
The birth of Simula
Stein Krogdahl

 Department of Informatics, University of Oslo, Norway
 steinkr@ifi.uio.no

This paper is published in the proceedings of the HiNC 1 Conference in Trondheim, June
2003 (IFIP WG 9.7, in cooperation with IFIP TC 3). Editors: Janis A. Burbenko jr., John

Impagliazzo, Arne Sølvberg.

Abstract. When designing Simula, Ole-Johan Dahl and Kristen Nygaard introduced the basic
concepts of what later became known as object-orientation, which still, 35 years later, has a
profound impact on computing. This paper looks at the background for the Simula project, how it
developed over time, and why it could be so successful.

 Keywords: History of programming languages, Simula.

Introduction

The history of how the programming language Simula came into being has been told on many
occasions, of which the foremost probably is the paper on Simula at the "History of Programming
Languages" conference in 1978 [5] by Ole-Johan Dahl (OJD) and Kristen Nygaard (KN) themselves.
However, many other accounts have also been given, e.g. one by J.R. Holmevik [9] in 1994 and one
by OJD [2] in 2001.

Most of these papers are given as more or less chronological accounts of what happened during the
years when OJD and KN developed the two Simula languages, first the special purpose simulation
language Simula (now usually referred to as Simula 1) and then the general purpose language Simula
67. The latter is now officially renamed “Simula” , but to make a clear distinction, we shall refer to it
here as Simula 67.

This paper will take a slightly different view in that it will first give a rather short chronological
overview of what happened when the Simula languages were developed during the years 1961 to
1967. After that we will look at different aspects of Simula 67, and try to find where they originated,
when they came into the development of the Simula languages, and how and why they got their final
form in the language.

The papers [5] and [9] contain much more extensive lists of references than this paper does.

A chronological overview

This section gives an overview of the development of the Simula languages during the years 1961 to
1967. This development can naturally be divided into four phases.

The early design phase (1961 - August 1962)

The start of the Simula story is, as most such stories, not clearly defined. Sometimes around 1960/61
KN started working on ideas for a language that could naturally describe complex dynamic systems.
The background was that he had worked with so-called “Monte Carlo simulations” while at
Norwegian Defence Research Establishment (NDRE). These simulations were done both “by hand”
and on early computers, and KN felt a strong need for a language or a notation in which he could
describe such systems at a much higher level than was usual at the time. From the nature of the
problems he had worked with, his main interests were discrete event models, where a dynamic system
is modeled as a set of variables operated upon by a sequence of instantaneous events.

In January 1962 we find the first written account of this effort. In a letter to a French operations
research specialist, Charles Saltzmann, KN writes:

 2

“The status on the Simulation Language (Monte Carlo Compiler) is that I have rather clear ideas on
how to describe queuing systems, and have developed concepts which I feel allow a reasonably easy
description of large classes of situations. [...] The work on the compiler could not start before the
language was fairly well developed, but this stage seems now to have been reached. The expert
programmer who is interested in this part of the job will meet me tomorrow. He has been rather
optimistic during our previous meetings.”

The expert programmer was OJD, whom KN knew very well from NDRE (from where KN had left in
1960, to work at the Norwegian Computing Center (NCC)). From then on, KN and OJD were working
together to obtain a draft of the language, and in May 1962 they had a first specification. By then they
had also coined the name SIMULA (SIMUlation LAnguage) for the language, and their idea was to
implement it as a preprocessor to a general Algol compiler. They presented their ideas for this
language at the IFIP 62 World Conference in Munich, in August 1962 [11].

In this early version of Simula a system was modelled by a (fixed) number of “stations”, each with a
queue of “customers”. The stations were the active parts, and each was controlled by a program that
could “ input” a customer from the station’s queue, update variables (global, local in station, and local
in customer), and transfer the customer to the queue of another station. Stations could discard
customers by not transferring them to another queue, and could generate new customers. They could
also wait a given period (in simulated time) before starting the next action. Custom types were
declared as data records, without any actions (or procedures) of their own.

We shall refer to this language as “Simula 0” , but it probably never had a really stable definition, and
was never implemented.

The Simula 1 design phase (Autumn 62 - March 64)

After the ideas for Simula 0 had been presented in Munich, KN was to a large extent occupied with
organizational and financial matters. This resulted in the purchase of a UNIVAC 1107 to NCC for a
discount price, and, in the same contract, in funding for the implementation of Simula on UNIVAC
1107.

