium, the learned fea-
tures can be regarded as domain-invariant. In the
CRAL method, multinomial adversarial learning is
performed independently in each of the two branches.
D is a M -class classifier, outputting the probabilities
of an instance coming from each domain. C is a binary
classifier, predicting sentiment probabilities. Fs and
{F i

d}Mi=1 are expected to complement each other and
maximally capture useful information across domains.
The multinomial adversarial learning is encoded as fol-
lows:

Lb
c = −

M∑

i=1

E(xi,yi)∼Li
[y�i log(Gi,b(xi))] (1)

Lb
Adv = −

M∑

i=1

Exi∼Li∪Ui [d
�
i log(Db(Fb

s (xi)))] (2)
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Figure 1: The Architecture of the CRAL framework. The shared feature extractors {Fb
s}2b=1 are used to cap-

ture domain-invariant features, the domain-specific feature extractors {F i,b
d }2b=1 aim to learn domain-dependent

features, the domain discriminators {Db}2b=1 are used to distinguish features across domains, and the classifiers
{Cb}2b=1 are used to conduct text classification. {Lb

c}2b=1 are classification losses, {Lb
Adv}2b=1 are adversarial losses,

{Lb
e}2b=1 are entropies of unlabeled data, {Lb

uvt}2b=1 are VAT losses of unlabeled data, {Lb
lvt}2b=1 are VAT losses

of labeled data, L� measures the diversity between the two shared feature extractors, and Ld measures the
disagreement of predictions of the two classifiers on unlabeled data.

where Lb
c is the cross-entropy loss for the labeled data,

Lb
Adv is the adversarial loss, di is the domain index

of an instance xi, and Gi,b(xi) = Cb([Fb
s (xi),F i,b

d (xi)])
where [·, ·] represents the concatenation of two vectors.

3.3 Co-Regularized Adversarial Learning

Before presenting the co-regularized adversarial learn-
ing mechanism, we first highlight the limitations of
existing MDTC methods. The idea of aligning multi-
ple feature distributions for MDTC can be motivated
by the theory (Chen and Cardie, 2018): First, consider
the shared features f extracted from each domain:

Pi(f) � P (f = Fs(x)|x ∈ Di) (3)

where P (·) represents the probability, so we have P1,
P2, ..., PM as the M shared feature distributions, and

set P̄ =
∑M

i=1 Pi

M as the centroid of theM feature distri-
butions. The domain discriminator D can be trained
to its optimality D∗ if and only if P1 = P2 = ... =
PM = P̄ . Therefore, the objective of MDTC can be
regarded as aligning M feature distributions {Pi}Mi=1

to P̄ which is equivalent to minimizing the distribu-
tion distances between each of the feature distributions
and their centroid. Let H be the hypothesis space, for
any h ∈ H, that maps inputs from the input space X
to the label space Y , suppose the mapping function
h = c ◦ f can be decomposed as the composite of a
feature mapping function f : X → R

m and a classifier
c : Rm → Y . Then let h′ be the labeling function,
which can be decomposed as h′ = c′ ◦ f ′. Motivated
by the domain adaptation theory (Ben-David et al.,
2010), the distance between Pi and P̄ can be defined
as:

diH(Pi, P̄ ) = 2suph,h′∈H|Ef∼Pi
[c(f) �= c′(f)]

− Ef∼P̄ [c(f) �= c′(f)]| (4)

The MDTC task can be treated as the collection of M
domain adaptation tasks between {Pi}Mi=1 and P̄ , we
thus obtain the total distribution distance of MDTC
as:

dH =

M∑

i=1

diH(Pi, P̄ ) (5)

As a consequence, the main goal of MDTC is to mini-
mize dH. However, a small dH may not guarantee that
the multiple feature distributions are correctly aligned.
As illustrated in Fig.2(a), it can be noted that dH can
be pushed towards 0 without P1, P2, ..., and PM be-
ing aligned correctly. In addition, only aligning the
marginal feature distributions may match instances
with different labels, resulting in the weak discrim-
inability of the learned features (Fig. 2(b)).

