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Tractography: Where Do We Go from Here?
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Abstract

Diffusion tractography offers enormous potential for the study of human brain anatomy. However, as a method
to study brain connectivity, tractography suffers from limitations, as it is indirect, inaccurate, and difficult to
quantify. Despite these limitations, appropriate use of tractography can be a powerful means to address certain
questions. In addition, while some of tractography’s limitations are fundamental, others could be alleviated by
methodological and technological advances. This article provides an overview of diffusion magnetic resonance
tractography methods with a focus on how future advances might address challenges in measuring brain connec-
tivity. Parts of this review are somewhat provocative, in the hope that they may trigger discussions possibly lack-
ing in a field where the apparent simplicity of the methods (compared to their functional magnetic resonance
imaging counterparts) can hide some fundamental issues that ultimately hinder the interpretation of findings,
and cast doubt as to what tractography can really teach us about human brain anatomy.

Key words: anatomical connectivity; brain connectivity; diffusion tensor imaging (DTI); high-angular-resolution
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What Can We Learn from Tractography?

What has a decade of diffusion magnetic resonance
(MR) tractography taught us about human brain

anatomy? To answer this question, it is important to real-
ize what tractography actually measures, and to under-
stand the limitations of such measurements. Everyone
agrees that tractography is the only tool we currently
have that allows us to visualize white matter trajectories
in vivo and noninvasively, but one problem with tractogra-
phy is that the very elements of anatomical connectiv-
ity that are poorly known in the human brain are the
ones that are challenging for tractography. Among these
we can list the following: finding the exact termination of
connections, detecting collaterals, tracking the very dense
network of horizontal intra-cortical connections, discrimi-
nating between afferents and efferents, detecting synapses,
etc. Like ex vivo dissection, tractography is able to help us
determine the location (e.g., central part) of white matter
bundles. Determining the termination parts of these bun-
dles is crucial for assessing site-to-site connectivity, but
achieving this with accuracy is still a challenge for tractog-
raphy. In this first section, we discuss these limitations
in more detail. We then examine some of the successful
applications of tractography that have been able to pro-
vide valuable information about anatomy despite these
limitations.

The limitations

Radial and transverse accuracies. A crucial limitation of
tractography is its inability to determine the precise origin/
termination of connections in the cortex. There are two
types of information about the end points of white matter
connections, which we refer to as radial and transverse, that
we would like to know with accuracy. Radial accuracy
means determining the cortical layer(s) where a white matter
connection ends up [synapse(s)]. While such information is
highly functionally relevant, in that it can tell us, for example,
about hierarchical levels of cortical organization (Hilgetag
et al., 2000), diffusion magnetic resonance imaging (MRI)
does not enable us to detect synapses. This is where tracing
studies in nonhuman animals are invaluable. In practice, trac-
tography algorithms use heuristics and/or macroscopic ter-
mination criteria, such as reaching the edge of the brain or
a voxel of low anisotropy, so the end points of tractography-
derived pathways do not necessarily reflect the end point of
the tracts.

Transverse accuracy refers to the ability to determine
where, throughout the brain, a connection first enters the cor-
tex (or subcortical nucleus, but we will concentrate on cortical
connections for the time being). This is important as it will
allow us to determine which cortical area (or unit) is con-
nected to which other, providing a useful anatomical frame-
work within which to make sense of functional
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specializations and interactions (Passingham et al., 2002). Of
particular interest are questions such as the following:
Which cortical region/column receives/sends which connec-
tions? Does a bundle of axons spread when it reaches the cor-
tex? Do long association tracts send/receive adjunct
connections? Is a bundle of axons a continuous long range
connection between remote regions, or a succession of short
U-shaped fibers? These questions vary in difficulty. For ex-
ample, connections should be easier to pin down to regions
than to columns or other sub-regional structures. However,
achieving fine-grained transverse accuracy is difficult for
tractography not only because of limits to spatial resolu-
tion but also because our measures are noisy and indirect.
We will come back to the question of transverse accuracy
when we discuss gray matter functional localization using
tractography.

Dealing with errors and quantifying accuracy. Although
(at least some) tractography methods can put forward an an-
swer to (at least some of) the questions raised above (Catani
et al., 2005; Frey et al., 2008; Rushworth et al., 2006), there is
currently no framework for quantifying the confidence of our
answers. This is due to the fundamental limitation of all dif-
fusion MR tractography algorithms: they rely on water diffu-
sion as an indirect probe of axon geometry. More specifically,
they assume that the direction of least hindered diffusion [or
principal diffusion direction (PDD)] is aligned with that of the
axons. This is the main assumption made by tractography al-
gorithms that rely on diffusion tensor imaging (DTI). While
such an empirical assumption seems reasonable at the level

of the axon, it has a number of practical consequences at
the imaging scale. Running tractography in its simplest
form equates to tracing the route of lowest hindrance to diffu-
sion, not the route of axons (it should perhaps have been
called diffusography!). This means that it is hard to distin-
guish, for example, branching from merging or kissing
axons (Fig. 1). More elaborate models of axon-diffusion map-
ping, based on high angular resolution diffusion imaging
techniques, extend the concept of a single PDD to mixtures
of PDDs, allowing for several principal diffusion orientations
(and hence axon orientations) within the same voxel (Seunar-
ine et al., 2009). Although these techniques have improved
the accuracy of tractography algorithms for detecting second-
ary white matter pathways (Behrens et al., 2007), the detailed
geometry of axons within a voxel remains often ambiguous
when looked at using diffusion (Fig. 1). In the white matter,
these ambiguities can cause tractography algorithms to jump
between different white matter tracts, making long-range con-
nections hard to interpret. Near the cortex, ambiguities in the
mapping between axon geometry and water diffusion make
it very hard to determine the termination points with accuracy
(Fig. 1).

All the above issues in mapping the diffusion profile into
intra-voxel axon geometry can cause tractography algorithms
to produce what people may refer to as false positives and
false negatives (Catani, 2007). It is perhaps worth pointing
that these are not false positives and negatives in the common
statistical sense. Instead, they are mis-estimates of connectiv-
ity due to modeling errors. For example, in probabilistic trac-
tography, they are samples from a posterior distribution that

FIG. 1. Cartoon illustrations
of ambiguities in mapping
diffusion to axon geometry,
and their consequences for
tractography. Top left:
Different axon geometries can
lead to a similarly oriented
tensor. The Tensor’s principal
direction is the same for all
cases, but modeling crossing
fibers helps distinguish a few
of the cases. Modeling fiber
fanning separates the top two
geometries. Further modeling
the polarity of a fanning can
help separate all cases. Top
right: Illustration of the
asymmetry in tracking when
fanning polarity is modeled
locally. Bottom left: Illustration
of a case of kissing fibers,
where the local model is one of
crossing fibers. Tractography
will lead to jumping between
the tracts, causing false
positives. Bottom right: case of
ambiguities near the cortex.
Both axon configurations lead
to the same diffusion profile
(and hence the same tracking
results), but have very
different implications in terms
of the actual connectivity.
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does not accurately represent the underlying ground truth.
While a statistical framework (e.g., a noise model) allows us
to control errors due to noise (we will get back to these
later), modeling errors are in insofar-unknown proportions;
we have no statistical framework to be able to control them,
especially in the absence of ground truth.

Determining polarity. A fundamental limitation of trac-
tography is that it is unable to tell us about the polarity of a
given connection. Whether an axon is afferent or efferent
does not affect water diffusion. One might argue that this is
not such an issue since, on the one hand, the majority of cor-
tico-cortical connections in the macaque cortex are reciprocal
(Felleman and Van Essen, 1991), and on the other hand cor-
tico-subcortical pathways’ polarity is quite well character-
ized. Further, and at the level of resolution that is accessible
to diffusion MR at the moment [i.e., millimeter scale, *105

axons per voxel (Aboitiz et al., 1992)], an answer to the ques-
tion of polarity may not be very informative: within a voxel
that contains a bundle of parallel axons, there will be axons
running in both directions. Nevertheless, while distinguish-
ing afferents and efferents spatially can undoubtedly open
up important applications (e.g., structural changes will pre-
dict different functional changes depending on polarity),
such information is unavailable to diffusion MRI and tractog-
raphy. Perhaps a multi-modal approach can successfully
tackle this difficult question, where diffusion tractography
may provide information on the location of the tracts,
whereas other techniques [such as Magneto-encephalogra-
phy (MEG)] could inform us about polarity (Stufflebeam
et al., 2008).

What we have learned

Advances in methods and data acquisition will undoubt-
edly help reduce the impact of some of the limitations, as
we will discuss in the next section of this article. However,
in spite of tractography’s limitations, there have already
been significant advances in our understanding of brain anat-
omy when asking the right questions. The key insights have
come from exploiting the main strength of tractography
methods: their ability to tell us where the tracts are.

Localizing white matter tracts. Diffusion tractography is
suitable for localizing white matter tracts. Looking at a
color-coded map of the PDD derived from DTI (Pajevic and
Pierpaoli, 2000), we can promptly recognize some of the
major axon bundles (Fig. 2). We are able to say with confi-
dence where, for instance, the arcuate fasciculus is situated
relative to the cortico-spinal tract. We can also tell, using

adequate crossing-fiber low-level modeling, whether a
voxel is likely to contain a mixture of the above tracts or not.