OJD went on working with the language, and in May 1963 he joined the NCC as a full time employee.
However, it became more and more apparent that implementing the new language as a preprocessor to
Algol was not the right way to go. The LIFO (stack) nature of the Algol procedure calls turned out to
be too restrictive for implementing the “stations” and “customers” of Simula 0.

Thus, still determined to build upon an Algol compiler, they had to dig deeper into it, and replace the
simple LIFO allocation mechanism with what today would be called a heap. For this purpose, OJD
designed a scheme for automatically regaining unused memory (which did not compact the retained
objects).

Inspired by the new freedom obtained from this allocation scheme, they also saw that the language
could be generalized. In Simula 0, stations were the active parts and customers the passive ones. They
now replaced these with one concept that could describe all the different "objects" that should
participate in a simulation. This concept was called a "process" (declared with the keyword "activity"),
and could play both an active and a passive role in simulations. Processes were kept track of by
(untyped) pointers, and their lifetime was not restricted by any LIFO discipline. The whole system had
a built-in notion of simulated time that controlled the execution of the processes when they were
active.

In March 1964, they had a well-defined language. It was built upon Algol, with the addition of the
process concept and the accompanying apparatus for simulation programming.

Implementation of Simula 1 (April 1964 - January 1965)

The implementation started immediately. Since much of the complexities around the garbage collector
were already well understood, the whole task of reworking the UNIVAC 1107 Algol compiler to a
Simula 1 compiler was finished already in January 1965. The work was led, and to large degree also
carried out, by OJD. However, also Bjørn Myhrhaug and Sigurd Kubosch from NCC (both of which
were central in later Simula 67 implementations) participated, and they had occasional help from the

 3

team around the UNIVAC 1107 Algol compiler (Joseph Speroni, Ken Walter, and Nicholas
Hobacker).

The design phase of Simula 67 (January 1965 - summer 1967)

When OJD and KN started using Simula 1 in various projects, they soon observed that it could
profitably be used also for other programming tasks than simulation. Thus, they started to explore
what a more generalized version of Simula 1 should look like. However, the spark that really made the
development of a new general-purpose language take off was probably a paper on record handling by
C.A.R. Hoare [8]. It proposed to describe records by record classes and to introduce “ record
subclasses” , described as extensions of other classes. It also argued that with such a scheme one could
type pointers without losing too much flexibility.

Even if OJD and KN saw that Hoare’s proposal had ideas that fitted well with a generalized version of
Simula 1, it also had aspects that were difficult to combine with other ideas they had for the new
language. A breakthrough came late in 1966, when they saw that classes and subclasses could be
declared syntactically independent of each other, instead of in one closed construct as in Hoare’s
proposal.

With this insight, other aspects of the new language (which they now had named Simula 67) naturally
found their place, and they worked intensively the first months of 1967 to finish a paper for the IFIP
TC 2 conference to be held in May at Lysebu in Oslo (chaired by OJD). The theme here was
Simulation languages, and their paper [6] was finished in March, just in time to be submitted to the
conference. Towards the conference they still worked with new ideas, and after much discussion, they
came up with the (now well known) concept of "virtual quantities".

In May 1967 a contract was signed with Control Data to implement the (still unfinished) language
Simula 67. The implementation should be carried out at KCIN (the “Kjeller Computer Installation”
serving NDRE) for CDC 3600, at the University of Oslo for CDC 3300, and in Paris (by Control Data
itself) for the CDC 6000 series. To establish a first basic definition of Simula 67, a meeting (called the
“Simula 67 Common Base Conference”) was held at NCC in June, where people from Control Data,
KCIN, University of Oslo and NCC met, together with a few invited specialists.

Also at this conference KN and OJD proposed new additions to the language, notably a proposal that
would make it possible to define named "inline objects", that is, to use classes as types in traditional
variable declarations. However, as this proposal was not fully worked through neither conceptually
nor implementationally, the implementers voted it down. Probably they must have felt that the
implementation task was large enough as it was.

