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Abstract

Acid dissociation constants (pKa) are widely measured and studied, most typically in

water. Comparatively few datasets and models for non-aqueous pKa values exist. In

this work, we demonstrate how the pKa in one solvent can be accurately determined

using reference data in another solvent, corrected by solvation energy calculations

from the COSMO-RS method. We benchmark this approach in 10 different solvents,

and find that pKa values calculated in six solvents deviate from experimental data on

average by less than 1 pKa unit. We observe comparable performance on a more

diverse test set including amino acids and drug molecules, with higher error for large

molecules. The model performance in four other solvents is worse, with one MAE

exceeding 3 pKa units; we discuss how such errors arise due to both model error and

inconsistency in obtaining experimental data. Finally, we demonstrate how this tech-

nique can be used to estimate the proton transfer energy between different solvents,

and use this to report a value of the proton's solvation energy in formamide, a quan-

tity that does not have a consensus value in literature.
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1 | INTRODUCTION

The acid dissociation constant, or pKa, is implicated in the behavior of

pharmaceutical drugs in the human body, environmental impact

of molecules, and other applications of chemistry.1–3 In recent years,

several models4–9 and open-source data compilations10–15 have been

developed for aqueous pKa predictions. Such developments in non-

aqueous solvents are comparatively fewer.16,17

In light of the fewer available data, a variety of approaches have

been proposed to calculate non-aqueous pKa values. One approach is

to train a neural network in a single solvent by augmenting the train-

ing set with computed values.18 Another approach involves training a

deep learning model simultaneously across multiple solvents. This

method was used on the iBonD dataset, which includes more than

30,000 pKa data distributed across 46 solvents.17 This approach was

reported to score an overall MAE of 0.89 pKa units, though the errors

associated with specific solvents were higher, with MAEs in DMSO

and acetonitrile respectively exceeding 1.5 and 1.2 pKa units.19 The

full data corpus, although accessible through a website and much

larger than all other non-aqueous pKa compilations, is not available in

a convenient format for data science applications. Therefore, the

potential of further extending machine learning approaches is also

limited by the low availability of open-source experimental data.

One other class of models is to relate the pKa in the desired sol-

vent to a calculable or measurable energy difference. In this way, the

pKa is accessed via a thermodynamic cycle. A variety of relations have

been proposed, relating pKa to computed Gibbs free energies of

dissociation,18,20,21 computed pKa values,22 and experimental pKa

values in the same solvent23 or a reference solvent (typically

water).24–26 In all of these approaches, a linear model is constructed
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wherein empirical linear parameters are calculated. A varying degree

of error is introduced in the choice of regression variable. Using the

pKa of the analyte in water as the regression variable has the benefit

of low data uncertainty, as experimental aqueous pKa values are often

reported to less than 0.2 pKa units.12–15 Therefore, we chose to use

the reference solvent method in this work with water as the reference

solvent.

It is sometimes useful to utilize the thermodynamic cycle of gas-

phase dissociation followed by solvation, shown in Figures 1 and 2.

This formulation links the pKa to the solvation energy of the proton,

which has only been measured in a handful of solvents26,27 but is

required to establish the pH scale in different solvents. For non-

aqueous pKa data, such proton solvation free energies are either

implicitly assumed, or explicitly assigned. For many solvents, this term

can be recovered from the pKa data if treated as a regression parame-

ter. For example, Rossini et al.28,29 estimated the proton's solvation

energy in water, acetonitrile, methanol, and acetone by using a linear

regression comparing computed and experimental pKa values. Then,

they used those proton solvation energies with the reference solvent

method to compute pKa values with RMSDs within 0.8 pKa units.
25 In

their works, the authors used the electrostatic solvation model SOL-

VATE within the MEAD software suite.31,32

F IGURE 1 Thermodynamic cycle for
the dissociation of a neutral acid in
different phases.

F IGURE 2 Thermodynamic cycle for
the dissociation of a cation acid in
different phases.
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In this work, we benchmark a procedure for calculating pKa