Tractography’s ability to localize (and name) white matter
tracts has been used extensively as a guide for region of inter-
est (ROI) analysis of white matter (Gong et al., 2005a; Good-
lett et al., 2009; Jbabdi et al., 2010; O’Donnell et al., 2009;
Smith et al., 2006, 2007; Yushkevich et al., 2008). Tractometry,
a term we could coin for these techniques that consist of mak-
ing tract-specific measurements, was one of the first fruitful
applications of diffusion MR tractography (Berman et al.,
2005; Gong et al., 2005b; Jones et al., 2006). Tractometry
has been used to study brain development (Eluvathingal
et al., 2007; Huang, 2010), ageing (Davis et al., 2009; Hasan
et al., 2010; Hsu et al., 2010; Michielse et al., 2010; Sala et al.,
2010), clinical markers (Ciccarelli et al., 2008; Johansen-Berg,
2010; Johansen-Berg and Behrens, 2006; Yamada et al., 2009),
structural correlates of behavior ( Johansen-Berg, 2010), etc.
The idea is to simply use tractography as a means of determin-
ing regions of interest in the white matter, and then make
quantitative measurements within those ROIs. A recent exam-
ple is the study by Lebel, Caverhill-Godkewitsch, and Beau-
lieu (Lebel et al., 2010), who used tractography to subdivide
the corpus callosum into regions connecting different lobes.
They then calculated fractional anisotropy (a micro-structural
indicator of white matter integrity derived from DTI), in each
of the subdivisions throughout human life span in a cross-
sectional cohort. Their results show that all the subdivisions fol-
lowed an inverted U-shaped pattern, but that they peaked at
different times, suggesting varying maturation dynamics
across different commissural axons (Fig. 3a). Another benefit
of using tractography to determine white matter ROIs is in
matching white matter location across subjects for averaging
(a.k.a. registration). In cases where the bundles under consider-
ation have a simple geometry (e.g., the cingulum bundle), posi-
tion along the bundle can be parameterized, greatly simplifying
the inter-individual correspondence problem (Fig. 3b).

Localizing gray matter functional units. Another success-
ful application of tractography has been for subdividing
gray matter (Fig. 4). While postmortem myelo- and cyto-
architectonic studies are a great tool to find functional subdi-
visions, it was recognized early on that macroscopic land-
marks (folds) are not necessarily a good indicator for
subdivisions within a given individual. Cyto-architectonic
sub-divisions therefore cannot easily be transferred into
studying the living functional brain. On the other hand, it is
easy to imagine that the extrinsic connections of cortical
areas can, to some extent, determine the function (pattern of
activity) of a brain region, and therefore that each region
will have a distinct and hence distinctive pattern of

FIG. 2. Example of diffusion tensor imaging-
derived images that show the extra white-matter
contrast gained by capturing diffusion anisotropy.
The PDD (principal diffusion direction) map on
the right is colored according to Red, left-right;
Green, anterior-posterior; Blue, superior-inferior.
Cing, cingulum bundle; CC, corpus callosum; CR,
corona radiata, SLF, superior longitudinal
fasciculus.
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connections (Passingham et al., 2002). Exploiting this princi-
ple, tractography has been used to segregate gray matter
according to the route of its white matter projections (extrin-
sic connectivity), both in the sub-cortex (Bach et al., 2011; Beh-
rens et al., 2003b; Devlin et al., 2006; Johansen-Berg et al.,
2005; Lehericy et al., 2004a,b; Sillery et al., 2005) as well as
the cortex (Anwander et al., 2007; Beckmann et al., 2009;
Johansen-Berg et al., 2004; Klein et al., 2007; Tomassini
et al., 2007). Many of these studies have shown a remarkable
degree of similarity between regional borders identified using
tractography and various other methods, including histolog-
ical atlases (Klein et al., 2007), functional MRI (fMRI) activa-
tion methods ( Johansen-Berg et al., 2004, 2005), and other
structural imaging modalities (Devlin et al., 2006).

At this point, the reader may find our mentioning of gray
matter parcellation using tractography in contradiction with
our argument on the limited transverse accuracy of tractogra-
phy algorithms. Indeed, how can we be confident in gray
matter parcellation if we are not sure about where tracts ter-
minate? While it is true that the accuracy of tracking ulti-
mately determines the accuracy of gray matter parcellation,
most tractography-based parcellation studies so far have
shown a certain degree of robustness to tractography errors.
To tell apart two brain regions on the basis of their connec-

tions, it is not always necessary to determine the full connec-
tion patterns of both regions; finding a subset of these
patterns can be enough to distinguish them.

Visualizing white matter complexity. Finally, a more re-
cent application of tractography shows the spectacular
amount of detail of white matter anatomy that is available
in diffusion MR data (Calamante et al., 2010, 2011). The ap-
proach takes advantage of the spatially continuous nature
of tractography: despite the fact that data comes in discrete
voxels, the reconstructed curves (through the diffusion
field) are represented in continuous space. By counting the
number of times a voxel is hit by curves, probabilistic tractog-
raphy builds up a (spatial) histogram that represents the
probability that a path of least hindrance to diffusion passes
through a given voxel. Now, the information as to whether
a curve passes through the middle of a voxel or a corner
gets lost in the binning process: all curves crossing the same
voxel are counted in the same way. However, if we make
the bins (voxels) smaller, then we can start distinguishing
such cases. Figure 5 shows one such map at a resolution of
(0.25 mm)3 [based on data acquired at (2 mm)3]. The gain in
spatial resolution through the tracking process gives an im-
pression of seeing the routes of white matter fibers. Indeed,

FIG. 3. (a) Example use of tractography to define regions of interest in the corpus callosum for quantitative measurements of
FA through life-span [adapted from Lebel et al. (2010)]. (b) Tractography of the cingulum bundle allows parameterization of
position along the tract. This enables better inter-subject registration for averaging and statistics [adapted from Gong et al.
(2005a)].
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this technique is able, through the spatial integration process
inherent in tractography, to separate white matter structures
that are mixed within the same voxels in the original data.

In summary, although current tractography methods do
not track axons directly and have limited accuracy, it is
clear that the ability to localize fiber bundles has been, and
still is, of great help in understanding the structural organiza-
tion of human white matter. However, we do not want to
give the impression that the abovementioned applications
are immune to tracking inaccuracies. For example, tractome-
try still relies on finding the pathways to calculate measure-
ments on; errors in the delineation of the tracts will lead to
difficulties in interpreting tractometry results. Also, as we
have discussed above, the accuracy of tractography-based
functional localization is determined by the accuracy of the
tracking. Tractography should always be handled with
care, and interpretation of results accompanied with caution.

The following section discusses some methodological ad-
vances that may take us closer to being able to make more ac-
curate and quantifiable inferences on brain connectivity.

Methods: Are We Happy Yet?

In neuroimaging methods, the devil is always in the de-
tails. Methods that care about details are often the most suc-
cessful ones. In tractography, there are three levels of

methodology where details matter: low level (often voxel-
wise) modeling, the tracking itself (connecting the arrows),
and the actual data. We highlight here some of these details,
examine the status of current methods, and ask whether there
is scope for further improvements that will matter for tractog-
raphy as a tool for assessing connectivity.

Low level modeling

As we (and many others) have already stressed: tractogra-
phy relies on the assumption that water diffusion reflects the
underlying axonal (microscopic) geometry, but how much
knowledge of the microanatomy does it provide us with,
and how much is necessary to get an accurate estimate of con-
nections? Can we bridge the gap between diffusion and axons?

Simple diffusion-axon mapping. In its original form, trac-
tography relied on the diffusion tensor model (Basser et al.,
1994). It proceeded by first fitting a Gaussian model for
voxel-wise diffusion, then extracting the PDD (the direction
of least hindrance to diffusion predicted by the model), and
using it as a surrogate for axons’ orientation within each
voxel (Basser et al., 2000; Conturo et al., 1999; Jones et al.,
1999a). Despite the success of this simple streamline technique
in revealing very convincing white matter bundles throughout
the brain (Catani and Thiebaut de Schotten, 2008), it became
clear that the PDD was not always a good representation of
fiber orientation. The architecture of white matter, despite a
global appearance of order and smoothness, can contain a sig-
nificant amount of local complexity. Axons tend to run in orga-
nized bundles that bend rather gently, but these bundles meet,
merge, twist, bend, diverge, and cross throughout white mat-
ter. In a given voxel, several of these bundles may be present,
and the PDD may not represent any of their orientations.
This has triggered efforts into improving the low level model-
ing, searching for the distribution of fiber orientations within
voxels [the fiber orientation distribution function (fODF)]
from the diffusion profile [see (Seunarine et al., 2009) for a de-
tailed account of these models, and (Behrens and Jbabdi, 2009)
for their implications for tractography].

The first attempts were concerned with the problem of
crossing fibers. Essentially, these approaches treat crossing fi-
bers as a partial volume problem. Instead of modeling a sin-
gle PDD, they model a number of directions of preferred

FIG. 4. (a) Gray matter
parcellation of the thalamus (top
left), cingulate (top-right), medial
prefrontal (top-right), Broca’s
area (bottom left), and lateral
premotor cortex (bottom right).
(b) Example use of tractography
and cortical parcellation of the
subgenual cingulate for guiding
surgical interventions. Black dots
correspond to locations where
electrical stimulations were
effective. Figures adapted from
(a) (Anwander et al., 2007;
Beckmann et al., 2009; Behrens
et al., 2003b; Johansen-Berg et al.,
2004; Tomassini et al., 2007) and
(b) ( Johansen-Berg et al., 2008).

FIG. 5. Comparison of a T1-weighted contrast (left) to the
results of the super-resolution technique at 250 lm isotropic
(right). Details of white matter architecture can be seen with
the naked eye.
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diffusion, and estimate these directions (as well as the num-
ber of such directions) from the diffusion data (Assaf et al.,
2004; Parker and Alexander, 2003; Tuch et al., 2002). Assimi-
lating these mixed diffusion directions to discrete fiber orien-
tations; tractography algorithms then use this information to
track through one or more directions within each voxel
depending on the direction of the approaching streamline.
These low-level models have had a significant (qualitative)
impact on tractography results. Several white matter bundles
that were known to exist but were unseen in PDD approaches
were revealed using the more complex crossing-fiber models,
effectively decreasing the amount of false negative connec-
tions (Behrens et al., 2007).

