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Abstract
Locating aud evaluating rdationships amont values in multiple streams of data is a difrcult and
important task. Consider the data flowing from monitors in an iatensive care unit. Q63rtings from
rrarious subsets ofthe monitors are indicative and predictive ofcertai. aspects ofthe patientts state.
We present an algorithm that facilitates discovery and assessmeat of the streagth of such predictive
relationships called .Dfulfi- ttrecm Dependency Detection (usoo).
We use heuristic search to guide onr e4rloration of the space of potentially interesting dcpendencies
to uncover those that arc significant. We begin by reviewing the depcndency detection tecb.aique
described in [3], and extend it to the multiple strean casc, describing in detail our heuristic search
over the space of possible dependencies. Quantitative evideuce for the utility of our approach is
provided through a series oforperirnents with artificially-geuerated data. In addition, we preseut re-
sults from the application ofour algorithm to two real problem d64ains; feature-based classification
and prediction of pathologies in a simulated shippins network.

I Dependency Detection
A dependency is an unexpectedly frequent or infrequent cooccurrence of events over time. Our goal

is to find dependencies between tokens contained in multiple streams. A stream is sequence of values
produced over time, and a token is one ofthe finite set ofvalues that a stream can produce. Dependencies
across multiple streams may take many forms: perhaps token I in strea,m I predicts token g in stream
2, or perhaps token .l in strea,m L ozd token c in stream 2 predict token g in stream 2. In general, if
stream j contains t1 distinct tokens, there a,re [[I,1=, ti * 1]2 possible dependencies between two items.

The dependency detection technique in [3] usls contingency tables to assess the significance of de-
pendencies tn a dngle streem of data. Let (trrtrrd) denote a dependency. Each dependency ruJe states
that when the precursor token, tr, occurs at ti:ne step i in the stream, the successot token, t, will occur
at time step i { d in the stream with some probability. When this probability is high, the dependency
is strong.

Consider the stream AcBABAooBAABAcBBAcBA. Of all 19 pairs of tokens atlag 1(e.g. lc, cB, BA,
.. . ) 7 pairs have B as the precursor; 6 of those have L as the successor, and oue has something other
thaa I (denoted I), as the successor. The following contingency table represents this information:

Toble(a,1,1) -
A A toto,l

B617
B11rt2
totol 7 12 19

It appears that ^n depends strongly on B becausg i[ almosf always follows B and altnost never follows
anything else (E'). We can determine the sigufficance of each dependency by computing a G statistic for
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its contingency table:
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For example, the contingency table shown above has a G value of 12.38, which is significant at the .001

level, so we reject the null hypothesis that l and B are independent and condude that (4,.t,1) is a real
dependency.

We extend this technique to the multiple streern case by introducing the concept of a multi-token. A
multi-token represents the value of any or all streams at any given time i. For a series with z stleams,
all multi-tokens will have the form ( art...,an), where o; indicates the value in stream j. In order to
support the "any or all' requiremeat, we add a special wildcard symbol, *, to the set of values that may
appear in each stream. Thus we ca,n indicate a *don't ca,re' condition by placing an * in the appropriate
stream.

For a multi-stream erample, consider the followiag streams:
Ac B AB AC CBAABACB AC B.A. C

BACACABAcBABABCABCAB
The dependency (<n,c>,<A,A>,1) indicated in boldface is significant at the .01 level with a G value
of 7.21. The corresponding contingency table is:

Toble(a,n,L) =
(B,C)
<B-E
toto)

15
t2 14

13 19

,A)<A
4
2

6

We now have both syntax and semantics for multi-stream dependencies. Syntactically, a dependency
can be expressed as a triple gealaining two multi-tokeus (a precursor aad a successor) and an integer (the
lag). For each of the z streams, the multi-tqlsas sqafain either a token that may a.ppear in the stream
or a wildcard. Dependencies can also be expressed in the form c 1a A where o and gr a,re multi-tokens.
Semantically, this says the occurrence of c is indicative of or predicts the occurrence of y, d time steps

in the future.

2 Searching for Dependencies
The problem of finding significant two-item dependeucies ca,n be framed in terms of sea^rch. A node

in the search space consists of a precursor/successor p&, a predictive rule. The goal is to find predictive
rules that are 'good' in the sense that they apply often and a,re accurate. The root of the sea^rch space
is a pair of multi-tokens with the wildca^rd in all z positions. The chil&en of a node are generated by
replaciag (instantiating) a single wildcard in the pareat, in either the precursor or successor, with a
token that may appear in the appropriate strea,rr. For exa,mple, the node ( A,* )-)( *,x > has both
< A,y >-t< *rx > and ( A,* X( B,x > as children.