In order to address these issues, the proposed CRAL
method performs class-conditional alignment by learn-
ing two classifiers based on two independent latent
spaces (H1 and H2), and penalizing the disagreement
between their predictions. For any h1 ∈ H1, h2 ∈ H2,
to quantify the disagreement between the two classi-
fiers, we exploit the discrepancy between the predic-
tions h1(x) and h2(x) on unlabeled data among the M
domains. When the disagreement diminishes to zero,
it suggests that the domain alignments performed in
these two latent spaces are similar and the M feature
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(a) (b) (c)

Figure 2: Examples for the domain alignment in MDTC. For simplicity, we present the cases of two domains. The
dashed boundary denotes the negative polarity, while the continuous boundary denotes the positive polarity. The
blue regions represent the P1 feature distribution and the yellow regions represent the P2 feature distribution. (a)
P1 and P2 are not aligned while dH is zero for a linear separator presented by the red line; (b) When aligning the
marginal distributions, misalignment may occur with regard to the category; (c) Correct alignment is conducted
between P1 and P2.

distributions are correctly aligned. We here use the �1
norm to encode the disagreement:

Ld =

M∑

i=1

Exi∼Ui
||Gi,1(xi)− Gi,2(xi)||1 (6)

Where || · ||1 is the �1 norm. To ensure the sufficient
diversity of the two shared latent spaces, we adopt a
regularizer formulated as:

L� = min(γ, || 1
M

M∑

i=1

Exi∼Li
(F1

s (xi)−F2
s (xi))||22)

(7)

where || · ||22 is the squared �2 norm, the hyperparam-
eter γ is positive and controls the maximal disparity
between these two shared latent spaces. Maximizing
L� is equivalent to pushing the centroids of these two
shared latent spaces far apart.

3.4 Virtual Adversarial Training

In this paper, we also incorporate virtual adversar-
ial training (VAT) with entropy minimization to im-
pose consistent prediction constraints on the model. In
MDTC, entropy minimization is often utilized to con-
trol the uncertainty of their predictions. The entropy
minimization is formulated as follows:

Lb
e = −

M∑

i=1

Exi∼Ui [Gi,b(xi)
� log(Gi,b(xi))] (8)

Even though the entropy minimization can help learn
additional structures from unlabeled data to enrich the

discriminability of the features learned from labeled
data, it should be noted that the entropy minimiza-
tion may result in overfitting to the unlabeled data if
the model has infinite capacity (Shu et al., 2018). The
over-confident predictions on unlabeled data can make
the decision boundary lie across the high-density re-
gions of the feature distributions (French et al., 2018),
deteriorating the discriminability of the learned fea-
tures. Specifically, as unlabeled data have no supervi-
sion, the model may abruptly change its prediction in
the vicinity of the unlabeled data (Verma et al., 2019)
(e.g. for any h ∈ H, h(u + ε) �= h(u), where small
perturbations ε occur to unlabeled data points u). To
avoid this risk, virtual adversarial training (VAT) is
introduced in conjunction with the entropy minimiza-
tion in our CRAL to smooth the prediction surface
around the unlabeled points. The VAT is proposed
to search for small perturbations ε that maximize the
change of the predictions on unlabeled data, enforc-
ing consistent predictions to the model (Miyato et al.,
2018). We also use the VAT on labeled data following
(Shu et al., 2018). The VAT losses on unlabeled data
Lb
uvt and labeled data Lb

lvt are formulated as:

Lb
uvt =

M∑

i=1

Exi∼Ui [ max
||r||≤ε

Dkl(Gi,b(xi)||Gi,b(xi + r))]

(9)

Lb
lvt =

M∑

i=1

Exi∼Li [ max
||r||≤ε

Dkl(Gi,b(xi)||Gi,b(xi + r))]

(10)

Where Dkl(·||·) is the Kullback–Leibler divergence
(Van Erven and Harremos, 2014).
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3.5 The Final Objective

The final objective function of the CRAL method is
formulated as:

min
Fb

s ,{Fi,b
d },Cb

max
Db

2∑

b=1

[Lb
c + λAdv ∗ Lb

Adv + λlvt ∗ Lb
lvt

+ λuvt ∗ (Lb
e + Lb

uvt)] + λd ∗ Ld − λ� ∗ L�
(11)

The CRAL model is trained with backpropagation and
in an alternating fashion following (Goodfellow et al.,
2014), the detailed training algorithm is presented in
the Supplementary Materials.