This conference also set up a body called "Simula Standardization Group" (SSG), with representatives
from NCC and the different implementers. Its first task was to establish a formal language definition.
The main remaining issues were text handling and mechanisms for input/output, and in the definition
of these Bjørn Myhrhaug from NCC played a central role. The language was formally frozen in the
“Simula 67 Common Base Language” report, accepted by SSG on February 10, 1968 [4]. Bjørn
Myhrhaug also, together with OJD, wrote an implemetation guide for Simula 67 [3], which was
important for later implementations of the language.

All the Control Data compilers were finished during the spring of 1969. In 1969 it was also decided
that NCC itself should complete a compiler for the UNIVAC 1100 series and implement Simula 67 for
IBM 360/370. These implementations were finished in March 1971 and May 1972 respectively.

The different aspects of Simula 67

The previous section gave a brief chronological overview of the development of the Simula languages.
In this section we shall take an orthogonal view, and look at different aspects of Simula 67, and try to
find their roots, and how they developed throughout the design process of Simula 1 and Simula 67.

Most of the interesting aspects of Simula 67 are connected to the class concept, and how one can
generate objects of classes. When defined in 1967, the class concept represented a revolutionary new
combination of properties of which some were known at the time from other languages, some came
from ideas developed by others during the time Simula was developed, some came from the long

 4

development of the Simula 1 language, and some were invented by OJD and KN in the last months
before the language was defined.

The object as a process

We shall first look at an aspect of Simula 67 which is not well known, and which is taken over by very
few of its successors. This is the ability of objects to act as processes that can execute in “quasi-
parallel” . This special type of parallelism is in fact a form of sequential execution, but a form where
you can get some of the benefits obtained by organizing the program as a set of “ independent”
processes. The idea is that classes in Simula 67 (and processes in Simula 1) have statements of their
own (like procedures), and that these are started when an object is generated. However, unlike
procedures, objects may choose to temporarily stop their execution and transfer the control to another
process. If the control is later given back to the object, it will resume execution where the control last
left off. A process will always retain the execution control until it explicitly gives it away. When the
execution of an object reaches the end of its statements, it will become “ terminated” , and can no
longer be resumed (but local data and local procedures can still be accessed from outside the object).

The quasi-parallel sequencing is essential for the simulation mechanism in Simula 1. Roughly
speaking, it works as follows: When a process has finished the actions to be performed at a certain
point in simulated time, it decides when (again in simulated time) it wants the control back, and stores
this in a local “next-event-time” variable. It then gives the control to a central “ time-manager” , which
finds the process that is to execute next (the one with the smallest next-event-time), updates the global
time variable accordingly, and gives the control to that process.

The idea of this mechanism was to invite the programmer of a simulation program to model the
underlying system by a set of processes, each describing some natural sequence of events in that
system (e.g. the sequence of events experienced by one car in a traffic simulation).

Note that a process may transfer control to another process even if it is currently inside one or more
procedure calls. Thus, each quasi-parallel process will have its own stack of procedure calls, and if it is
not executing, its “ reactivation point” will reside in the innermost of these calls. This is why Simula 1
and Simula 67 are often called “multi-stack languages” . This also means that not only processes and
objects, but also procedure calls will have to be kept on “ the heap” . (The later practice of allocating a
large continuous chunk of memory to the stack of each process/thread was not considered an option
with the memory sizes of 60ies). Thus, the traditional stack of procedure calls disappeared in
implementations of both Simula 1 and Simula 67, everything was kept on the heap (even if this to
some extent could be optimised for specific programs).

Quasi-parallel sequencing is analogous to the notion of coroutines described by Conway in 1963 [1].
In papers on Simula 1 or Simula 67 OJD and KN always refer to this paper when discussing quasi-
parallelism, usually by saying something like “a set of quasi-parallel processes will function as
coroutines in the sense of [1]” . However, also Simula 0, designed in 1962, had some traces of quasi-
parallel execution, even if the process concept was not fully developed until February 1964. It is
therefore not clear to the current author whether OJD and KN developed this concept themselves, or
got it from Conway.

Many of the uses OJD and KN found for Simula 1 in other areas than simulation used the quasi-
parallel sequencing for some other purpose (e.g. to traverse two search trees “ in parallel”). Thus, there
was no doubt that this mechanism should be retained in Simula 67. Another reason for this was that
they wanted the simulation aspect of Simula 1 to be expressible within Simula 67, as a separate
package. However, the concept of simulated time then naturally belonged in this package, while a
more basic mechanism for quasi-parallel sequencing was included in the Simula 67 language.