Complex diffusion–axon mapping. Axon configurations
within a voxel can, however, be more complex than simple
crossing fibers. Several alternative local geometries can give
rise to data that may seem akin to a crossing fiber-type archi-
tecture, but where other configurations may well be present.
If we ignore these alternatives and use a crossing fiber model
instead, we run into the problem of increasing tractography
errors (Fig. 1).

So, what can we do? Crossing fibers are, in essence, a simple
case of an fODF that has two or more peak orientations with
non-zero probability, with all other orientations having proba-
bility zero. An extension of this model is to consider a more ge-
neric form for the fODF, allowing for a model that can
distinguish between crossing fibers and spreading or fanning
fibers. This is not a mathematical fantasy: cases of fibers
spreading from each other are common in white matter.
Axons in the internal capsule are tightly packed and confined
to a rather narrow space, but they then spread out to reach var-
ious locations throughout the cortex, forming the corona radi-
ata. The density of these tracts is lowered along their trajectory
toward the cortex, while they are crossing other types of fiber
bundles (commissures and association tracts). Another exam-
ple is when tracts arrive at the cortex: axon bundles tend to
fan-out when they reach the cortex. Modeling fanning fiber ar-
chitectures is crucial for tractography for at least two reasons:
(i) modeling a fanning configuration by simply using the mean
orientation and ignoring the spreading is likely to induce false
positives as well as false negatives; and (ii) explicitly account-
ing for these geometries will allow us to distinguish between
fiber spreading and uncertainty in discrete fiber orientations
(see later for why this is important).

Attempts have been made at inferring the continuous
fODF from diffusion data, either by using various flavors of
spherical deconvolution (Descoteaux et al., 2009; Tournier
et al., 2007; Yeh et al., 2011) or by explicitly modeling the
shape of the fODF (Kaden et al., 2007, 2008; Zhang et al.,
2011). These fODF low-level models are already showing
qualitative improvements in tractography (Descoteaux
et al., 2009). None of these attempts has, however, accounted
for the possibility of anisotropic (sheet-like) fanning, such as
that seen in the corona radiata. This is likely to lead to the
models underestimating fanning along one direction (along
the sheet), and overestimating it along the other (across the
sheet). Notwithstanding this technical detail that will proba-
bly be overcome in future models, accounting for fanning
configurations is likely to prove important for tractography
(see below), and will benefit considerably from advances in
data acquisition (see further below).

Spatial models. Another apparently subtle but rather im-
portant aspect of local modeling is the idea of the polarity of a
fanning. As exemplified earlier, axons in the corona radiata
fan-out along their trajectory toward the cortex, but they con-
verge in the other direction. It will be important to account for
this asymmetry, otherwise tractography algorithms will lead
to a fanning-out of streamline trajectories when tracking in
both directions, introducing false positives on one side and
false negatives on the other. However, diffusion MRI being
a symmetric directional measurement, it is impossible, by
looking at voxel-wise data alone, to determine or model the
polarity of a fanning. Indeed, how can we fit an asymmetric
model to symmetric data?

There has been one attempt (as far as we know) in the lit-
erature to tackle this issue (Savadjiev et al., 2008). Although
the authors have used a crossing-fiber instead of a fanning-
fiber model in their article, the idea is still valuable and can
potentially be generalized to fanning models. It is based on
the realization that, although there is no information in the
voxel-wise data to determine the polarity of diverging fibers,
it is still possible to get such information by looking at a vox-
el’s neighborhood (Fig. 1). Generalizing this approach to com-
bined crossing and fanning models (e.g., two fanning fibers
crossing at some angle) is likely to be difficult. Simple geo-
metric rules to determine whether the local neighborhood
supports fanning in one or the other direction, while feasible
in the case of one fiber population per voxel, may become
computationally as well as conceptually challenging when
modeling multiple fibers per voxel.

The idea of using spatial information to somewhat help or
constrain tracking has been around implicitly in tractography
algorithms. For example, in tracking through an orientation
field from a crossing-fiber model, one may need to pick a can-
didate orientation amongst the crossing fiber categories
within a visited voxel. The common approach is to choose
the orientation that is closest to the current direction of track-
ing [alternative approaches exist, e.g., (Descoteaux et al.,
2009)]. While this seems to be a reasonable choice in the
white matter, it may not be appropriate when approaching
the cortex. The geometry of cortical folds is likely to be accom-
panied by sharp bends and turns for axons to reach the corti-
cal surface. Tractography algorithms that simply pick the
closest orientation are likely to introduce biases. For example,
more connections may be detected hitting the crown of a
gyrus than its walls. This will obviously significantly limit
the transverse accuracy that we discussed earlier. While it is
likely that geometric models, potentially global in nature
(i.e., combining information across voxels), may help solve
these issues, it is not clear what form these models should
have, and what type of spatial priors may be used to accu-
rately represent the way axons enter the cortex.

Model-free approaches. Our presentation so far of low-
level characterization of fiber orientations has focused on gen-
erative model-based approaches. Alternatives have also been
suggested (Aganj et al., 2010; Descoteaux et al., 2007; Hess
et al., 2006; Wedeen et al., 2008) and successfully applied to
studying the architecture of white matter in humans (Hag-
mann et al., 2007) and non-human animals (Schmahmann
et al., 2007). These approaches generally proceed by estimating
a probability distribution on the sphere known as the diffusion
ODF (dODF). This is the probability that a spin diffuses along
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each direction in space. Crucially, these approaches are termed
‘‘model-free,’’ in the sense that they estimate the dODF without
making assumptions as to its form [e.g., diffusion spectrum im-
aging (DSI) (Wedeen et al., 2005) and Q-ball imaging (Tuch
et al., 2003)]. Peaks of the dODF are assumed to correspond
to fiber orientations and are used to guide tractography.
Finally, these approaches have also been combined with
deconvolution or ODF sharpening methods that attempt to re-
construct an fODF from the dODF (Tournier et al., 2004; Yeh
et al., 2011). It is fair to say that, at the moment, model-based
and model-free approaches suffer from the same limitations
as to the accuracy of the subsequent tractography.

Errors and uncertainty. As we have seen, low-level mod-
eling errors can (and do) lead to errors in the tractography
itself. There are, however, at least two other sources of errors
that will be important in the next section on the quantitative
interpretation of tractography. We categorize these errors
into noise and algorithmic errors.

Several methods have successfully been able to model mea-
surement noise together with the diffusion profile and/or the
fODFs (Behrens et al., 2003a; Berman et al., 2008; Jeurissen
et al., 2011; Jones and Pierpaoli, 2005; Parker and Alexander,
2003, 2005; Sotiropoulos et al., 2010a). An explicit noise
model allows us to calculate a confidence on the streamlining
process, given the noise level and the low-level model [alterna-
tive model-free methods to estimate noise-related uncertainty
also exist ( Jones and Pierpaoli, 2005)]. In a crossing-fiber
model, we can calculate a distribution that represents the un-
certainty on the orientation of each of the crossing fibers [the
uncertainty ODF (uODF)—(Behrens and Jbabdi, 2009)]. This
local uncertainty then propagates into global uncertainty on
the location of white matter tracts via tractography. It can be
difficult to distinguish this uODF, which relates to a single un-
derlying orientation, from a true spread in the fiber orienta-
tions, in which there is a continuum of potential orientations.
Separating these two cases will be important for a more quan-
titative interpretation of tractography results (see next section).

Also, we insist here that this measure of uncertainty ac-
counts for noise-related uncertainty. We have called it ‘‘uncer-
tainty on the location of white matter tracts,’’ but it should
really be understood as ‘‘uncertainty on the route of least hin-
drance to diffusion.’’ The extra uncertainty due to modeling
errors (the discrepancy between diffusion and axons) remains
unknown, and improved models attempt to help minimize it.
In ( Jones, 2010) the author relates the first source of error to
the notion of precision and the second one to that of accuracy.
The latter is the ultimate goal of tractography; the former is
the one we can control at the moment.

The remaining source of error is related to the algorithmic
aspects of tractography (Behrens and Jbabdi, 2009; Lazar and
Alexander, 2003). Tractography can be seen as an integration
process that is discretised. It involves, for example, the choice
of an integration step and an interpolation scheme, both of
which affect the accuracy of the results.

Fiber tracking

Advances in low-level local modeling should lead to im-
proved tracking if tractography algorithms adapt to capitalize
on these advances. For example, tractography algorithms
could be designed to detect the local polarity of a fanning

and adjust the choice of local fiber orientation accordingly.
Another case is when modeling the fODF together with
noise-related uncertainty: a probabilistic tracking algorithm
needs to sample orientations from both ODFs (Behrens and
Jbabdi, 2009). This will ultimately allow us to calculate not
merely the confidence on the route of least hindrance to diffu-
sion (as in current crossing-fiber models), but instead the con-
fidence on the proportion of fibers running between two given
locations (see quantitative section).

There are also cases where tractography can be used to im-
prove local modeling. This is in the spirit of global ap-
proaches to tractography (Aganj et al., 2011; Jbabdi et al.,
2007, 2008; Kreher et al., 2008; Parker et al., 2002; Reisert
et al., 2011; Sotiropoulos et al., 2010b), in which the estimate
of fiber orientation at a given voxel is informed by estimated
orientations in that voxel’s spatial neighborhood. The case of
fanning polarity is a good illustration, as it is easy to under-
stand that there is no information in the voxel-wise data as
to what the orientation of the fanning is. Ultimately, we
may even begin to model the spatial arrangement of axon
bundles inside the voxels, an idea that may sound far-fetched,
but the super-resolution method presented in Figure 2b
shows that the sub-voxel information is richer than we
might think.