3.6 Discussion

In MDTC, we have three objectives to accomplish.
First, we need to minimize the prediction error on the
labeled data; Second, we need to minimize the un-
certainty of predictions on the unlabeled data; Third,
we should conduct feature alignment among the mul-
tiple domains to transform the original features to be
domain-invariant. In general, the first objective can
be simply achieved by minimizing the cross-entropy
loss on the labeled data. How to optimize the second
and third objectives are the main challenges of MDTC.
Prior MDTC approaches often focus on improving the
procedure of adversarial training to optimize the ad-
versarial alignment (Wu and Guo, 2020; Wu et al.,
2021b), few works investigate how to optimize the un-
certainty of predictions on unlabeled data to make ad-
vance. SSL suggests that unlabeled data can be used
to learn additional structures about the input distri-
butions (Grandvalet and Bengio, 2005). For instance,
cluster structures in the distributions could hint at
the separation of samples into different labels. This
is termed as the cluster assumption: if two samples
reside in the same cluster, they are likely to belong
to the same class. The cluster assumption encour-
ages the decision boundary to lie in the low-density
regions of the distributions. The intuition is simple:
If a decision boundary lies in a high-density region,
it will cut the cluster into two different classes, en-
abling samples lying in the same cluster to have two
different labels. The above phenomenon is named as
the violation of the cluster assumption. By penalizing
the violation of the cluster assumption, we can drive
the decision boundary away from the high-density re-
gions of the distributions, imposing consistent predic-
tion constraints on the model.

In our approach, we improve the adversarial train-
ing by constructing two adversarial training branches,
maximizing the diversity of their shared latent spaces

while minimizing the disagreement of their predictions
on unlabeled data. This improvement can shrink the
search space of possible alignments while preserving
the correct set of alignments. Moreover, we opti-
mize the uncertainty of predictions on unlabeled data
by employing the VAT with entropy minimization.
The VAT can impose consistency regularization on the
training data by penalizing the violation of the cluster
assumption.

4 EXPERIMENTS

In this section, we first illustrate the datasets and base-
line methods. Then we show experimental results on
two tasks: MDTC and MS-UDA: The former refers to
the setting where the test data fall into one of the M
domains; The latter refers to the setting where test
data comes from an unseen domain. Finally, the abla-
tion study and parameter sensitivity analysis are pro-
vided to give more insights into the CRAL approach.

4.1 Experimental Settings

4.1.1 Datasets

We conduct experiments on two MDTC benchmarks:
the Amazon review dataset (Blitzer et al., 2007) and
the FDU-MTL dataset (Liu et al., 2017). For the
Amazon review dataset, there exist 4 domains: books,
dvds, electronics, and kitchen. Each domain contains
2000 samples with binary labels: 1000 positive and
1000 negative. All data have been pre-processed into
a bag of features (unigrams and bigrams), losing the
order information. This prohibits the usage of strong
feature extractors (e.g. CNN or RNN). For fair com-
parisons, we adopt MLPs as the feature extractors and
represent each review as a 5000-dimensional vector fol-
lowing (Chen and Cardie, 2018).

