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Abstract

When predicting the survival time of a patient, different covariates may be important
at different times. We introduce a survival prediction model, “discrete hazard Bayesian
network”, that can provide individual survival curves and also identify which features are
relevant for each time interval. This model encodes the discrete hazard function as a
sequence of (possibly different) Bayesian networks, one for each time interval. Note each
such network includes a “Death” node, which is True iff the person dies in that interval.
A set of features relevant for each time interval are the nodes in the Markov blanket
around that “Death” node for that interval. We also apply a “discrete hazard computation
correction” based on the effective sample size – a correction that avoids biased survival
curves.

We first show that our model is effective by demonstrating that it can identify the
time-varying relevance of the features, using the synthetic dataset. We then provide two
real-world examples by analyzing the relevant features for different times on the North
Alberta cancer dataset and the Norway/Stanford breast cancer dataset.

Keywords: survival prediction, feature selection, (discrete) hazard function, Bayesian
networks, time-varying effects

1. Introduction

The field of survival prediction provides algorithms that attempt to estimate the time
until an event will happen – e.g., the time until the death of a patient. As such, an
accurate survival prediction models can help doctors to make treatment decisions. To
help people interpret these predictions, it is useful to know which variables are relevant.
However, different variables may be relevant, at different times. For example, in the months
immediately after an operation, a patient’s blood factor are very important. However, if the
patient survives more than a year, then BMI and age are typically more important. Indeed,
assuming a feature’s impact is constant might lead to misleading conclusions (Bellera et al.,
2010).

We provide a model that uses Bayesian Networks and Individual Survival Distributions.
To define these terms: A Bayesian network is a probabilistic graphical model that encodes a
probability distribution as a graph structure with nodes corresponding to random variables
and arcs that encode conditional dependencies (Koller and Friedman, 2009; Pearl, 1988).
The graphical structure allows people to easily “read off” the (conditional) dependencies of

© 2021 L.-H. Kuan & R. Greiner.



the set of variables – to identify how these covariates affect each other (Heckerman, 2008);
in particular, the “Markov Blanket” around a node X – which includes X’s parents, X’s
children, and the other parents of X’s children – are a set of features directly relevant to
X.

In general, an ISD (Individual Survival Distribution) model represents the probability
that each specific patient will survive until time t, over all future time points t (Haider
et al., 2020). The fact that it is individualized, and over all future times, mean an ISD can
effectively deal with the heterogeneity of patients and the high variation of survival times.

Here, we define and use a novel survival model, Discrete Hazard Bayesian Network (DHBN),
which builds one Bayesian network (over the covariates as well as a “Death” random vari-
able Λj) for each time interval Ij , to represents the discrete hazard. Here, the “discrete
hazard” is the conditional probability that a subject will die in a time interval, given that
this subject is alive at the start of this interval. We provide a training process that is fully
automatic and driven by the training data. DHBN incorporates right-censored data by
applying the probability computation correction inspired by the life-table analysis. More
importantly, the Bayesian networks built by DHBN are interpretable, in that they can be
used to find the time-varying effects of each covariate. This DHBN model gives an indi-
vidualized survival curve for each subject, which we demonstrate is calibrated. We also
demonstrate that this model can identify important features at different times.

Section 2 presents some previous works that are related to feature selection and time-
varying feature effects, and discusses different categories of survival prediction models. Sec-
tion 3 defines the discrete hazard function, then describes how our DHBN learner can learn
a sequence of Bayesian networks to represent a discrete hazard function for each interval,
which can be used to produce a survival curve for a patient. Section 4 introduces a compu-
tation correction to effective sample size when learning the parameters. Section 5 provides
the empirical results on synthetic and real-world data. Finally, Section 6 summarizes the
results and discuss some future directions.

2. Background

For standard classification and regression tasks, standard feature selection methods, such
as L1-regularizer methods, mRMR, etc., can identify the features that are important to a
target variable (Peng et al., 2005). In the survival prediction setting, one can use the (L1-
regularized) Cox Proportional Hazards (CoxPH) model or accelerated failure time model
(AFT) to select features that affect the hazard rate or the acceleration of failure time, by
removing the features whose associated regression coefficient is essentially 0 (Tibshirani,
1997; Huang and Ma, 2010). However, these approaches can only include, or exclude, a
variable, for all time points; none can include a variable for only a subset of the time.

These approaches implicitly embody the Proportional Hazard assumption – i.e., that
a variable has the same importance at all future times. However, this assumption is often
violated (Xue et al., 2013), which means that models like CoxPH would need to exclude
those variables. We provide a method that can use variables with time-varying important,
appropriately, by providing a way to include different variables at different times.