In general, testing different local fiber bundle geometries
(as opposed to local fiber orientations) against data will
lead to more accurate models of the local fiber architecture,
and hence improve our confidence in determining site-to-
site connectivity. However, as illustrated in Figure 1, there
are cases where it is very hard to imagine purely geometric
models correcting for errors due to jumping between tracts
in the white matter. It is likely that spatial or other types of
priors will be required, although the form that such priors
would take is still unknown.

There is another category of methods for improving the ac-
curacy of tractography that we have not mentioned so far.
These methods are related to the idea of imposing spatial pri-
ors. A straightforward type of such priors is to simply draw
regions of interest to constrain the route of least hindrance
to diffusion that is believed to represent the bundles of inter-
est (Catani et al., 2002). Another type of such spatial priors is
to compare generated tracts to a reference tract (e.g., from an
atlas), and then select among the results on the basis of best
similarity scores (Clayden et al., 2007; O’Donnell and Westin,
2007). Group-level tractography analyses can also serve as a
means of imposing hierarchical-like spatial priors on individ-
ual tractographies (Yap et al., 2011).

We have so far discussed geometric models that account
for mesoscopic features of white matter tracts. Other geomet-
ric approaches tackle the problem of modeling microstruc-
ture. In particular, these models use q-space diffusion data
(Callaghan, 1991) to estimate, for instance, axon radii and
density (Assaf et al., 2008). Whether these techniques are
likely to be useful for tractography is still an open question,
given, for example, the difficulties in obtaining appropriate
data in vivo. There may be some interaction between tracking
and microstructure, in that one could inform the other (Sher-
bondy et al., 2011) (by imposing spatial continuity priors), in-
creasing the effective SNR of the local modeling on the one
hand, and imposing spatial priors (continuity of, say, axon di-
ameter) on the other. A more immediate benefit of these local
micro-geometric models is that they are (or possibly are
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tending to become) capable of estimating some of the quanti-
ties that neuroscientists care about. We believe that these ap-
proaches may be valuable in the future for improving the
quantitative nature of diffusion MR tractography (see later).

Data

For a given model that we may choose to take us from dif-
fusion profile to fiber orientation, the precision of the map-
ping will depend on the quality of the data. Several factors
define the quality of diffusion data, among which signal-to-
noise ratio, diffusion weighting (b-value), spatial resolution
(size of voxels) and orientational resolution (number of non-
parallel diffusion weighting gradient orientations) are the
most relevant. In tractography, the important parameter
that we want to estimate from diffusion data is the orienta-
tion(s) of the diffusion profile and so it is important to opti-
mize the orientational resolution of the data. If, by contrast,
we were interested in the average apparent diffusion coeffi-
cient across all directions, then the optimal acquisition param-
eters may be more focused on the choice of b-values than the
gradient directions (Alexander and Barker, 2005; Jones et al.,
1999b).

Optimizing sequence parameters not only allows us to get
better precision on estimated model parameters, but can also
enable us to estimate the parameters themselves. Some of the
more complex diffusion modeling such as DSI (Wedeen et al.,
2005), micro-structural modeling (Assaf et al., 2008), or mod-
els for fiber spreading require a large number of data vol-
umes. In particular, they require a large set of b-values [in
the case of DSI and micro-structure models (Alexander,
2008)], and/or gradient directions (fODF models). Data ac-
quisition strategies ultimately depend on the subsequent
modeling approach (Tournier et al., 2011) (and of course on
the available hardware and scanning time). While it is not
clear what set of parameters will be optimal for each of
these schemes, determining the range of ideal acquisition pa-
rameters, for example, using simulations, will be important
for the future of tractography.

While the range of optimal parameters for some of the
more advanced diffusion modeling may possibly fall beyond
the current possibilities of clinical MR systems, state-of-the art
imaging solutions provide some hope for getting higher and
higher quality data in shorter times. New developments in ac-
celerated sequences (Feinberg et al., 2010) are likely to pro-
vide an order of magnitude increase in the amount of data
we can acquire in a given time window. This will allow us
to spend time acquiring data with very high orientational res-
olution for detailed modeling of the fODF, or alternatively ac-
quire multiple b-value data for complex micro-structural
modeling, etc.

Another source of enthusiasm for the future of diffusion
data is high field MRI (e.g., 7T) in humans. The increased
SNR provided by the higher field strength will allow us to in-
crease the diffusion weighting and get fine detailed fiber dis-
tributions, or alternatively increase the spatial resolution of
the data. In vivo high-resolution diffusion at 7T is already
showing promising examples of detailed cortical and sub-
cortical anisotropy unseen before (Heidemann et al., 2010).

In summary, despite the difficulties in bridging the gap be-
tween diffusion and axons, and their consequences for trac-
tography, there is some progress that will undoubtedly

alleviate some of these issues. These advances are happening
simultaneously in modeling, algorithm development, and
data acquisition. It will still be difficult to know how many er-
rors we make in tractography, but at least we will know that
we are making fewer errors than we did before!

Is Tractography Quantitative?

Quantitative connectivity

One frustrating thing about tractography is that it takes a
quantitative acquisition method (diffusion MRI) and makes
it less quantitative. That is, less quantitative from the point
of view of connectivity. Of course, diffusion MR is a quantita-
tive method: it allows us to calculate the—albeit apparent—
diffusion coefficient with great accuracy. Hence we can use
it together with tractography (which quantifies the location
of the tracts) to get quantitative measurements along tracts
(what we have referred to as tractometry). For example, we
can calculate the diffusion coefficient along and across
white matter tracts, the anisotropy of the diffusion profile
within the tract centres, etc. However, in the context of
brain connectivity, these are not necessarily the quantitative
measures that we are after. Instead, a good measure of struc-
tural connectivity, that is, one that has functional relevance or
implications, is more likely to be one of the following:

� Does region A connect to region B or not?
� What is the number of axons that connect A to B?
� What proportion of axons leaving A go to B?
� What proportion of neurons in B get input from axons

in A?
� What is the calibre/length/degree of myelination of

axons from A to B?

None of the above is directly available to any tractography
methods at the moment. For example, for the very reasons we
have argued in the previous sections (modeling errors), we
cannot answer with confidence the question of whether A
connects to B. What we can do is to calculate the route of
least hindrance to diffusion, and assume that if A really
does connect to B, then the diffusion route is likely to follow
the white matter tract underlying this connection. We can also
calculate a confidence on the location of that route, or a con-
fidence on whether that route passes through B, given the
amount of noise in the data.

What about probabilistic tractography?

Studies that use tractography to explore brain connectivity
and its variations across brain areas, individuals, or species,
often extract numbers (summary statistics) from the tracking
process to make quantitative comparisons. In deterministic
tracking, that is, following a point estimate of the route of
least hindrance to diffusion, these numbers tend to be either
the number of streamlines from A to B, or the proportion of
streamlines from A to B among other possible targets. Some-
times fibers is used as an alternative term to streamlines, but
we would discourage this due to the obvious potential for
confusion between tractography-derived fibers and axonal
fibers. Given that the number of streamlines is not a direct
measure of anatomical connectivity, and that their relation-
ship to the underlying anatomy is rather ambiguous, it is
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questionable whether there is a value in using them to assess
and compare connectivity.

Probabilistic tractography is in a sense slightly more quan-
titative, but it is important to realize in what sense it is and it
is not. In the context of a low-level model that represents fiber
orientations as a discrete set of crossing fibers, performing
probabilistic tracking gives us an estimate of our confidence
on the route of least hindrance to diffusion. We can say, for
example, that we are more confident that A connects to B
(through the diffusion field) than that A connects to C. Or
that we are more confident that A connects to B in one indi-
vidual than in another. This confidence in the route of diffu-
sion is not a measure that you can get from the deterministic
number of streamlines approach.

It is extremely tempting to consider these probabilities, or
confidence levels, as our estimate of connection strength,
and indeed this term has been used in many publications (in-
cluding some of our own) instead of the more appropriate
term ‘‘probability.’’ However, while this confidence may
well depend on some of the above-mentioned good measures
of structural connectivity, it does so in an un-modeled way.
Other noninteresting factors will also influence our confi-
dence. For example, we are more confident in a short route
than a long one (errors and uncertainty accumulate during
the tracking process), so our measure of connectivity will de-
pend on the distance between regions. It will also depend on
the size of voxels and brain areas, the noise level, the model-
ing errors, and the algorithmic errors (e.g., due to the curva-
ture of the tracts).

Quantitative tractography may still not be a mere illusion.
Recent advances in low-level modeling are opening possibil-
ities of associating fiber bundles with quantitative measure-
ments directly related to axon micro-geometry. First, using
q-space imaging in conjunction with varying the diffusion
time (i.e., varying the spatial scale of detectable diffusion dis-
placements), one can probe restriction to diffusion associated
with separate compartment sizes. Using a few geometric as-
sumptions on the effect of axonal restriction on the diffusion
signal, researchers can include these micro-geometric param-
eters into their models and infer them from the data. This ap-
proach has been shown to successfully estimate distribution
of axon diameters in excised nerve fibers ex vivo (Assaf
et al., 2008) as well as in vivo in rats (Barazany et al., 2009).
The data requirements (in particular, the need for large gradi-
ent strengths) make these techniques difficult to apply to
human imaging, where care must be taken both in experi-
mental design as well as interpretation (Alexander, 2008).

Second, fiber spread models of the fODF will provide means
of quantifying connectivity between regions (Zhang et al.,
2011). We may be able to say how confident we are, not on
the route of least hindrance to diffusion, but on the proportion
of fibers between two regions (Behrens and Jbabdi, 2009).
Finally, using complementary imaging techniques for myelin
mapping [such as magnetization transfer (MacKay et al.,
2006), multi flip-angle techniques (Deoni et al., 2008) or myelin
water diffusion (Avram et al., 2010)], we may be able to quan-
tify the myelin content within white matter voxels, and poten-
tially associate these quantities with specific axon bundles
using tractography. Of course, all these elements of structural
quantification, as exciting as they are, should still be subject to
careful interpretation, given the continued unknown influ-
ences of modeling errors in tractography.