The Amazon review dataset has many limitations,
such as the reviews being pre-processed into a bag
of features and the lack of word position information.
To further validate the effectiveness of the CRAL ap-
proach, we also use the FDU-MTL dataset whose data
are raw text data, which is in line with the real-world
application scenario (Liu et al., 2017). This dataset
has 14 product review domains (books, electronics,
dvds, kitchen, apparel, camera, health, music, toys,
video, baby, magazine, software, and sport) and 2
movie review domains (IMDB and MR). There exist
200 samples in the validation set and 400 samples in
the test set for each domain, while the numbers of la-
beled and unlabeled samples in the training set vary
across domains, but are roughly 1400 and 2000, respec-
tively. As demonstrated in (Chen and Cardie, 2018),
for experiments on the FDU-MTL dataset, CNN-based
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Table 1: MDTC classification accuracies on the Amazon review dataset.
Domain CMSC-LS CMSC-SVM CMSC-Log MAN-L2 MAN-NLL DACL CAN CRAL(Ours)
Books 82.10 82.26 81.81 82.46 82.98 83.45 83.76 85.26± 0.13
DVD 82.40 83.48 83.73 83.98 84.03 85.50 84.68 85.83± 0.14
Electr. 86.12 86.76 86.67 87.22 87.06 87.40 88.34 89.32± 0.09
Kit. 87.56 88.20 88.23 88.53 88.57 90.00 90.03 91.60± 0.17
AVG 84.55 85.18 85.11 85.55 85.66 86.59 86.70 88.00± 0.12

Table 2: MDTC classification accuracies on the FDU-MTL dataset.
Domain MT-CNN MT-DNN ASP-MTL BERT MAN-L2 MAN-NLL DA-MTL DACL GLR-MTL CAN CRAL(Ours)
books 84.5 82.2 84.0 87.0 87.6 86.8 88.5 87.5 88.3 87.8 89.3± 0.3
electronics 83.2 88.3 86.8 88.3 87.4 88.8 89.0 90.3 90.3 91.6 89.1±0.5
dvd 84.0 84.2 85.5 85.6 88.1 88.6 88.0 89.8 87.3 89.5 91.0± 0.2
kitchen 83.2 80.7 86.2 91.0 89.8 89.9 89.0 91.5 89.8 90.8 92.3± 0.2
apparel 83.7 85.0 87.0 90.0 87.6 87.6 88.8 89.5 88.2 87.0 91.6± 0.4
camera 86.0 86.2 89.2 90.0 91.4 90.7 91.8 91.5 89.5 93.5 96.3± 0.2
health 87.2 85.7 88.2 88.3 89.8 89.4 90.3 90.5 90.5 90.4 87.8±0.4
music 83.7 84.7 82.5 86.8 85.9 85.5 85.0 86.3 87.5 86.9 88.1± 0.1
toys 89.2 87.7 88.0 91.3 90.0 90.4 89.5 91.3 89.8 90.0 91.6± 0.3
video 81.5 85.0 84.5 88.0 89.5 89.6 89.5 88.5 90.8 88.8 92.6± 0.4
baby 87.7 88.0 88.2 91.5 90.0 90.2 90.5 92.0 92.3 92.0 90.9±0.2
magazine 87.7 89.5 92.2 92.8 92.5 92.9 92.0 93.8 92.3 94.5 95.2± 0.4
software 86.5 85.7 87.2 89.3 90.4 90.9 90.8 90.5 91.8 90.9 87.7±0.4
sports 84.0 83.2 85.7 90.8 89.0 89.0 89.8 89.3 87.8 91.2 91.3± 0.3
IMDb 86.2 83.2 85.5 85.8 86.6 87.0 89.8 87.3 87.5 88.5 90.8± 0.3
MR 74.5 75.5 76.7 74.0 76.1 76.7 75.5 76.0 72.7 77.1 77.3± 0.5
AVG 84.5 84.3 86.1 88.1 88.2 88.4 88.2 89.1 88.5 89.4 90.2± 0.2

feature extractors are much more effective and efficient
than LSTM-based feature extractors in learning fea-
tures. And the most recent baselines (i.e., MAN (Chen
and Cardie, 2018), DACL (Wu and Guo, 2020) and
CAN (Wu et al., 2021a)) all adopt CNN-based feature
extractors. Therefore, our CRAL method also adopts
CNN-based feature extractors in our experiments on
the FDU-MTL dataset for fair comparisons.

We take the convenience to cite the experimental re-
sults from (Zheng et al., 2018; Su et al., 2020; Wu and
Guo, 2020; Wu et al., 2021a). The implementation de-
tails and the detailed statistics of both datasets are
available in the Supplementary Materials.