The rule conesponding to a node is always more specific than the rules of its ancestors and less

specffic than any of its descendants. This fact can be exploited in the sea,rch process by noting that as
we move down a,ny branch in the search space, the value ia the top ldt cell of the contingency table
(21) can only remein the same or get smaller. This leads to a powerful pruning heuristic. Since rules
based on hfrequently ceoccurring pairs of multi-tokens (those with small z1) a,re likely to be spurious,
we ciur establish a miniuum size for lz1 and prune the search space at any node for which z1 falls below
that cutoff. In practice, this heuristic dramatically reduces the size of the sea,rch space that needs to be
considered.
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Our implementation of the search process makes use of best first sear'ch with a heudstic evaluation
function. That function strikes a tunable balance between the expected number of hits and false positives

for the predictive rules when they a^re applied to previously unseen data from the same source. We define
oggtessioenerr €ls a pa,rameter, 0 ( a ( 1, that specifies the value assigned to hits relative to the cost
associated with false positives. For a given node (rule) and its contingency table, Iet z1 be the size of
the top left cell, let zr,z be the size of the top right cell, and let 15 be the number of non-wildca,rds ia the
successor multi-token. The value assigned to each node in the sea,rch space is S:ts(ant - (1 - a)rr2).
High values of aggressiveness favor large zz1 and thus marrimi"e hits without regard to false positives.

Low aggressiveness favors small z2 and thus minimizes false positives with a potential loss of hits. Since

the size of the search space is enormous, we typically impose 3 limif on the number'of nodes expanded.
The output of the sea^rch is simply a list of the uodes, aud thus predictive rules, generated.

3 Empirical Evaluation
In this section we evaluate the performance of the algorithm on artificially-generated data sets. The

goal is to answer a variety of questions regarrling the behavior of the algorithm over its domain of
applications. Artificial data simplifies this task since the "real" dependencies are known, providing
means for distinguishing structure in the data from noise.

futificial data sets are generated by random sampling and applying a set of probabilistic stntcture
rules: R = {(P, Prp,S,Prs)}. Each series is initialized by generating z streams of length I, sampled
raudomly from the token set 7. Values for n, l, ?, and .R a.re determined by the experimeut protocol.
Defaultvaluesa,ren,=5, I=lQQ,7-{l,r,c,o,n},andA={(<A,A,*,*,*),.1,(c,D,D,*,*),.8),((
* c,c,*,* )r.1, ( *rArArB,* >, .8), (< *,*,DrD,* ),.1, ( *,*rDrc,B >, .8)).

Structure is then introduced into this random series in two phases: first, seed the precursors P into
each time-slice with probability Prp; then, whenever a time'slice i matches the precursor of a rule
r, insert the successor into time.slice , + d with probability Prs(r). For analysis, we can pa.rtition
the resulting series into noise and structure by determining which components a.re predicted by the
dependency rules (P(r), ^9(r), d) for each structure rule r € 8.

In each experiment, we run one or more iterations of the sea,rch algorithm for each experiment
condition. Unless different values a,re specified by the experiment protocol, we gather 5000 predictive
rules with aggressiveness set to 0.5. These rules a.re post-processed as described below, and used to
make prcdictiozs in ten new data sets generated from the same structure rules. The results are evaluated
with respect to two factors: prcdictioe power (the total number of predictions made) and occurocy (the
percentage ofthe predictions that were correct). These factors a.re considered sepa^rately for the structure
and noise portions of the data set.

3.1 Selecting the Best Dependency Rules

The MsDD sea,rch algorithm generates a la,rge set of dependencies, from which we would like to select
the most accurate and predictive rules. Since all our erperiments depend on the quality of this selection
process, the first question we wish to auswer is, "what post-processing strategy will select the best
predictive rules?" Although more sophisticated techniques may be needed to resolve redundancy, the
simplest approach is to filter and rort the rules, first discarding rules that do not conform to certain
criteria, and then prioritizing them according to some precedence function.

In this experiment, four different filter criteria a^re combined with six different sort functions for a
total of 24 experiment conditions. The filter options discard rules under the following conditions: (l)
never; (2) G not significant at the 0.05 level (G < 3.8a); (3) ,t., ( 5; and (a) ,, < n2. The remaining
rules are then sorted according to one of these six fuuctions: (1) a raudomly selected number; (2) the
G statistic (computed over the f,laining data); (3) the number of true instances nt; (a) the approximate
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number of true predictions z1 x tsi (5) the perceutage of iustances that are true fti and (6) the
approximate percentage ofpredictions that are true, # x ts.