There are many ways for survival prediction systems to deliver the prediction results.
Each of these focuses on different characteristics (Haider et al., 2020). Some systems focus
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on the discrimination ability by only providing a risk score – allowing this tool to predict the
relevant order in which people will die. The standard such model is CoxPH. Other systems
focus on the probability that a subject will survive until a single predefined time point –
e.g., 5-year survival (Sailer et al., 2015) or 30-day hospital re-admissions (Liu et al., 2020).
There are also survival models that provide a general survival distribution, applicable to
entire group of people (e.g., everyone with stage 4 lung cancer) – e.g., the Kaplan-Meier
estimator.

Instead, we want a model that provides a more general form of survival, called “Individ-
ual Survival Prediction” (Haider et al., 2020), that predicts a unique survival distribution
for each individual subject xi – providing p( t |xi ), which is the probably that xi lives until
(at least) time t > 0. Note these prediction results can be used for both risk ranking (e.g.,
by using the mean of the curve, or the median) and estimating survival until a single time
point. Some examples of individual survival prediction models includes MTLR (Yu et al.,
2011), accelerated failure time (Kalbfleisch and Prentice, 2011) and our model DHBN.

3. DHBN Model

Figure 1: Model architecture for DHBN. An edge is red if it was not in the previous graph;
and is dashed if it is deleted from the previous graph.

Consider the dataset DS = {(xi, ti, ci)}Ki=1, where xi is a d-dimension vector of covari-
ates for subject i, ti is a future time, which is the time to death if this instance is uncensored
(ci=1), or the time of censoring if the death event has not happened yet (ci=0). K is the
total number of subjects in the dataset.
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First, we set up N time points by the quantile of the event happened or censored time
{ti}, producing the time points {τj}Nj=1 that we use to divide the time axis into N discrete
intervals, from I1 = [τ0 = 0, τ1 ) to IN = [ τN−1, τN ). Here, we use N = 10. For each of
the intervals Ij , we collect a dataset Dj , which includes the relevant subset of the instances
who are alive at the start τj−1, each described by values xi of the covariate variables X,
and the appropriate value λij for its “Death” variable Λj . Because we want to model the
discrete hazard, which is the conditional probability of the subject’s death given that the
subject is alive at the start of this interval, Dj only includes the subjects known to be alive
in the previous time interval Ij−1 – i.e., it does not include any subjects who died or were
censored before interval Ij . The death value λij is 0 if the subject i is still alive in interval
Ij , is 1 means the subject dies in interval Ij (note that Dj excludes subject that died before
τj−1), and is NA if the subject becomes censored in interval Ij .

Dj = { (xi, λij) | ti > τj−1 }

λij =


0, ti ≥ τj
1, τj−1 ≤ ti < τj ∧ ci = 1

NA, τj−1 ≤ ti < τj ∧ ci = 0

The probability of Λj = 1 given Λj−1 = 0 and X = xi is the discrete hazard for subject
i. Discrete hazard, denoted by

hi(Λj) =

{
p( Λj = 1 |X = xi ), j = 1

p( Λj = 1 |Λj−1 = 0, X = xi ), j > 1

is the conditional probability of the subject’s death given that the subject is alive in the
previous time interval and all the other covariates xi.

We learn a graphical structure Gj and estimate the parameters using data Dj for each
interval Ij . The variables in each graphical structure Gj includes all the covariates X and
the death variable Λj . To incorporate the censored data, we apply a calculation correction
when estimating the parameters for the discrete hazard hi(Λj), which will be described in
the Section 4.

Finally, we build a smooth survival curve Si(t) for the ith patient (described by xi) by
smoothly interpolating through the points { [τn, Si(τn)] }Nn=1 where

Si(τn) =
n∏

j=1

(1− hi(Λj))

see bottom of Figure 1.

4. Estimating Discrete Hazard

When estimating the discrete hazard with censored data, we need to apply a correction to
the probability calculation because the instances are grouped into discrete time intervals.
This correction has been used in the life-table analysis (Igwenagu, 1993).

Censoring can happen at any time within the interval. The censored subject should not
be counted as a whole person-interval but should also not be ignored because they live a
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fraction of the interval. By assuming the censorship distributed uniformly across the time
interval, the mean survival period of all subjects whose censor time falls in the interval Ij
should be the half of the whole interval. Thus, the effective sample size (i.e., people at risk)
should be:

n′j = nj −
cj
2

where nj is the number of people alive at the start of time interval Ij , which excludes
subjects who are already dead or censored before the current interval; and cj is the number
of instances whose censor time falls in the interval Ij . With this effective sample size n′j , we
can calculate the discrete hazard for the whole population in interval Ij , defined as h(Λj):

h(Λj) =

{
p( Λj = 1 ), j = 1

p( Λj = 1 |Λj−1 = 0 ), j > 1

=
dj
n′j

where dj is the number of (uncensored) people who die during the interval Ij . This calcula-
tion correction is applied to the parameter estimation for the conditional probability table
of the Λ node. Similar to the calculation of h(Λj), for hi(Λj) the subjects whose censoring
time falls in Ij are count as half alive. The empirical results on a real-world dataset show
that using n′j rather than nj or nj − cj is necessary to avoid over optimistic or pessimistic
estimation; see Table 1. n′j has the least bias and the overestimate percentage closest to
50%. (The “Overestimate (%)” is the proportion of the test set whose estimated time of
death is greater than the true time of death, using the “death time” computation used for
computing L1 loss. See Section 5.1 for details.)