4.1.2 Comparison Methods

For the MDTC tasks, we compare the CRAL method
with a number of state-of-the-art methods: the multi-
task convolutional neural network (MT-CNN) (Col-
lobert and Weston, 2008), the multi-task deep neu-
ral network (MT-DNN) (Liu et al., 2015), the col-
laborative multi-domain sentiment classification meth-
ods with the least square loss (CMSC-L2), the hinge
loss (CMSC-SVM) and the log loss (CMSC-Log) (Wu
and Huang, 2015), the adversarial multi-task learning
for text classification (ASP-MTL) (Liu et al., 2017),
the multinomial adversarial network with the least
square loss (MAN-L2) and the negative log-likelihood
loss (MAN-NLL) (Chen and Cardie, 2018), the dy-
namic attentive sentence encoding method (DA-MTL)
(Zheng et al., 2018), the pre-trained BERT-base model
which is fine-tuned on each domain (BERT) (Devlin
et al., 2019), the dual adversarial co-learning method

(DACL) (Wu and Guo, 2020), the global and local
shared representation based dual-channel multi-task
learning method (GLR-MTL) (Su et al., 2020), and
the conditional adversarial network (CAN) (Wu et al.,
2021a). For MS-UDA experiments, the baselines are
listed as follows: the marginalized denoising autoen-
coder (mSDA) (Chen et al., 2012), the domain ad-
versarial neural network (DANN) (Ganin et al., 2016),
the multi-source domain adaptation network (MDAN)
(Zhao et al., 2017), the MAN (MAN-L2 and MAN-
NLL) (Chen and Cardie, 2018), the DACL (Wu and
Guo, 2020), and the CAN (Wu et al., 2021a). As the
former two methods are domain-agnostic methods, we
combine all training data from the M domains as the
training set to train them.

4.2 Results

4.2.1 Multi-Domain Text Classification

We report the classification results of mean ± stan-
dard error over five random trials. The experimental
results on the Amazon review dataset and FDU-MTL
dataset are reported in Table 1 and Table 2, respec-
tively. From Table 1, it can be noted that the CRAL
method can not only outperform other baselines on all
four domains, but also obtain the best performance in
terms of the average classification accuracy. Moreover,
it beats the second-best approach CAN by the margin
of 1.30% in terms of the average accuracy.

As shown in Table 2, when we conduct experiments
on the more challenging FDU-MTL dataset, we can
observe that the CRAL method obtains the best clas-
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Table 3: Multi-source unsupervised domain adaptation results on the Amazon review dataset.
Domain mSDA DANN MDAN(H) MDAN(S) MAN-L2 MAN-NLL DACL CAN CRAL(Ours)
Books 76.98 77.89 78.45 78.63 78.45 77.78 80.22 78.91 82.49
DVD 78.61 78.86 77.97 80.65 81.57 82.74 82.96 83.37 84.30
Elec. 81.98 84.91 84.83 85.34 83.37 83.75 84.90 84.76 86.82
Kit. 84.26 86.39 85.80 86.26 85.57 86.41 86.75 86.75 89.08
AVG 80.46 82.01 81.76 82.72 82.24 82.67 83.71 83.45 85.67

(a) λd (b) λ� (c) λuvt (d) λlvt

Figure 3: Parameter sensitivity analysis

Table 4: Ablation study on the Amazon review
dataset.

Method Books DVD Electr. Kit. AVG
CRAL (full) 85.26 85.83 89.32 91.60 88.00
CRAL w/o Ld 83.08 84.19 87.45 88.74 85.87
CRAL w/o L� 84.62 85.18 89.15 91.17 87.53
CRAL w/o Luvt 84.25 85.07 88.64 90.88 87.21
CRAL w/o Llvt 84.96 85.35 88.93 91.21 87.61

sification accuracy on 12 out of 16 domains, and yield
the best average classification accuracy, outperforming
the second-best baseline CAN by 0.8%. The results
shown in Table 1 and Table 2 both demonstrate the
effectiveness of our proposed CRAL method in MDTC.