Having said all this, do we need to be at all quantitative?
Studies that find differences in tractography between popula-
tions, while not necessarily able to attribute these differences
to specific aspects of the anatomy, are still in the position to
say that something must be driving the differences. The
ease of tracing through the diffusion field does depend, one
way or another, on the anatomy. Tractography measures
can be more sensitive to detecting true anatomical effects
than, say, micro-structural measures (FA, MD, etc.). The
main issue is of course one of interpretation. Biomarkers of
tissue structure can be useful (for example, in a clinical set-
ting), even if we do not know what they are measuring. How-
ever, while we insist that tractography measures are hard to
interpret, we do not want to give the impression that they
cannot be interpreted. One can, for instance, use tractography
to detect an effect, then explore this effect using different mea-
surements (e.g., DTI indices for micro-structure, VBM mea-
sures of macro-structure, relaxometry measures of myelin,
etc.) to determine, or at least narrow down, which aspects
of the anatomy are driving tractography results.

Can we do statistics on tractography?

When we look at a probabilistic connectivity map (the spa-
tial histogram of where the tracts are), our first thought might
be that it looks rather messy, how can we threshold it? Of
course we can set the threshold on the connection probabili-
ties at an arbitrary level for the purpose of a tidier visualiza-
tion, or choose a threshold such that the map appears to make
anatomical sense (we tend to have strong anatomical priors).
However, the underlying question is really a statistical one:
how can we tell that the route from A goes through B whilst
controlling for type I and/or type II errors?

A frequentist approach to the above question can be
framed in the language of hypothesis testing. We first define
a null hypothesis and a (set of) alternative hypothesis(es).
These are

H0: A does not connect to B
H1: A connects to B
The second step is to define a test-statistic. This is the first

tricky part: what statistic would allow us to tell H1 from H0?
Using probabilistic tractography, we are bound to use what
we have, that is, the measure of probability of connection
from A to each voxel on the map (in univariate terms, we
would have one test per voxel). It is not clear whether this
is a good statistic or not, and in particular, we need to proceed
into the third step, which is to derive a probability distribu-
tion for the test-statistic under the null hypothesis H0. This
is the really difficult part: what sort of distribution for the con-
fidence on a tract from A through a voxel X (let us call this
number XA) do we expect to have under the null hypothesis
that A does not connect to X? Whether H0 is true does not ap-
pear to contain any useful information as to what the data
should look like, it could be anything, and hence XA could
be anything. Of course, we are not saying that a frequentist
approach is not at all feasible in theory; we just do not have
a clue how to formulate it!

In one attempt to tackle this issue (Morris et al., 2008), the
authors were concerned by the dependence of the confidence
measure on the distance from the starting point, and defined
a null distribution to account for that. We put null between
quotes here (and so do the authors of the article) because it
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is not strictly speaking a null distribution, as we shall explain
below.

The authors’ idea was to compare the empirical value of XA

to the distribution on XA that one would obtain if the fiber ori-
entations were random, that is, in a case where the value of
XA is dominated by the distance from the starting point. It
is immediately clear that such distribution does not represent
the null (A does not connect to X). Indeed, H0 does not imply
that the orientation field is random: a nonrandom field could
well support a situation where A does not connect to X. Also,
having a random orientation field is equivalent to saying that,
from a given location, all directions in space are equally
likely. This implies that the probability of reaching a location
from A will obey a deterministic 1/d2 law. The distribution of
XA under the random orientation field hypothesis will effec-
tively produce a sort of threshold against which we could
well test the empirical XA statistic, but without providing
us with confidence intervals, or indeed control of type I or
II errors. The method does still, however, have the merit of
tackling the problem, and despite being heuristic, may in-
crease our sensitivity in detecting long-range connections
that are otherwise masked by the distance effect.

Another approach to test for the existence of connections
has been suggested by Jbabdi et al. (2007). This time, it is
not a frequentist but a Bayesian take on the problem. The
idea is to have a generative model that contains an explicit pa-
rameterization of the connection from A to B. By calculating
the model evidence (the marginal likelihood of the model
given the data) implied by having a connection, and compar-
ing that to a model that doesn’t contain the connection, we are
able to estimate the probability that the connection is sup-
ported by the data.

Of course, neither the frequentist nor the Bayesian method
alleviates the fundamental problem with modeling errors, but
instead try to test the existence of the path through the diffu-
sion field, given the amount of data, noise and modeling as-
sumptions. Such a diffusion path may still exist (i.e., have
strong support in the data) when a true underlying connec-
tion does not.

Finally, it is worth adding that, although a rigorous statistical
framework to control our confidence on the tracts is hard to es-
tablish, we can still use a more qualitative approach that is based
on our prior knowledge on the trajectories of white matter path-
ways. The use of exclusion and inclusion masks in tractography
algorithms has been extremely valuable for that purpose (Catani
et al., 2002). For example, considering a connection from A to B,
we can incorporate knowledge such as if it goes through region
C (exclusion mask), or if it does not go through D (inclusion
mask), then it is probably a false positive.

Now, given that determining the existence of a connection
is a hard problem, can we at least use the numbers that prob-
abilistic tractography gives us to conduct t-tests? For exam-
ple, test whether the connection probability from A to B is
significantly different from that to C. Of course, the answer
is yes, assuming that the statistical assumptions underlying
the t-test are valid. However, we should always keep in
mind that the connection probability is not necessarily a di-
rect reflexion of connection strength. So, interpreting test re-
sults should be subject to careful considerations as to the
elements that make one connection more likely than another.
It can be driven by connection strength, but also by differ-
ences in the amount of modeling errors, ease of tracking,

noise, etc. These confounds can introduce biases in the struc-
tural connectivity network that may drive erroneous interpre-
tations of graph structures (in terms of small-world
architecture, hubs, etc.).

In summary, the quantitative value of tractography, al-
though often rightly called into question in discussion sections
of articles, may be viewed as straightforward by readers who
are only interested in the overall picture. We need to be ex-
tremely wary of all potential sources of confounds, and use
other sources of data to help eliminate some of these con-
founds, and to strengthen or confront the claims that we may
formulate on the basis of tractography results.

Where Do We Go from Here?

Charting the human connectome

Determining the wiring diagram of the human brain is one
of the greatest challenges in neuroscience (Sporns et al., 2005).
At the micro-scale, the complexity of neuronal connections is
hard to even conceive, and the task of determining their com-
plete structure is extremely challenging even for small
(*1 mm) domains. At the macro-scale, however, this goal is
approachable using current technology. Connections be-
tween brain areas can, in principle, be inferred from whole
brain in vivo data using MRI-based neuroimaging techniques
such as diffusion MR tractography (Hagmann et al., 2007;
Sporns, 2011). This raises the possibility of not only character-
izing the wiring diagram between (whole) brain areas, but
also doing so in a systematic way across multiple individuals
(Sporns, 2011).

This is the goal of current large-scale connectome efforts
such as the Human Connectome Project (HCP), an NIH-
funded initiative aiming to chart a ‘‘comprehensive map of
human brain circuitry in 1200 healthy adults using state of
the art neuroimaging methods’’ (www.humanconnectome
.org). Tractography is of course central to the project and
will help establish the structural basis of the human connec-
tome. fMRI will also inform our understanding of connectiv-
ity and along with MEG will be used to characterize brain
function. What are then the prospects for success in building
the large-scale network structure of the human brain given
the limitations of diffusion MR tractography that we have dis-
cussed throughout this review?

It is likely that not only will such initiatives owe a great deal
to tractography as a tool, but also that tractography methods
will benefit greatly from such concerted efforts. Significant in-
vestments will be targeted toward improving the amount and
quality of the data that will be acquired for the project, using
state-of-the art MRI physics and extensive optimization of ac-
quisition parameters. In practical terms, this will mean that it
may be possible to acquire, on each subject, much more diffu-
sion data than is currently routinely available in the same
amount of time. Most of the fine-level modeling, such as pre-
cise fiber spreading models and their polarity, will become
feasible given this data quality, and estimates of connectivity
will thereby be improved significantly.

On the other hand, tractography is not the only way to ac-
cess the structure of brain networks. Fluctuations of the fMRI
BOLD signal at rest provide a complementary type of evi-
dence on distributed functional brain networks and will be
an important modality for the HCP effort. Other large-scale
efforts, such as the 1000 Functional Connectomes Project
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(Biswal et al., 2010), are attempting to characterize consistent
patterns in these networks. There is evidence that such func-
tional networks can indirectly reflect the brain structural con-
nectivity (Fig. 6); For example, resting-state functional
connectivity between remote brain regions has been shown
to reflect aspects of the underlying white matter connectivity
in the case of the default-mode network (Greicius et al., 2009),
and tractography-derived structural connectivity has been
used to predict resting state activity via modeling (Honey
et al., 2009, 2010). One of the drawbacks of using functional
connectivity as an indicator of structure is that it may reflect
indirect as well as direct connections, thereby confusing the
interpretation of the graph structure. However, extensive
simulation models (Smith et al., 2011) indicate that, given
high enough quality data, and at the spatial scale of brain re-
gions (as opposed to voxels) one can use sophisticated meth-
ods for inferring interregional functional connectivity that
reflect the direct interactions through the graph structure.
While such techniques may still have less sensitivity (a struc-
tural link may not always be functional), it is likely that a
combination of resting-state fMRI and diffusion MR tractog-
raphy will provide a more complete and accurate description
of the structural connectome than either technique on its own.
Also, as we have alluded to earlier, electrophysiology data
(such as MEG) may be used to determine the timing and/
or the (preferred) direction of functional influences, address-
ing the question of polarity that is lacking from tractography
data (Stufflebeam et al., 2008).