Table 1: The comparison of using nj , n
′
j , and nj − cj for effective sample size tested on

NACD colorectal cancer dataset.

Bias Overestimate(%)

nj 2.674 55.894
n′j 0.518 53.157

nj − cj -5.032 47.368

5. Empirical results

5.1. Evaluation

We will measure each survival model’s performance using concordance, D-calibration, and
L1 loss. The concordance (aka “c-index”) is a measure for discrimination; here, the “risk” for
each survival curve is the median of survival time from the survival curve Si(t) – i.e., where
the curve crosses 0.5. (If necessary, we extending the curve beyond our maximum survey
time window using the average slope of the whole curve (Haider et al., 2020, Appendix A).)
D-calibration, a statistical test for the overall calibration of the survival curve (Haider et al.,
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2020), holds if the probability of the times of the actual deaths ti, over the distribution of
patients, is distributed uniformly within the testing data – i.e., if Si(ti) ∼ U [0, 1]. The
D-calibration test produces a p-value. Stated informally, the closer the p-value to 1, the
more calibrated the death time probability distribution. Here, we use D-calibration to refer
to the statistical quantity computed, rather than the actual “reject/no-reject” test result.

We use the median of the survival curve to calculate the L1 loss, extending the survival
curve if necessary, as described above. For censored data, we estimate a specific survival
time, by adding to the censored time, the expected value of the Kaplan-Meier distribution
(estimated over the training sample), conditioned on living until at least that censored time;
see (Haider et al., 2020). All the results shown are five-fold cross-validation.

Note we also explored a few other models such as Cox-KP, which applies the Kalbfleisch-
Prentice extension to the Cox risk scorer (Kalbfleisch and Prentice, 2011), and MTLR (Yu
et al., 2011).

5.2. Synthetic data

To show that the DHBN can capture the important factors for different times, we generate
synthetic data, based on a set of Bayesian networks, where the hazard for different time
intervals depend on different covariates. We use six random variables, { A, B, C, D, E, F
}, and consider 3 time intervals. The effects of the variables are constant hazard within an
interval but different in other intervals. Before t1 = 13, the hazard depends on variables
{ A, B, F}; between t1 and t2 = 32, the hazard depends on { D, E, F}, and after t2, the
hazard only depends on {F}; see Figure 2. We generated 2400 samples and censored the
data, by randomly selecting a subject, then randomly picking a censoring time, uniformly
wrt the whole survey time window [0,60]. If that censoring tc happens before death td, the
subject is censored. Here, 34% of the subjects were censored.

Table 2 and Figure 3 show the Markov blanket (neighboring variables and the children’s
parents) around the death variable in the Bayesian network structures learned by DHBN.
The graphical structures recover the important factors successfully by connecting them to
the death node Λj . We see that no nodes connect to the death node in interval I8; we
think this is because I8 includes the transition of variable effect from {D,E,F} to only {F}.
The transition makes the data more noisy in this interval. In other intervals, DHBN does
not find some relevant variables because those variables’ impact on the discrete hazard are
small or the samples are unbalanced.

For comparison, Table 3 shows each feature’s contribution in the learned Cox propor-
tional hazard model. where coefficients with larger absolute values are more important.
The variables selected by Cox-KP match the DHBN with the most important variables A,
D, and F appear the most in the network structure. However, the Cox-KP can not show the
time dependence of those variables. We also compare our DHBN with MTLR models (Yu
et al., 2011). Table 4 shows that DHBN has the best concordance and L1-loss, and passes
D-calibration.

5.3. North Alberta Cancer Dataset

We applied our model to the North Alberta Cancer Dataset for colorectal cancer, which
contains 34 covariates for 950 individuals, with 51.8% censoring. Table 5 lists the important
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Figure 2: Graphical structures for synthetic dataset. Dashed lines are the non-edges,
deleted from previous graph. Red lines are the new edges. The tick-marks on the
time axis separate the different time intervals.