4.2.2 Multi-Source Unsupervised Domain
Adaptation

In real application scenarios, it is not uncommon that
there exist no labeled data in the target domain. Thus,
it is of great significance to evaluate MDTC models in
such cases. In the MS-UDA setting, we have multi-
ple source domains with both labeled and unlabeled
data and one target domain which only has unlabeled
data. The model needs to be trained on the source do-
mains and evaluated on the target domain. When eval-
uating the CRAL method in the MS-UDA setting, as
the target data have no supervision, only the domain-
invariant feature vectors are fed into the classifiers, the
domain-specific vectors are set to 0s.

We conduct the MS-UDA experiments on the Amazon
review dataset, following the same setting as (Chen
and Cardie, 2018). For each experiment, three out
of the four domains are used as the source domains,
and the remaining one is used as the target domain.
From Table 3, we can see that the proposed CRAL
method can outperform other baselines not only on
each individual domain, but also in terms of the aver-
age accuracy. For the average classification accuracy,

our CRAL method outperforms the CAN method by
a margin of 2.22%, suggesting that our CRAL method
has a good capacity for transferring knowledge to un-
seen domains.

4.3 Further Analysis

4.3.1 Ablation Study

In order to verify how each component of the CRAL
method can impact the performance, we conduct an
ablation study on the Amazon review dataset. In par-
ticular, we investigate four variants: (1) CRAL w/o
Ld, the variant of CRAL without penalizing the dis-
agreement of predictions on the unlabeled data; (2)
CRAL w/o L�, the variant of CRAL without enforcing
diversity on two shared feature extractors; (3) CRAL
w/o Luvt, the variant of CRAL without the VAT on
the unlabeled data; (4) CRAL w/o Llvt, the variant
of CRAL without the VAT on the labeled data. The
comparison results are presented in Table 4. We can
see that all four variants induce inferior performance,
and the full model produces the best results, validat-
ing that all these components contribute to the per-
formance improvement of our model. Moreover, Com-
pared with L�, Luvt and Llvt, Ld makes the most sig-
nificant contribution to the system performance by a
margin of 2.13%, illustrating the effectiveness of our
co-regularized adversarial learning mechanism. The
ablation study on the FDU-MTL dataset presents the
same conclusion, its details are available in the Sup-
plementary Materials.

4.3.2 Parameter Sensitivity Analysis

In this section, we explore the sensitivity of our
approach to the values of hyperparameters λd, λ�,
λuvt and λlvt. These hyperparameters are used to
trade-off different loss functions. We conduct the
parameter sensitivity analysis on the Amazon re-



Yuan Wu, Diana Inkpen, Ahmed El-Roby

view dataset. When evaluating one hyperparame-
ter, the others are fixed to their default values (e.g.
λd=0.00001, λ�=0.0001, λuvt=1, λlvt=1). λd and λ�
are tested in the range {0.000001, 0.00001, 0.0001,
0.001, 0.01, 0.1}, and λuvt and λlvt are evaluated in
the range {0.001, 0.01, 0.1, 1, 3, 10}. The experimen-
tal results are shown in Fig. 3. We report the average
classification accuracy.

From Fig. 3, it can be noted that different values of
λd and λ� cannot significantly influence the system
performance. Consequently, we can set λd and λ� as
0.00001 and 0.0001 in all experiments. The trends of
performance change for λuvt and λlvt are similar: with
the increase of λuvt and λlvt, the classification accu-
racy first increases and reaches the optimum, then it
decreases rapidly. This analysis illustrates that proper
selections of λuvt and λlvt can effectively improve the
performance of our model.