Dynamic generation of objects

A ubiquitous property of today’s object-oriented languages is the ability to generate objects
dynamically. This was also a basic mechanism in Simula 1 and indeed in Simula 67. However, the
decision to allow this, taken in the transition from Simula 0 to Simula 1 was probably not quite
straightforward. When Simula 0 was designed in 1962 the idea was to implement the language as a

 5

preprocessor to an Algol compiler, thus having to stick to the LIFO allocation discipline of procedures
and blocks of that language.

This hampered the design of Simula 0 so that e.g. the number of “stations” (the active components)
had to be fully determined at compile time, while the number of “customers” (the passive elements)
was less restricted, but not totally free. Thus, when they saw that even this scheme was cumbersome to
implement as planned, they looked for other solutions. And, when forced to go deeper into the Algol
compiler, they sought a solution that gave full freedom to generate objects at run time.

To obtain this they had to abandon the simple LIFO scheme for allocating procedure calls in Algol.
This meant digging into the Algol compiler and its run time system, and implement a scheme where
both objects and procedure calls could come and go (that is, become inaccessible) in any order. For
security reasons they also wanted the system itself to find which objects and procedure call instances
could be deleted. For this purpose OJD designed a garbage collector scheme based on reference counts
and free-lists, and with a last resort search mechanism that could also find loops of objects that could
be deleted. It never moved any objects. This scheme was used in the Simula 1 implementation.

Later, when the Simula 1 implementation was finished, they learned (through their NDRE mentor Jan
V. Garwick, once he returned from USA) about a four-phase compacting garbage collector that could
do away with all the fragmentation they experienced with the Simula 1 implementation. This
algorithm was used in the first Simula 67 implementations, and has since been a reliable element in
most Simula 67 implementations.

Objects as “ records” , and access from outside

The decision that one single concept, the process concept of Simula 1, should cover all needs from
quasi-parallel processes to simple data records was probably one of the most important ones in the
history of the Simula project. As seen in the previous section, this decision was made possible by
another important decision: to abandon the simple stack allocation scheme of Algol.

The significance of the “single concept decision” lies in the following:

• From this decision it follows that also the need for simple data records (with no actions of their
own) should be covered by the process concept. Thus we obviously have to be able to access
such records from outside (e.g. by “dot access”) to utilize their local data at all. Then, again by
the single concept decision, one is led to allow access from outside also for processes in
general.

• The process concept of Simula 1 is modelled after the Algol block, and therefore allows local
procedures in addition to local variables and actions of the process itself. Thus, records with
procedures and variables, but with no actions of their own, follow as a natural special case.
Then again, to use such procedures we obviously have to be able to call them from outside the
record. Thus, one is led to also allow calls to local procedures from outside processes in
general.

The latter point is now recognized as one of the basic characteristics of object-orientation. The former
point was very important for obtaining flexible communication between the processes in a simulation.

For reasons of flexibility and simplicity, it was decided that processes should only be accessible
through pointers. In Simula 1 there were no concept of subclasses, and the pointers were therefore not
typed (typed pointers would have led to problems e.g. when processes of different kinds should be
kept on a linked list). To keep the language type-safe, Simula 1 therefore had a rather cumbersome
way of accessing the “ inside” of a process referenced by a pointer ’pntr’ :

 inspect pntr when P1 do begin ... end when P2 do begin ... end ...;

Here P1, P2, ... must be names of process declarations (“process types”). The effect of the above
statement is first to determine the actual type of the process referenced by ’pntr’ , and then to enter the
corresponding block, where the attributes of this process can be accessed directly.

 6

When subclasses were introduced in Simula 67, the absolute need for such a construction disappeared
(see below). However, the inspect statement could still be convenient in many situations, and it was
therefore included also in Simula 67 (in a slightly different form).

Classes and subclasses

When programming in Simula 1, OJD and KN had seen a number of cases where processes had many
common properties, but also some differences. However, as they had no way of utilizing this, it was
probably mainly noticed as a nuisance. This all changed when C.A.R. Hoare published a paper on
record handling [8], where he proposed classes and subclasses of records, but in a scheme where a
class and all its subclasses were described in one closed syntactic unit.