In general, multimodal integration in the context of trac-
tography and brain connectivity has two advantages: (i) it
provides complementary sources of information that is miss-
ing from tractography (e.g., polarity), and (ii) it provides
means for validation ( Jbabdi, 2009). An example of the latter
is the use of task fMRI to test the hypothesis that borders be-
tween brain regions, detected using tractography, are genu-
ine functional borders (Behrens et al., 2006; Johansen-Berg
et al., 2004, 2005). Next we examine strategies for validation
of tractography per se, that is, whether the routes of least hin-
drance to diffusion correspond to the trajectory of white mat-
ter axon bundles.

Validation

Since we are not sure whether we are making modeling er-
rors or not, an alternative approach to testing our confidence

in tractography findings is to compare them to situations
where we do know the ground truth, that is, using physical
phantoms, animal models, or postmortem studies in humans.
There have been several attempts using all of the above. In
most cases, the results were encouraging, in that diffusion
was not far off modeling the underlying microstructures
and connections (Hubbard et al., 2009).

Physical phantoms have been used to test low level models
and tractography algorithms (Perrin et al., 2005; Poupon
et al., 2008). For example, phantoms mimicking crossing fi-
bers and/or bending and kissing fibers have been used to
test various model-based and model-free low-level tech-
niques; several tractography algorithms have also been
used in a competition aimed at reconstructing the underlying
ground truth (Fillard et al., 2011). Building realistic phantoms
is, however, extremely difficult. Firstly, the dimensions of the
artificial fibers that are used are, at best, one or two orders of
magnitude larger than those of axons. This means that the
data acquisition strategy that may be suitable for modeling
phantom data may not be optimal for in vivo experiments.
Also, and perhaps more importantly, the voxel-wise com-
plexity of true axon bundles is difficult to reproduce, render-
ing the phantoms rather simplistic, which makes it difficult to
judge whether a method that performs well on a phantom
will also perform well in the brain.

Animal models have also been used as a means to validate
tractography methods. In this case, the ground truth comes
from tracer-injections, which are known to be very specific
markers of connectivity. Tracers are transported within the
axons, which completely alleviates the problem of jumping
between one tract and another. Examples of such studies
are comparisons between tractography and histological trac-
ers in macaques (Dauguet et al., 2007; Schmahmann et al.,
2007), or against MRI-visible tracers in rats (Leergaard
et al., 2003), marmosets (Yamada et al., 2008) and mini-pigs
(Dyrby et al., 2007). While in these cases, only a few connec-
tions could be tested at a time, others have used databases of
tracer studies results (www.cocomac.org) to test several con-
nections at a time (Hagmann et al., 2008). This not only alle-
viates the problem of testing multiple sites at once, but also
improves the reliability of tracer studies results in terms of
false negatives and experimental subjectivity.

One of the difficulties with these types of validations is that
while they can tell us when there is a discrepancy between
our estimate of connections and that of a tracer, the success

FIG. 6. Comparison
between tractography-based
and resting-state fMRI
connectivity (correlation of
time series) thresholded at
arbitrary levels. The seed
point is indicated by the black
cross on the left temporo-
parietal junction.
Tractography data are from a
single subject and fMRI data
from averaging correlation
matrices from five subjects.
Notice the similarities but also
the differences between the
two maps. fMRI, functional
magnetic resonance imaging.
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of using the same method in a human brain is not guaranteed
by its success in animals.

Finally, testing against postmortem histological samples
from human or animal brains will certainly be useful to test
local models of fiber architectures (Barazany et al., 2009).
Testing tractography methods in humans, while impossible
using the more reliable methods of tracer-injections, may be
possible, although subject to inter-operator variability,
using classical dissections (Lawes et al., 2008).

Do we need tractography?

Several good atlases of the major white matter fiber bundles
in the human brain have been published in recent years using
tractography [e.g., (Catani and Thiebaut de Schotten, 2008;
Wakana et al., 2004)]. Given that we can register a given sub-
ject’s brain onto an atlas, thereby localizing the white matter
tracts from the atlas relative to the subject’s own brain, why
do we need to spend precious MRI time acquiring diffusion
data at all? Why not simply use the atlas? The problem with
using standard atlases is that the size and shape of cortical
areas varies considerably between individuals; for example,
there can be a two-fold change in the size of V1 across healthy
individuals (Andrews et al., 1997). White matter tracts are also
extremely variable in size and position (although less variable
in terms of their relative positions to one another). Hence, to
get an accurate registration to an atlas, we need to be able to
localize the tracts of an individual to be able to register them
to the tracts on the atlas. We need tractography for this.

A more fundamental question though is: If what we ulti-
mately want to understand is brain functional organization,
do we need tractography, or even precise structural informa-
tion at all? Why not simply measure brain function directly,
and apply methods to infer functional interactions between
brain areas. Is our knowledge of the gross connectional struc-
ture really a key to our understanding of brain function, or is
it marginal relative to a direct access to interregional func-
tional influences?

We believe that knowing about the structure of a network
informs our understanding of its function. For example, a hi-
erarchical network architecture allows for the possibility of
bottom-up and top-down message passing, and ladder-like
hierarchies can allow shared computations between parallel
hierarchies. While it is possible, to some extent, to define
hierarchical levels on the basis of the laminar pattern of
cortico-cortical connectivity, such information is not available
to tractography. However, other aspects of structural organi-
zation are, in principle, available to tractography. For exam-
ple, white matter pathways are able to transfer cortical map
representations into remote brain areas in a topographic man-
ner. Understanding these topographies can potentially give
us indicators, or even predictors, for the activity of target cor-
tical regions. Intersection between cortico-cortical maps may
reveal interesting aspects of how areas share information to
perform specific computations, which can help us formulate
testable mechanistic computational models.

Another element that pleads in favor of structure is the
possibility of understanding, or perhaps even predicting, dys-
function caused by (structural) dysconnections in specific lo-
cations of the brain network. Catani and Ffytche’s hodology
(Catani, 2007), the science of connectional anatomy, is vital
if we are to formulate such predictive models.

Finally, structural connectivity, even seen through the in-
complete and imperfect detector that is tractography, can be
a valuable tool to identify brain functional units (parcella-
tion), and can also provide a useful set of prior architectural
constrains for models of functional interactions (Stephan
et al., 2009).

In a nutshell, although a complete understanding of brain
structural architecture is certainly not sufficient to under-
stand brain function (Friston, 2011), it is still a valuable tool
to understand its degrees of freedom.

Conclusion

Tractography can and should be used to study human
brain connectivity. Adopting the diffusion profile as a
proxy for white matter local geometry is a model. That is, it
is imperfect, but useful, if we understand its limitations.
Efforts carried out on several fronts, including data acquisi-
tion and analysis, will undoubtedly help overcome some of
these limitations. However, while our confidence on tracing
white matter connections will certainly increase, we should
still use the method with care. Multimodal approaches
should be used both as a source of complementary informa-
tion as well as a validation tool. Experiments should be
designed such that the data and the analysis can answer the
scientific questions posed.

Acknowledgments

We thank Tim Behrens, David Van Essen, Stamatios Sotir-
opoulos, and Natalie Voets for their helpful comments on the
article. The authors are funded by the Medical Research
Council (S.J.) and the Wellcome Trust (H.J.B.).

Author Disclosure Statement

No competing financial interests exist.

References

Aboitiz F, et al. 1992. Fiber composition of the human corpus cal-
losum. Brain Res 598:143–153.

Aganj I, et al. 2010. Reconstruction of the orientation distribution
function in single- and multiple-shell q-ball imaging within
constant solid angle. Magn Reson Med 64:554–566.

Aganj I, et al. 2011. A Hough transform global probabilistic ap-
proach to multiple-subject diffusion MRI tractography. Med
Image Anal 15:414–425.

Alexander DC. 2008. A general framework for experiment design
in diffusion MRI and its application in measuring direct
tissue-microstructure features. Magn Reson Med 60:439–448.

Alexander DC, Barker GJ. 2005. Optimal imaging parameters for
fiber-orientation estimation in diffusion MRI. Neuroimage
27:357–367.

Andrews TJ, Halpern SD, Purves D. 1997. Correlated size varia-
tions in human visual cortex, lateral geniculate nucleus, and
optic tract. J Neurosci 17:2859–2868.

Anwander A, et al. 2007. Connectivity-based parcellation of Bro-
ca’s area. Cereb Cortex 17:816–825.

Anwander A, et al. DTI-Tractography Based Parcellation of Human
Precentral Gyrus. In 11th Annual Meeting of the Organization
For Human Brain Mapping, Toronto, Canada. 2005.

Assaf Y, et al. 2004. New modeling and experimental framework
to characterize hindered and restricted water diffusion in
brain white matter. Magn Reson Med 52:965–978.

180 JBABDI AND JOHANSEN-BERG



Assaf Y, et al. 2008. AxCaliber: a method for measuring axon di-
ameter distribution from diffusion MRI. Magn Reson Med
59:1347–1354.

Avram AV, Guidon A, Song AW. 2010. Myelin water weighted
diffusion tensor imaging. Neuroimage 53:132–138.

Bach DR, et al. 2011. Deep and superficial amygdala nuclei pro-
jections revealed in vivo by probabilistic tractography. J Neu-
rosci 31:618–623.

Barazany D, Basser PJ, Assaf Y. 2009. In vivo measurement of
axon diameter distribution in the corpus callosum of rat
brain. Brain 132(Pt 5):1210–1220.

Basser P, et al. 2000. In vivo fiber tractography using DT-MRI
data. MRM 44:625–632.

Basser P, Mattiello J, Bihan DL. 1994. Estimation of the effective
self-diffusion tensor from the NMR spin echo. J Magn Reson
103:247–254.