5 CONCLUSION

In this paper, we propose a co-regularized adversar-
ial learning (CRAL) mechanism for multi-domain text
classification. This approach constructs two diverse
adversarial training branches and penalizes the dis-
agreement of their predictions on unlabeled data to
rule out redundant hypothesis classes while preserving
correct alignments. Moreover, it introduces the virtual
adversarial training with the entropy minimization to
penalize the violation of the cluster assumption, im-
posing consistency regularization to the model. The
experimental results show that our proposed CRAL
outperforms the state-of-the-art MDTC methods on
two benchmarks. Further investigations demonstrate
that our model has a good ability to generalize to un-
seen domains.
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Supplementary Material:
Co-Regularized Adversarial Learning for Multi-Domain Text

Classification

A TRAINING PROCEDURE

The training algorithm of CRAL which uses mini-
batch stochastic gradient descent (SGD) is presented
in Algorithm 1. In each iteration, the input data
should be fed into the two branches to train the model.
The CRAL mechanism boosts the system performance
by punishing the disagreement of predictions induced
from the two diverse adversarial training streams and
utilizing the VAT with entropy minimization to en-
force the consistency regularization to the model. γ is
a hyperparameter that controls the diversity extent of
two shared latent spaces. λAdv, λd, λ�, λuvt and λlvt

are hyperparameters that balance different loss func-
tions. In our experiments, we set γ, λAdv, λd and λ�
as 10, 1, 0.00001 and 0.0001. According to our pa-
rameter sensitivity analysis, the selections of λuvt and
λlvt can significantly influence the performance of our
model. Thus, these two hyperparameters need to be
tuned for each benchmark.

Algorithm 1 SGD training algorithm

1: Input: labeled data Li and unlabeled data Ui in
M domains; hyperparameters: γ, λAdv, λd, λ�,
λuvt, λlvt

2: for number of training iterations do
3: Sample labeled mini-batches from the multiple

domains B� = {B�
1, · · · , B�

M}.
4: Sample unlabeled mini-batches from the multi-

ple domains Bu = {Bu
1 , · · · , Bu

M}.
5: Calculate lD =

∑2
b=1 λAdvLb

Adv on B� and Bu;
Update D1 and D2 by ascending along gradients
∇lD.

6: Calculate loss =
∑2

b=1[Lb
c+λAdv ∗Lb

Adv+λuvt ∗
(Lb

e +Lb
uvt) + λlvt ∗ Lb

lvt] + λd ∗ Ld − λ� ∗ L� on
B� and Bu;
Update F1

s , F2
s , {F i,1

d }, {F i,2
d }, C1, C2 by de-

scending along gradients ∇loss.

7: end for

B DATASET

The experiments are conducted on two benchmarks:
The Amazon review dataset (Blitzer et al., 2007) and
the FDU-MTL dataset (Liu et al., 2017). The data
in the Amazon review dataset has been pre-processed

Table 5: Statistics of the Amazon review dataset
Domain Labeled Unlabeled Class.
Books 2000 4465 2
Electronics 2000 3586 2
DVD 2000 568 2
Kitchen 2000 5945 2

Table 6: Statistics of the FDU-MTL dataset
Domain Train Dev. Test Unlabeled Avg. L Vocab. Class.
Books 1400 200 400 2000 159 62K 2
Electronics 1398 200 400 2000 101 30K 2
DVD 1400 200 400 2000 173 69K 2
Kitchen 1400 200 400 2000 89 28K 2
Apparel 1400 200 400 2000 57 21K 2
Camera 1397 200 400 2000 130 26K 2
Health 1400 200 400 2000 81 26K 2
Music 1400 200 400 2000 136 60K 2
Toys 1400 200 400 2000 90 28K 2
Video 1400 200 400 2000 156 57K 2
Baby 1300 200 400 2000 104 26K 2
Magazine 1370 200 400 2000 117 30K 2
Software 1315 200 400 475 129 26K 2
Sports 1400 200 400 2000 94 30K 2
IMDB 1400 200 400 2000 269 44K 2
MR 1400 200 400 2000 21 12K 2

into a bag of features (unigrams and bigrams), los-
ing all order information, while the data in the FDU-
MTL dataset are raw text data only being processed
by the Stanford Tokenizer (Manning et al., 2014). The
Amazon review dataset contains 4 domains: books,
dvds, electronics, and kitchen. All four domains are
product reviews. The FDU-MTL dataset contains 16
domains: books, electronics, dvds, kitchen, apparel,
camera, health, music, toys, video, baby, magazine,
software, sport, IMDB, and MR. The first 14 domains
are product reviews while the last two are movie re-
views. The details of these two datasets are presented
in Table 5 and 6, respectively.