He also proposed to type pointer variables with record classes (or subclasses) and to (only) allow them
to point to records of the typing class and to records of all its subclasses. This gave full access security
when allowing e.g. “pointer.attribute” only when the attribute is defined in the class typing the pointer.
Hoare wrote “attribute(pointer)” , as was common at the time, but Simula 67 turned to the now
ubiquitous “dot-notation” (which was probably first used for this purpose in PL/1).

And equally important, with this scheme typing of pointers was almost not felt a nuisance at all. All
records that should enter lists could be “subrecords” of a suitable record class “element” , but otherwise
be different.

However, even if this seemed promising, it did not really fit in with all the requirements they had for
the new Simula 67. Hoare’s records had no actions of their own, and, most importantly, the closed
syntax did not fit in with other ideas they had. But, late in 1966 they finally found a principle that
made all the pieces fit together. The main idea was to allow subclasses of a class C to be declared
independently of where C was declared. That is, a new subclass D of C can be declared wherever the
declaration of C is visible (with certain block level restrictions). The syntax chosen was to write C as a
“prefix” to the declaration of D: “C class D (...); begin ... end” (which is why, in Simula literature, we
often find the notion “prefix class” instead of the now more usual “superclass” or “base class”).

The great advantage of this scheme is that general-purpose classes could be separately written and e.g.
be placed in public libraries (in textual or compiled form). Later, these classes could be fetched by
different users, and subclasses be written to satisfy each user’s specific needs. This was e.g. a
necessity when the simulation properties of Simula 1 should be programmed as a package in Simula
67.

Virtual procedures

Virtual procedures are now seen as an integral part of object orientation, even to the degree that in
some languages all procedures are virtual (e.g. in Java). However, the story of virtuals started with a
very specific problem that OJD and KN wanted to solve, and it was only after the Lysebu paper had
been submitted in March 1967, that they had time to look at the following problem:

Classes in Simula 67 may, like procedures, have formal parameters to which actual values must be
given when an object is generated. However, for technical reasons they did not allow procedures as
parameters to classes, even if they saw that this could be very useful when one wanted the “same
statements” to have slightly different effect in different objects. After much work and discussion, they
finally found a mechanism they agreed could regain much of the lost flexibility: By declaring a
procedure in a class C as “virtual” , it could be redefined (overridden) in a subclass D, and in objects of
class D this redefinition should have effect also when the procedure is called in the code of class C
(and when the procedure is called in a D-object by dot access through a C-typed pointer). Thus, the
same procedure call could activate different “versions” of the procedure, at least in objects of different
subclasses. And, as we know today, this mechanism turned out to be very useful.

The proposal for virtuals just reached the Lysebu conference, and was included in the final version of
the paper [6].

 7

Classes as packages

A basic idea with Simula 67 was that the simulation aspects of Simula 1 should be implementable as a
separate “package” in Simula 67. OJD and KN saw that implementing a variety of specially tailored
library packages for different application areas would be important for the usability of the new
language. As implementing the simulation aspects of Simula 1 was no simple task, the ability of
Simula 67 to describe such a package became an important yardstick for its quality.

They immediately saw that such packages often would contain more than one class, and they therefore
needed some sort of container to keep these classes together. Their solution was to use classes also for
this purpose, and this worked fine because they had retained the full block structure of Algol in Simula
67. They could therefore have classes within classes, and could use the outermost class as a container
representing the package as such. The innermost classes would then be those offered for normal use
(either for direct object generation, or for making more specific subclasses).

With this scheme, they could also make one package build upon another by simply making one
“package class” a subclass of the other. To bring packages into the user’s program Simula 67 uses
“block prefixing” . By prefixing a normal block with the name of a package class, the content of that
class became visible in the block, just as if the block was the body of a subclass of the package class
(also so that virtual procedures of the package class could be redefined in the prefixed block). Thus,
e.g. for a simulation package, where the processes should be able to enter linked lists, they could have
a scheme like this (where “ !...;” is a comment, and the classes are slightly simplified):

 class LinkedList; ! Package class, implementing list handling ;
 begin
 class Head; begin <a first-pointer, and suitable procedures>; end;
 class Elem; begin <a next-pointer, and suitable procedures>; end;
 end;

Using this package, one can define the simulation package as follows:

 LinkedList class Simulation; ! Package class using the package LinkedList ;
 begin
 Elem class Process; ! All processes can be elements in lists ;
 begin <initial statements>;
 inner; ! See explanation below ;
 <terminating statements>;
 end;

 <Further classes (or other declarations)>;
 end;

Such a package can then be used as follows:

 Simulation begin
 Process class Car; begin ... end;
 Process class Bus; begin ... end;
 ...
 end;

Note that package classes are totally normal classes, except that a class referring to “ this” (the current
object) is not legal as a block prefix.