'We ran five iterations of each condition on data sits -with default structure. The results indicate
that the highest predictive power a,nd accuracy are achieved when discarding rules with less than 5 true
insta,nces (filter condition 3), and sorting tr[sp sggelding to the G statistic (sort condition 2). This result
is as expected: the rules that remain a,re unlikely to be spurious dependencies, and they are applied in
order of their significance.

3.2 Comparison of Search Heuristics
Now that we know how to effectively use the output of usDD, we cen address important issues

rega^rding the performance of the algorithm. In this erperiment, we compire the performance of the S
heuristic to other heuristics and across difierent levels of aggressiveness.

All the sea.rch heuristics used in this experiment a.re based on contingency table analysis of the
dependency rules. In addition to the ,S heuristic, we also use:

l. d aesnaliqed ,5 value #ilI;ffi, where 5 is normalized by its expected count.

2. The aggressiveness-weighted ratio of hits to false-positives, ffi"r.
3. The agressiveness-weighted fractiou of the instances that a,re hits, #r.
The results (which a,re not included hete due to space constrairts) confirm that S is the best of

these heuristics: it produces good accnracy and predictive power while allowing the user to tune the
performance with the aggressiveness parameter; the other heuristics a,re not a.ffected by tuning. As
expected, high aggressiveness favors predictive power while low values favor accuracy.

3.3 Effects of Inherent Structure
Perhaps the most important question to be resolved is: How strong must a dependency be iu order

for it to be found by the algorithm? In practical terms, this involves two issues: how frequently a
dependency occurs and how often the precursor multitoken appoars but the successor multitoken does
not. In 6tri5 e=periment, we generated 243 data sets of ddault sire, with 1, 3, or 5 structure rules spanning
all combinations of: precursor size tp € {1, 3, 5}, precursor probability Prp e {.1,.2,.3}, successor size

ts € {1,3,5}, successor probability Prs € {.1, .5, .9}.
The results of this experiment are very encouraging. They indicate that the successor probability

is the only limitation on the accuracy of the algorithm, even though the number of rules, the size and
probability of the precrusor patterns determine the amount of structure that is available to be predicted.
Further exploration is required to confirm these results.

3.4 Effects of Problem Size

The final issue to be resolved is the influence of the problem size on the performance of the algorithm.
In this experiment, we are prima,rily concerned with the level of performilrce attained for a given number
of predictive rules as the problem size increases. Ideally, we can bound performance as a polynomial
function of the input size.

Iu this experiment, we generate 27 data sets spanning all combinations of: uumber of streams z €
{5, 10,20}, strea,m length , € {100, 1000,5000}, a,nd number of tokens I f l€ {5, 10,20}. For each data
set, we let tusoo generate 1000, 5000, 10000, and 20000 predictive rules, with aggressiveness set to 0.5.

This erperiment has several interesting results. First, performance actually irnpmoes as the number
of tokens increasesl intuitively, this is due to the probability of cach token decreasing as their numbers
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increase. Second, the accuracy ofthe algorithm is basically constant as the stream length increases. This
is due to the probability distributions renairdng constant as the length increases. The time requirement
of the algorithm does increase with stream length. Finally, it appea,rs that lrsoo need only generate

n x 1000 sea.rch nodes to discover the significant dependencies; this is a very strong dairn tfiag needs to
be supported by further experimentation.

4 Applications

4.1 Feature Based Classification

In the interest of generality, we applied MSDD to a task for which it was not explicitly desigued:
feature-based classification. We present results for twelve datasets from the UC Irvine collection. Eleven
of those datasets were selected from a list of thirteen presented in [8] as being a minirnal representative
set that covers several important features that distinguish problem domains. The precursor multi-tokens
were z-irry feature vectors and the successor "multi-tokens' contained only the class label. These pairs
of multi-tokens serve as iaput to the rusoo algorithm. The results are presented below in Table 1. The
accuracy shown in the table is the mean obtained over ten trials where the data was randomly split
on each irial into 3 flaining 56f 661faining2/3 of the instances and a test set goilaining the remaining
1/3. The exceptions a,re NetTalk (treining data was generated from a list of the 1000 most common
English words, and accuracy was tested on the full 20,008 word corpus), Monks-2 (a single trial with
tgg !1:ining instances and 432 test instances to facilitate comparison with results contained in [6]), and
Mushroom (500 training instauces atd,7624 test instances). We compa,red MsDD's performance with
other published results for each dataset 12,6,\. On ten datasets for which we had multiple published
results, MSDD performance exceeds half of the reported results on six datasets. [n no c.!se did it perform
badly, and it often perfotmed extremely well. For a more complete comparison, refer to [4].