Beckmann M, Johansen-Berg H, Rushworth MF. 2009. Connectivity-
based parcellation of human cingulate cortex and its relation to
functional specialization. J Neurosci 29:1175–1190.

Behrens TE, et al. 2003a. Characterization and propagation of un-
certainty in diffusion-weighted MR imaging. Magn Reson
Med 50:1077–1088.

Behrens TE, et al. 2003b. Non-invasive mapping of connections
between human thalamus and cortex using diffusion imag-
ing. Nat Neurosci 6:750–757.

Behrens TE, et al. 2006. A consistent relationship between local
white matter architecture and functional specialisation in me-
dial frontal cortex. Neuroimage 30:220–227.

Behrens TE, et al. 2007. Probabilistic diffusion tractography with
multiple fibre orientations: what can we gain? Neuroimage
34:144–155.

Behrens TEJ, Jbabdi S. 2009. MR Diffusion Tractography, in Diffu-
sion MRI. San Diego: Academic Press. pp. 333–351.

Berman JI, et al. 2005. Quantitative diffusion tensor MRI fiber
tractography of sensorimotor white matter development in
premature infants. Neuroimage 27:862–871.

Berman JI, et al. 2008. Probabilistic streamline q-ball tractography
using the residual bootstrap. Neuroimage 39:215–222.

Biswal BB, et al. 2010. Toward discovery science of human brain
function. Proc Natl Acad Sci USA 107:4734–4739.

Calamante F, et al. 2010. Track-density imaging (TDI): super-
resolution white matter imaging using whole-brain track-
density mapping. Neuroimage 53:1233–1243.

Calamante F, et al. 2011. Track density imaging (TDI): validation
of super resolution property. Neuroimage 56:1259–1266.

Callaghan PT. 1991. Principles of Nuclear Magnetic Resonance
Microscopy. Oxford: Oxford University Press. p. 371.

Catani M. 2007. From hodology to function. Brain 130(Pt 3):602–605.
Catani M, et al. 2002. Virtual in vivo interactive dissection of

white matter fasciculi in the human brain. Neuroimage
17:77–94.

Catani M, Jones D, Ffytche D. 2005. Perisylvian language net-
works of the human brain. Ann Neurol 57:8–16.

Catani M, Thiebaut de Schotten M. 2008. A diffusion tensor im-
aging tractography atlas for virtual in vivo dissections. Cortex
44:1105–1132.

Ciccarelli O, et al. 2008. Diffusion-based tractography in neuro-
logical disorders: concepts, applications, and future develop-
ments. Lancet Neurol 7:715–727.

Clayden JD, Storkey AJ, Bastin ME. 2007. A probabilistic model-
based approach to consistent white matter tract segmentation.
IEEE Trans Med Imaging 26:1555–1561.

Conturo TE, et al. 1999. Tracking neuronal fiber pathways in the
living human brain. Proc Natl Acad Sci USA 96:10422–10427.

Dauguet J, et al. 2007. Comparison of fiber tracts derived from
in vivo DTI tractography with 3D histological neural tract
tracer reconstruction on a macaque brain. Neuroimage
37:530–538.

Davis SW, et al. 2009. Assessing the effects of age on long white
matter tracts using diffusion tensor tractography. Neuro-
image 46:530–541.

Deoni SC, et al. 2008. Gleaning multicomponent T1 and T2 infor-
mation from steady-state imaging data. Magn Reson Med
60:1372–1387.

Descoteaux M, et al. 2007. Regularized, fast, and robust analytical
Q-ball imaging. Magn Reson Med 58:497–510.

Descoteaux M, et al. 2009. Deterministic and probabilistic trac-
tography based on complex fibre orientation distributions.
IEEE Trans Med Imaging 28:269–286.

Devlin JT, et al. 2006. Reliable identification of the auditory thal-
amus using multi-modal structural analyses. Neuroimage
30:1112–1120.

Dyrby TB, et al. 2007. Validation of in vitro probabilistic tractog-
raphy. Neuroimage 37:1267–1277.

Eluvathingal TJ, et al. 2007. Quantitative diffusion tensor tractog-
raphy of association and projection fibers in normally devel-
oping children and adolescents. Cereb Cortex 17:2760–2768.

Feinberg DA, et al. 2010. Multiplexed echo planar imaging for
sub-second whole brain FMRI and fast diffusion imaging.
PLoS ONE 5:e15710.

Felleman DJ, Van Essen DC. 1991. Distributed hierarchical pro-
cessing in the primate cerebral cortex. Cereb Cortex 1:1–47.

Fillard P, et al. 2011. Quantitative evaluation of 10 tractography
algorithms on a realistic diffusion MR phantom. Neuroimage
56:220–234.

Frey S, et al. 2008. Dissociating the human language pathways
with high angular resolution diffusion fiber tractography.
J Neurosci 28:11435–11444.

Friston K. 2011. Functional and effective connectivity: a review.
Brain Connect 1:13–36.

Gong G, et al. 2005a. Asymmetry analysis of cingulum based on
scale-invariant parameterization by diffusion tensor imaging.
Hum Brain Mapp 24:92–98.

Gong G, et al. 2005b. Side and handedness effects on the cingu-
lum from diffusion tensor imaging. Neuroreport 16:1701–
1705.

Goodlett CB, et al. 2009. Group analysis of DTI fiber tract statis-
tics with application to neurodevelopment. Neuroimage
45(1 Suppl):S133–S142.

Greicius MD, et al. 2009. Resting-state functional connectivity re-
flects structural connectivity in the default mode network.
Cereb Cortex 19:72–78.

Hagmann P, et al. 2007. Mapping human whole-brain structural
networks with diffusion MRI. PLoS ONE 2:e597.

Hagmann P, Gigandet X, Meuli R, Kötter R, Sporns O, Wedeen
VJ. 2008. Quantitative validation of MR tractography using
the CoCoMac database. Magn Reson Med 16:427.

Hasan KM, et al. 2010. Quantification of the spatiotemporal mi-
crostructural organization of the human brain association,
projection and commissural pathways across the lifespan
using diffusion tensor tractography. Brain Struct Funct
214:361–373.

Heidemann RM, et al. 2010. Diffusion imaging in humans at 7T
using readout-segmented EPI and GRAPPA. Magn Reson
Med 64:9–14.

Hess CP, et al. 2006. Q-ball reconstruction of multimodal fiber
orientations using the spherical harmonic basis. Magn
Reson Med 56:104–117.

TRACTOGRAPHY: WHERE DO WE GO FROM HERE? 181



Hilgetag CC, O’Neill MA, Young MP. 2000. Hierarchical organi-
zation of macaque and cat cortical sensory systems explored
with a novel network processor. Philos Trans R Soc Lond B
Biol Sci 355:71–89.

Honey CJ, et al. 2009. Predicting human resting-state functional
connectivity from structural connectivity. Proc Natl Acad
Sci USA 106:2035–2040.

Honey CJ, Thivierge JP, Sporns O. 2010. Can structure predict
function in the human brain? Neuroimage 52:766–776.

Hsu JL, et al. 2010. Microstructural white matter changes in nor-
mal aging: a diffusion tensor imaging study with higher-order
polynomial regression models. Neuroimage 49:32–43.

Huang H. 2010. Structure of the fetal brain: what we are learning
from diffusion tensor imaging. Neuroscientist 16:634–649.

Hubbard PL, et al. 2009. Validation of Tractography, in Diffusion
MRI. San Diego: Academic Press. pp. 353–375.

Jbabdi S. 2009. Imaging Structure and Function, in Diffusion MRI.
San Diego: Academic Press. pp. 461–480.

Jbabdi S, Behrens TE, Smith SM. 2010. Crossing fibres in tract-
based spatial statistics. Neuroimage 49:249–256.

Jbabdi S, et al. 2007. A Bayesian framework for global tractogra-
phy. Neuroimage 37:116–129.

Jbabdi S, et al. 2008. Accurate anisotropic fast marching for
diffusion-based geodesic tractography. Int J Biomed Imaging
2008:320195.

Jeurissen B, et al. 2011. Probabilistic fiber tracking using the resid-
ual bootstrap with constrained spherical deconvolution. Hum
Brain Mapp 32:461–479.

Johansen-Berg H. 2010. Behavioural relevance of variation in
white matter microstructure. Curr Opin Neurol 23:351–358.

Johansen-Berg H, Behrens TE. 2006. Just pretty pictures? What
diffusion tractography can add in clinical neuroscience. Curr
Opin Neurol 19:379–385.

Johansen-Berg H, et al. 2004. Changes in connectivity profiles de-
fine functionally distinct regions in human medial frontal cor-
tex. Proc Natl Acad Sci USA 101:13335–13340.

Johansen-Berg H, et al. 2005. Functional-anatomical validation
and individual variation of diffusion tractography-based seg-
mentation of the human thalamus. Cereb Cortex 15:31–39.

Johansen-Berg H, et al. 2008. Anatomical connectivity of the sub-
genual cingulate region targeted with deep brain stimulation
for treatment-resistant depression. Cereb Cortex 18:1374–
1383.

Jones D. 2010. Challenges and limitations of quantifying brain
connectivity in vivo with diffusion MRI. Imaging Med 2:
341–355.

Jones D, et al. 1999a. Non-invasive assessment of axonal fiber
connectivity in the human brain via diffusion tensor {MRI}.
MRM 42:37–41.

Jones DK, et al. 2006. Age effects on diffusion tensor magnetic
resonance imaging tractography measures of frontal cortex
connections in schizophrenia. Hum Brain Mapp 27:230–238.

Jones DK, Horsfield MA, Simmons A. 1999b. Optimal strategies
for measuring diffusion in anisotropic systems by magnetic
resonance imaging. Magn Reson Med 42:515–525.