One mechanism they saw the need for through examples like the one above, is the “ inner” mechanism
used in the class Process in the Simulation package class. This keyword has the effect that statements
of subclasses of Process are positioned where the “ inner” is, which means that the Process class gets
control before and after the statements of a subclass. Thus, any object of a subclass of Process (e.g.
Car or Bus) can be properly initialised and terminated by statements given in the prewritten class
Process.

One may notice that the inner mechanism has similarities with the virtual mechanism, as the keyword
“ inner” represents the statement part of the actual subclass (if any), while the virtual mechanism
correspondingly picks the procedure redefinition of the actual subclass. These mechanisms entered the
Simula project for quite different purposes, and one may wonder whether a unifying mechanism had
been found if the project had proceeded (as indicated earlier, the virtual mechanism came very late).

 8

However, it is interesting to note that in the language Beta (designed by KN and three Danish
colleagues as a further development of the Simula ideas, see e.g. [10]) both the inner and the virtual
concepts are retained as separate mechanisms.

It is impressive that OJD and KN saw the need for a package concept already in 1967. It is told (but
not confirmed) that they discussed if a special concept like “package” or “module” should be
introduced (instead of package classes), but the chosen solution has a pleasant economy of concepts,
which might have decided the matter. However, it has the disadvantage that you can only bring in one
package in each block. As multiple prefixing for classes (which later became known as “multiple
inheritance”) was not included in Simula 67, it followed naturally that also multiple block prefixing
was excluded. With a separate concept for packages (for which you were not allowed to dynamically
create new “package objects”) it would have been easier both implementationally and conceptually to
allow more than one package to be brought into a given block.

Concluding remarks

In this final section we shall look at the following question: How could a small project with (for most
of the time) only two participants produce a language and a set of concepts so powerful and pervasive
that they today, 35 years later, underlie most software development? Obviously, it is impossible to
give a complete answer to this, but we shall look at some key circumstances around the Simula project
that the current author thinks were important for its success.

• First and foremost, both KN and OJD were extraordinary talented researchers in the field of
language design. They were well oriented in the relevant literature of the time and had contact
with a number of other researchers during the design of the Simula languages. They were
persistent in their work, and never stopped looking for more general and elegant solutions. And
last but not least: they had an excellent judgment concerning the balance between efficiency
and elegance when a choice had to be made, but they always strove to obtain both.

• Even if OJD and KN were similar in the sense that they both had the qualities described above,
they were quite different in other respects, and could thereby complement each other during the
work. KN had the idea to start with, and even if OJD indeed participated in developing the
concepts, KN probably remained the one that most naturally expressed the high-level dreams
and hopes for the project. On the other hand, OJD was the one who immediately saw the
implementational consequences of the different proposals, and could thereby mould them into a
form that, to the largest possible extent, took care of both implementational and conceptual
aspects.

• Both KN and OJD were robust personalities, and critique of new ideas did not at all drown in
politeness. In [5] they wrote: “ In some research teams a new idea is treated with loving care:
“How interesting!” , “Beautiful!” . This was not the case in the Simula development. When one
of us announced that he had a new idea, the other would brighten up and do his best to kill it
off.” In such an environment no new concept was accepted without deep and lengthy
discussions.

• They were part of a European tradition in language design that, to a larger extent than the
American one, emphasized economy of concepts, orthogonality, simplicity etc. The first and
foremost result of this proud tradition was the Algol language, and, as described above, that
language also had a direct and profound influence on the Simula project.