Data Set
Mean
Accuracy

Search
Nodes

Breast Cancer
Diabetes
Eeart Disease
Eepatitis
LED-7
LED-24
Lymphography
NetTalk
Monks-2
Musbroom
Thyroid
Waveform-40

95.L5%
7t.s3%
79.2]-%
80.77%
70.54%
7t.28%
78.16%
70.Lr%
79.L7%
99.49%
95.46%
73.02%

10,000
10,000
20,000
10,000
5,000
5,000
15,000
50,000
5,000
30,000
20,000
15,000

Table 1: Performance of MSDD as a feature-based classifier on 1l datasets from the UC Irvine collection

4.2 PathologyPrediction
We applied MsDD to the task of predicting pathologies in a simulated shipping network called

TlansSim. When several ships attempt to dock at a single port at the same time, most will be queued

to await a free dock, resulting i a bottleneclc. We built a pathology demon that predicts the potential
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for bottlenecks bdore they actually form, a,nd we built an ageat that modifies the shipping schedule in
an effort to keep predicted pathologies from matcrializing. Using the demon as a,n oracle, we gathered
data from a single ruu of the simulator and used MSDD to generate rules to predict bottlenecks. To
assess the utility of the previously generated rules, we ra,n ten simulations in each of two conditions;
one with the existing demon and another with the demon replaced by the rules. We used t tests to
determine whether or not the means of various costs associated with each simulation were lower in the
rule condition as comp{ued to the demon condition. The results are presented below in Table 2. Note
that the number of pathologies predicted (PP) by the demon is alrnesf twice the number predicted by
the rules and, therefore, the agent made about twice as many schedule modifications (SM). However, of
the five cost measures (QL, IC, CT, SU, and SD) only SD was siguifica,ntly lower in the demon condition
when compa,red to the rule condition. That is, even though the agent is taki"g a much more active
role, performance is not significantly better. Inspection of execution traces shows that the demon is
much more likely than the rule set to predict short-lived pathologies. The rules are good at forecast-
ing substantial pathologies, ones that will not go away of their own accord, but rniss the more fleeting
pathologies. Said differently, MSDD rules are not rnieled by small, noisy fluctuations in the state of the
simulation. This behavior is beneficial when we visv dissuption to the origiaal schedule as a cost that
we wa,lt to minimize.

Coet Dernon Mean Bule Mean p Value
PP
CT
IC
Qt
SD
SU
SM

L84.2
2289.3
1149.E

637.7
131.1

188.8
2L.6

94.6
2377.9
L202.L
640.5
141.6
202.2
9.2

0.0001
0.0689
0.1E44
0.9t77
0.0019
0.3475
0.0001

Table 2: Comparison of simulation costs using demon and MSDD rules for pathology prediction

This experiment points to the fact that MSDD is capable of discovering indicators of pathological
states in TlansSim from high t"rr"1 6q6.in information. MSDD can identify relevant state information to
emulate the objective function of an external oracle. One limitation of this approach, as compared with
the demon, is that an initial run of the simulator is required to gather data to drive the rule generation
process. However, the domain knowledge supplied to the usoo algorithm was mini'nal in comparison
to the demon.

5 Conclusion
In this paper we described how the problem of finding significant dependencies between the tokens

in multiple streams of data ca,n be framed in terms of search. The notion of dependencies between
pairs of tolens introduced ia [3] was ertended to pairs of multi-tokens, where a multi-token describes
the conteuts of several streams rather than just one. We introduced the Multi-strea,m Dependency
Detection (MSDD) algorithm that performs a general-tespecific best-first sea,rch over the exponentially
siled space of possible dependencies between multi-tokens. The sea,rch heuristic employed by MSDD
strikes a tunable balance between the expected number of hits and false positives for the dependencies
discovered when they are applied as predictive rules to previously unseen data from the same source. We
presented results from an empirical evaluation of MSDD's performa,nce over a wide range of artificially
generated data. In addition, we applied MSDD to the task of pathology prediction in a simulated
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shipping network and to a number of classification problems from the UC Irvine collection. The results
that we obtained are very encouraging.

We a,re currently working on an incremental version of MSDD that can identify dependencies by
processing data as it is generated, and that adapts to changing probability distributions. Also, we .r.re
working to remove the need for a fixed sized multi-token and a fixed time interval between multi-tokens.
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