C IMPLEMENTATION DETAILS

We follow the standard experimental settings for
MDTC (Chen and Cardie, 2018), adopt the same net-
work architectures as in (Chen and Cardie, 2018; Wu
and Guo, 2020), and ensure that all baselines adopt the
standard partitions of the datasets. All experiments
are implemented by using Pytorch. The CRAL has
six parameters: γ, λAdv, λd, λ�, λuvt and λlvt. In the
experiments, we fix γ = 10, λAdv = 1, λd = 0.00001,
λ� = 0.0001, λuvt and λlvt are selected in the range
{0.001, 0.01, 0.1, 1, 3, 10}.
The adam optimizer (Kingma and Ba, 2014), with the
learning rate 0.0001, is used for training in our exper-
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Table 7: Ablation Study on the FDU-MTL dataset.
Domain CRAL(full) CRAL w/o Ld CRAL w/o L� CRAL w/o Luvt CRAL w/o Llvt

books 89.3 87.3 87.6 88.5 87.1
electronics 89.1 89.0 90.8 89.0 89.9
dvd 91.0 89.7 89.5 90.3 90.4
kitchen 92.3 93.0 90.7 91.4 93.5
apparel 91.6 91.5 91.0 90.9 91.5
camera 96.3 93.2 93.4 91.5 93.2
health 87.8 88.7 89.5 90.3 89.0
music 88.1 82.5 86.9 86.9 86.5
toys 91.6 89.8 90.6 87.4 88.7
video 92.6 88.7 91.3 90.0 87.2
baby 90.9 89.6 89.4 90.5 90.0
magazine 95.2 94.0 94.1 93.6 93.7
software 87.7 89.1 90.0 87.5 90.2
sports 91.3 90.9 89.6 91.5 90.5
IMDb 90.8 87.0 88.3 89.7 88.6
MR 77.3 76.3 76.0 76.0 78.5
AVG 90.2 88.8 89.3 89.1 89.3

iments. The batch size is 8. The dimension of the
shared feature representation is 128 while 64 for the
domain-specific one. The dropout rate for each com-
ponent is 0.4. The classifiers and discriminators are
MLPs with one hidden layer of the same size as their
input (128 + 64 for classifiers and 128 for discrimina-
tors). ReLU is used as the activation function. When
evaluating the test data, the average prediction prob-
ability of the two classifiers is used to determine the
final prediction.

When processing the Amazon review dataset, as we
represent its review as a 5000-dimensional vector, we
follow (Chen and Cardie, 2018) to adopt MLPs as the
feature extractors, with an input size of 5000. Each
feature extractor consists of two hidden layers, with
size 1000 and 500, respectively. In addition, five-fold
cross-validation is conducted. We divide the data into
five folds per domain: three of the five folds are used as
the training set, one is the validation set, and the re-
maining one is the test set. On one trial, the five-fold
average test classification accuracy is reported. For
the experiments on the FDU-MTL dataset, we also
follow (Chen and Cardie, 2018) to use CNN with a
single convolutional layer as the feature extractor. It
uses different kernel sizes (3, 4, 5), and the number of
kernels is 200. The input of the convolutional layer is
a 100-dimensional vector, obtained by using word2vec
(Mikolov et al., 2013), for each word in the input se-
quence.

D ABLATION STUDY

Similar to the ablation study carried out on the Ama-
zon review dataset, we also investigate four variants
in the ablation study on the FDU-MTL dataset: (1)
CRAL w/o Ld, the variant of CRAL without penal-
izing on the disagreement of predictions on the unla-
beled data; (2) CRAL w/o L�, the variant of CRAL
without enforcing diversity on two shared feature ex-
tractors; (3) CRAL w/o Luvt, the variant of CRAL
without the VAT on the unlabeled data; (4) CRAL

w/o Llvt, the variant of CRAL without the VAT on
the labeled data. The experimental results are shown
in Table 7. We observe that all four components con-
tribute to the system improvement. In particular,
compared to L�, Luvt and Llvt, Ld makes the most
significant contribution.