Figure 3: Graphical structures learned by DHBN, for the synthetic dataset.
Here we show the graphical structures for interval I1, I5and I9 – based on one fold.
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Table 2: The Markov blanket around the “Death” variable Λj in the Bayesian network
structures for synthetic data. The changing time points are at t1 = 13 and t2 =
32.

Interval id Time intervals Connected nodes

1. (0, 2.17) A, B, F

2. (2.17, 4.49) A, F

3. (4.49, 8.2) A, B, F

4. (8.2, 13.1) A, B

5. (13.1, 17.9) D, F

6. (17.9, 23.7) D, E

7. (23.7, 30.4) D, F

8. (30.4, 37.1) {}
9. (37.1, 46.6) F

10. (46.6, 59.4) {}

Table 3: The parameters in Cox proportional hazard models for synthetic data.

Variables Coefficients

A 0.19480

B 0.05259

C -0.02280

D 0.21360

E -0.07883

F 0.11807

Table 4: Results on the synthetic dataset

Concordance D-calibration L1 loss

CoxKP 0.60121614 0.0000000035 34.569668

MTLR 0.60568394 0.444995 34.57228

DHBN 0.63226048 0.07371909 34.221828
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factors found by DHBN, showing for example, that the “STAGE-4” variable is important
(only) at the beginning, and after time 42 months, “AGE” is critical. Chi et al. (2017)
similarly found that the effects of stage and age are time-dependent. We also see that
“LDH SERUM” is important in 13 to 19 month, etc. Table 6 shows the concordance, L1-
loss, and D-calibration. Seeing concordance > 0.5 shows that the DHBN can provide some
basic discrimination, but still worse than MTLR and Cox-KP.

5.4. Norway/Stanford breast cancer dataset

The Norway/Stanford breast cancer dataset (NSBCD) (Sørlie et al., 2003) contains 115
instances, 274 features, and 66% censoring. Table 7 shows that all three models are cal-
ibrated; DHBN has the lowest L1 loss and MTLR has the highest concordance. Table 8
shows the features that DHBN finds relevant at different times.

Figure 4: Survival curves for some colorectal patients, produced by DHBN

6. Conclusion

We list below three future directions that might be worth investigating. First, because the
survival curve Si(t) is the product of all the discrete hazards before time t, the errors at
earlier times might accumulate, leading to larger errors at later times. We are considering
extensions that address this, perhaps by combining both hazard prediction with survival
prediction. Second, as the number of subjects that are alive decrease over time, there may
be only a small number of instances available for learning a Bayesian network at the later
time intervals. To include more data at later time, we plan to explore ways to “fractionally
include” instances. Finally, here we have fixed the number of time intervals, N = 10.
However, the number of time intervals could be based on the amount of training data and
the number of features, motivated us to develop an automatic way to divide the time axis
into discrete intervals.
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Table 5: NACD colorectal cancer features that DHBN considers relevant, for different times.

j Time intervals Features

1 (0, 3.03) PERFORMANCE STATUS 3, STAGE 4, GRANULOCYTES

2 ( 3.03, 6.56) DRY MOUTH, STAGE 4

3 ( 6.56, 9.50) STAGE 4

4 (9.50, 13.5) PERFORMANCE STATUS 3, STAGE 4

5 (13.5, 19.1) STAGE 4, LDH SERUM

6 (19.1, 25.4) PERFORMANCE STATUS 2, STAGE 4

7 (25.4, 32.6) {}
8 (32.6, 36.2) {}
9 (36.2, 42.3) HGB

10 (42.3, 53.9) AGE65

Table 6: Results for North Alberta Cancer Dataset colorectal cancer

Concordance D-Calibration L1 loss

CoxKP 0.72188 0.52085 27.3413

MTLR 0.72101 0.86689 28.0722

DHBN 0.7127766 0.394343 29.7309

Table 7: Results for NSBCD Dataset

Concordance D-Calibration L1 loss

CoxKP 0.6166667 5.09E-60 264.02

MTLR 0.7833333 0.9975128 227.24

DHBN 0.6916667 0.9906823 156.35

Table 8: NSBCD features that DHBN considers relevant, for different times.

j Time intervals Features

1 (0, 7.33) f088

2 ( 7.33, 9.66) {}
3 ( 9.66, 12.0) {}
4 (12.0, 14.3) f011, f271

5 (14.3, 17.6) {}
6 (17.6, 22.0) {}
7 (22.0, 29.3) f120, f458

8 (29.3, 38.0) f400

9 (38.0, 55.3) f420, f448, f459, f488, f511

10 (55.3, 72.6) {}
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To conclude: Finding relevant features for different times can provide much more infor-
mation to help doctors make better decisions. We introduce the DHBN survival prediction
model that produces individual survival curves for each subject, and identifies the factors
important to the hazard at different times. We demonstrate that this model works effec-
tively, on both synthetic and real-world datasets.
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