Jones DK, Pierpaoli C. 2005. Confidence mapping in diffusion
tensor magnetic resonance imaging tractography using a
bootstrap approach. Magn Reson Med 53:1143–1149.

Kaden E, Anwander A, Knosche TR. 2008. Variational inference
of the fiber orientation density using diffusion MR imaging.
Neuroimage 42:1366–1380.

Kaden E, Knosche TR, Anwander A. 2007. Parametric spherical
deconvolution: inferring anatomical connectivity using diffu-
sion MR imaging. Neuroimage 37:474–488.

Klein JC, et al. 2007. Connectivity-based parcellation of human
cortex using diffusion MRI: establishing reproducibility, val-
idity and observer independence in BA 44/45 and SMA/
pre-SMA. Neuroimage 34:204–211.

Kreher BW, Mader I, Kiselev VG. 2008. Gibbs tracking: a novel
approach for the reconstruction of neuronal pathways.
Magn Reson Med 60:953–963.

Lawes IN, et al. 2008. Atlas-based segmentation of white matter
tracts of the human brain using diffusion tensor tractography
and comparison with classical dissection. Neuroimage 39:62–79.

Lazar M, Alexander AL. 2003. An error analysis of white matter
tractography methods: synthetic diffusion tensor field simula-
tions. Neuroimage 20:1140–1153.

Lebel C, Caverhill-Godkewitsch S, Beaulieu C. 2010. Age-related
regional variations of the corpus callosum identified by diffu-
sion tensor tractography. Neuroimage 52:20–31.

Leergaard TB, et al. 2003. In vivo tracing of major rat brain path-
ways using manganese-enhanced magnetic resonance imag-
ing and three-dimensional digital atlasing. Neuroimage
20:1591–1600.

Lehericy S, et al. 2004a. 3-D diffusion tensor axonal tracking
shows distinct SMA and pre-SMA projections to the human
striatum. Cereb Cortex 14:1302–1309.

Lehericy S, et al. 2004b. Diffusion tensor fiber tracking shows dis-
tinct corticostriatal circuits in humans. Ann Neurol 55:522–529.

MacKay A, et al. 2006. Insights into brain microstructure from the
T2 distribution. Magn Reson Imaging 24:515–525.

Michielse S, et al. 2010. Selective effects of aging on brain white
matter microstructure: a diffusion tensor imaging tractogra-
phy study. Neuroimage 52:1190–1201.

Morris DM, Embleton KV, Parker GJ. 2008. Probabilistic fibre
tracking: differentiation of connections from chance events.
Neuroimage 42:1329–1339.

O’Donnell LJ, Westin CF. 2007. Automatic tractography segmen-
tation using a high-dimensional white matter atlas. IEEE
Trans Med Imaging 26:1562–1575.

O’Donnell LJ, Westin CF, Golby AJ. 2009. Tract-based morphom-
etry for white matter group analysis. Neuroimage 45:832–844.

Pajevic S, Pierpaoli C. 2000. Color schemes to represent the orien-
tation of anisotropic tissues from diffusion tensor data: appli-
cation to white matter fiber tract mapping in the human brain.
Magn Reson Med 43:921.

Parker G, Alexander D. 2005. Probabilistic anatomical connectiv-
ity derived from the microscopic persistent angular structure
of cerebral tissue. Philos Trans R Soc B 360:893–902.

Parker GJ, Alexander DC. 2003. Probabilistic Monte Carlo
based mapping of cerebral connections utilising whole-
brain crossing fibre information. Inf Process Med Imaging
18:684–695.

Parker GJM, Wheeler-Kingshott CAM, Barker GJ. 2002. Estimat-
ing distributed anatomical connectivity using fast marching
methods and diffusion tensor imaging. IEEE Trans Med Imag-
ing 21:505–512.

Passingham RE, Stephan KE, Kotter R. 2002. The anatomical
basis of functional localization in the cortex. Nat Rev Neurosci
3:606–616.

Perrin M, et al. 2005. Validation of q-ball imaging with a diffusion
fibre-crossing phantom on a clinical scanner. Philos Trans R
Soc Lond B Biol Sci 360(1457):881–891.

Poupon C, et al. 2008. New diffusion phantoms dedicated to the
study and validation of high-angular-resolution diffusion im-
aging (HARDI) models. Magn Reson Med 60:1276–1283.

Reisert M, et al. 2011. Global fiber reconstruction becomes prac-
tical. Neuroimage 54:955–962.

182 JBABDI AND JOHANSEN-BERG



Rushworth MF, Behrens TE, Johansen-Berg H. 2006. Connection
patterns distinguish 3 regions of human parietal cortex. Cereb
Cortex 16:1418–1430.

Sala S, et al. 2010. Microstructural changes and atrophy in brain
white matter tracts with aging. Neurobiol Aging [Epub ahead
of print]; DOI: 10.1016/j.neurobiolaging.2010.04.027

Savadjiev P, et al. 2008. Labeling of ambiguous subvoxel fibre
bundle configurations in high angular resolution diffusion
MRI. Neuroimage 41:58–68.

Schmahmann JD, et al. 2007. Association fibre pathways of the
brain: parallel observations from diffusion spectrum imaging
and autoradiography. Brain 130(Pt 3):630–653.

Seunarine KK, et al. 2009. Multiple Fibers: Beyond the Diffusion Ten-
sor, in Diffusion MRI. San Diego: Academic Press. pp. 55–72.

Sherbondy AJ, Rowe MC, Alexander DC. 2011. MicroTrack: an
algorithm for concurrent projectome and microstructure esti-
mation. Med Image Comput Comput Assist Interv 13(Pt 1):
183–190.

Sillery E, et al. 2005. Connectivity of the human periventricular-
periaqueductal gray region. J Neurosurg 103:1030–1034.

Smith SM, et al. 2006. Tract-based spatial statistics: voxelwise
analysis of multi-subject diffusion data. Neuroimage 31:
1487–1505.

Smith SM, et al. 2007. Acquisition and voxelwise analysis of
multi-subject diffusion data with tract-based spatial statistics.
Nat Protoc 2:499–503.

Smith SM, et al. 2011. Network modelling methods for FMRI.
Neuroimage 54:875–891.

Sotiropoulos SN, et al. 2010a. Brain tractography using Q-ball im-
aging and graph theory: improved connectivities through
fibre crossings via a model-based approach. Neuroimage
49:2444–2456.

Sotiropoulos SN, et al. Exact and Analytic Bayesian Inference for
Orientation Distribution Functions. In Biomedical Imaging:
From Nano to Macro, 2010b. IEEE International Symposium,
Rotterdam, The Netherlands, 2010.

Sporns O. 2011. The human connectome: a complex network.
Ann NY Acad Sci 1224:109–125.

Sporns O, Tononi G, Kotter R. 2005. The human connectome: a
structural description of the human brain. PLoS Comput
Biol 1:e42.

Stephan KE, et al. 2009. Tractography-based priors for dynamic
causal models. Neuroimage 47:1628–1638.

Stufflebeam SM, et al. 2008. A non-invasive method to relate the
timing of neural activity to white matter microstructural in-
tegrity. Neuroimage 42:710–716.

Tomassini V, et al. 2007. Diffusion-weighted imaging tractogra-
phy-based parcellation of the human lateral premotor cortex
identifies dorsal and ventral subregions with anatomical
and functional specializations. J Neurosci 27:10259–10269.

Tournier JD, et al. 2004. Direct estimation of the fiber orientation
density function from diffusion-weighted MRI data using
spherical deconvolution. Neuroimage 23:1176–1185.

Tournier JD, Calamante F, Connelly A. 2007. Robust determina-
tion of the fibre orientation distribution in diffusion MRI:
non-negativity constrained super-resolved spherical decon-
volution. Neuroimage 35:1459–1472.

Tournier JD, Mori S, Leemans A. 2011. Diffusion tensor imaging
and beyond. Magn Reson Med 65:1532–1556.

Tuch DS, et al. 2002. High angular resolution diffusion imaging
reveals intravoxel white matter fiber heterogeneity. Magn
Reson Med 48:577–582.

Tuch DS, et al. 2003. Diffusion MRI of complex neural architec-
ture. Neuron 40:885–895.

Wakana S, et al. 2004. Fiber tract-based atlas of human white
matter anatomy. Radiology 230:77–87.

Wedeen VJ, et al. 2005. Mapping complex tissue architecture with
diffusion spectrum magnetic resonance imaging. Magn Reson
Med 54:1377–1386.

Wedeen VJ, et al. 2008. Diffusion spectrum magnetic resonance
imaging (DSI) tractography of crossing fibers. Neuroimage
41:1267–1277.

Yamada K, et al. 2009. MR tractography: a review of its clinical
applications. Magn Reson Med Sci 8:165–174.

Yamada M, et al. 2008. Diffusion-tensor neuronal fiber tractogra-
phy and manganese-enhanced MR imaging of primate visual
pathway in the common marmoset: preliminary results. Radi-
ology 249:855–864.

Yap P, et al. 2011. PopTract: population-based tractography.
IEEE Trans Med Imaging [Epub ahead of print]; DOI:
10.1109/TMI.2011.2154385

Yeh FC, Wedeen VJ, Tseng WY. 2011. Estimation of fiber orienta-
tion and spin density distribution by diffusion deconvolution.
Neuroimage 55:1054–1062.

Yushkevich PA, et al. 2008. Structure-specific statistical mapping
of white matter tracts. Neuroimage 41:448–461.

Zhang H, et al. 2011. Axon diameter mapping in the presence of
orientation dispersion with diffusion MRI. Neuroimage
56:1301–1315.

Address correspondence to:
Saad Jbabdi

University of Oxford
John Radcliffe Hospital

Headley Way
Headington

Oxford OX3 9DU
United Kingdom

E-mail: saad@fmrib.ox.ac.uk

TRACTOGRAPHY: WHERE DO WE GO FROM HERE? 183