• If we consider the object-oriented concepts as the main outcome of the Simula project, we can
see that starting the project by designing a language for simulation was of utmost importance
for that outcome. A central aspect of simulation programming is to represent the part of the
world that we want to simulate by a suitable data structure inside the machine. Thus, KN and
OJD saw that advanced and flexible mechanisms for describing and setting up data structures
were of utmost importance for a successful simulation language, and they worked hard to
obtain such mechanisms. Through this they were led to a language design for Simula 1 that
invited the programmer to first choose the data structure, and then tie the actions (or action
sequences) of the model to the part of that structure where they most naturally belong (and not

 9

the other way around, as was natural in “procedural languages” like Algol). This change of
programming strategy can be seen as the main paradigm shift towards object-orientation. It
naturally first appeared in the world of simulation, but OJD and KN could later take their
experience with this principle from the simulation world to the design of the general-purpose
language Simula 67 (and here it paved the way for the later concept of abstract data types, see
[7]).

• It was very fortunate that Hoare’s ideas on records and subrecords in [8] appeared exactly at
the time when KN and OJD were working on generalizing the ideas of Simula 1 to fit in a
general purpose setting. Thus, they could immediately recognize the potentials of Hoare’s
ideas, and after intense work, combine them very successfully with the ideas they already had.
This merge of ideas was probably the most important event in the development of the object-
oriented concepts.

• It was probably also an important factor that the Simula project spanned such a long period. If
it had been a project with full funding from the start and a strict time limit it would probably
have ended up with an implementation of the Simula 0 concepts. Instead, the funding was not
at all clear, and KN was much of the time occupied with other matters (which to some extent
resulted in funding for the Simula project). However, OJD could keep the project going, having
discussions with KN whenever possible. Thus, the ideas developed over many years and run
through many phases. It was probably also vital for the final outcome that a full-fledged
language (Simula 1) was implemented along the way, so that its potentials and shortcomings
could be studied in real use.

• Finally, with the shift from the special purpose simulation language Simula 1 to forming a
general-purpose language they got the problem of designing Simula 67 so that the simulation
aspects of Simula 1 could naturally be expressed as a separate package in Simula 67. As these
simulation aspects relate to many different mechanisms in the language (e.g. the coroutine
mechanism) this was no easy task. Thus, the ability of Simula 67 to describe such a package in
a simple and direct way became an important yardstick for measuring the quality of different
proposals.

Acknowledgments

While preparing this paper I have been in contact with a number of people, and in particular I would
like to thank the following persons for help and advice: Karel Babcicky, Håvard Hegna, Donald E.
Knuth, Dag F. Langmyhr, Arne Maus, Bjørn Myhrhaug, Birger Møller-Pedersen, Olaf Owe, Jo Piene,
and Wilfried Rupflin.

References

1. M. E. Conway. Design of a separable transition-diagram compiler. Comm. ACM, 6, 1963.

2. Ole-Johan Dahl. The Roots of Object Orientation: The Simula Language. Software Pioneers'
Conference, Bonn, June 2001. In "Software Pioneers", Springer, 2002.

3. Ole-Johan Dahl and Bjørn Myhrhaug. SIMULA 67 Implementation Guide. Norwegian
Computing Center, Oslo, Norway, Publ. S-9, June, 1969.

4. Ole-Johan Dahl, Bjørn Myhrhaug, and Kristen Nygaard. SIMULA 67 Common Base
Language. Norwegian Computing Center, 1968.

5. Ole-Johan Dahl and Kristen Nygaard. The development of the Simula language. In
Wexelblat, editor, History of Programming Languages, pages 439-493, 1981.

6. Ole-Johan Dahl and Kristen Nygaard. Class and subclass declarations. In Proceedings from
IFIP TC2 Conference on Simulation Programming Languages, Lysebu, Oslo, ed.: J. N.
Buxton, pages 158-174. North Holland, May 1967.

 10

7. C.A.R. Hoare. Proof of correctness of data representations. Acta Informatica, Vol 1, no 4,
pages 271-281, 1972.

8. C.A.R. Hoare. Record handling. Algol Bulletin No. 21, November 1965.

9. Jan Rune Holmevik. Compiling SIMULA: A Historical Study of Technological Genesis.
IEEE Annals of the History of Computing, Vol 16, No. 4, 1994.

10. B.B. Kristiansen, O.L. Madsen, B. Møller-Pedersen, and K. Nygaard. Object-Oriented
Programming in the BETA Programming Language. Addison-Wesley, 1993.

11. Kristen Nygaard. SIMULA: An Extension of ALGOL to the Description of Discrete-Event
Networks. Proceedings of the IFIP congress 62, Munich, Aug 1962. North-Holland Publ.,
pages 520-522.