values in 10 different solvents by reference to data in water. We use

the conductor-like screening model COSMO-RS, which has previously

been demonstrated to successfully compute pKa values in a handful

of solvents such as acetonitrile20 and acetone.21 We show that

this approach only requires one regression parameter, which can

be used to approximate the proton's solvation energy in each new

solvent. One considerable obstacle in predicting non-aqueous pKa

values is the issue of experimental error. pKa values are often mea-

sured relative to each other and then “anchored” to a reference

value, due to the ambiguity surrounding the solvation free energy

of the proton, as well as experimental considerations especially in

weakly-screening solvents. An important consideration is solvent

purity, in particular water content, which can significantly affect

pKa measurements especially in low-polarity aprotic solvents. The

choice of reference value can lead to significant inconsistencies

among data sources; discrepancies of 3 pKa units, and sometimes

more, are not uncommon.21 Experimental error can also arise if ion

pairing (wherein ions form pairs or clusters, especially in weakly-

screening solvents) and homoconjugation (wherein anions may form

adducts with neutral acids) are not accounted for.33 There is also sys-

tematic error in solvation free energy computations for ionic com-

pounds, which are present in this workflow.34 Hence, model error

must inextricably be considered alongside experimental error, and the

relative contribution of each is not always clear. In this work, we

attempt to correct for these issues by curating experimental data. We

discuss a few examples wherein remaining inconsistencies in experi-

mental data appear to be responsible for significant deviations from

the model predictions, as well as several cases in which the situation

is less clear.

2 | METHODS

2.1 | Dataset selection

We utilized pKa data presented by Busch and collaborators, which

includes a compilation of pKa data from the iBonD dataset.22 From

their data spanning 18 solvents, we chose solvent systems with at

least 10 data points and with representation of both acids and bases,

resulting in a set of 10 solvents. We further modified the dataset by

removing doubly-charged species, and selected only species with both

aqueous and non-aqueous pKa values. The selected compounds are

all small molecules, consisting nearly entirely of substituted benzoic

and phenolic acids, alkyl carboxylic acids, alkylamines, and pyridine

and aniline derivatives.

We then critically curated the data to ensure consistency and

accuracy of the data in all solvents. In acetonitrile, DMSO, DMF,

pyridine, and acetone, we replaced some values from the Busch

collection with trusted values from the literature. More informa-

tion about the data curation can be found in the Supporting

Information.

Table 1 shows the number of data available per solvent.

All solvents include at least 10 data points. Some solvent sys-

tems (acetonitrile, DMSO, and methanol) include more than

45 datapoints and are split roughly half-half between acids and

bases.

2.2 | Calculating pKa in different solvents

The pKa in one solvent is calculated by applying solvent corrections to

pKa data in a reference solvent (water). For acids, this relationship is:

pKa
solvent ¼pKa

ref

þ 1
ln 10ð ÞRT ΔΔG†

solv Hþ� �þΔΔG†
solv A�ð Þ�ΔΔG†

solv AHð Þ� �
,

ð1Þ

and for bases,

pKa
solvent ¼pKa

ref

þ 1
ln 10ð ÞRT ΔΔG†

solv Hþ� ��ΔΔG†
solv BHþ� �þΔΔG†

solv Bð Þ� �
,

ð2Þ

where ΔΔG†
solv Zð Þ�ΔGsolvent

solv Zð Þ�ΔGref
solv Zð Þ. In these equations, RT is

the product of the molar gas constant with temperature. The temper-

ature is assumed to be 298K. ΔGsolv Zð Þ is the solvation energy of a

solute at an arbitrary reference state. A� refers to an anionic base and

AH refers to its protonated conjugate acid. Likewise, BHþ refers to a

cationic acid and B refers to its deprotonated conjugate base. pKsolvent
a

refers to the dissociation constant of a molecule in a non-aqueous sol-

vent of interest (i.e., the solvents in Table 3), and pKref
a refers to the

dissociation of that same species in water. In this work, the † super-

script denotes a reference value of water.

Because ΔΔG†
solv Hþ� �

is not known, we treated the term as a

regression parameter, δ†H, that minimizes the absolute residual of the

fit for each solvent:

TABLE 1 Datapoints per solvent.

Solvent # of acids # of bases

Acetone 15 4

Acetonitrile 20 27

DCE 12 3

DMF 17 5

DMSO 30 24

Ethanol 19 14

Formamide 9 12

Methanol 24 27

Nitromethane 5 17

Pyridine 12 0
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δ†H ¼ argminδ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i

fi δð Þ2
vuut

0
@

1
A, ð4Þ

where i refers to the index of the neutral form of the acid or base

under consideration, N is the number of datapoints per solvent, δ is a

proxy estimate for the proton transfer energy, and fi δð Þ is the loss

function that corresponds to the optimal δ†H when minimized. In Equa-

tion (3), the pKa terms are experimental values, whereas the ΔΔGsolv

terms are computed using COSMO-RS.

One advantage to this method is that it does not require any

assumption of the absolute reference solvation energy ΔGref
solv Hþ� �

,

which is prone to significant error. Additionally, the solvation terms

are likely to include cancellation of model error, as one pKa calculation

involves energy differences between different solvents (in each

ΔΔGsolv term) and also within the same solvent (by taking the differ-

ence of solvation energies between the acid and its conjugate base).

Each ΔΔGsolv term describes the partitioning of the solutes

between different phases—this energy difference is also termed

the transfer free energy, and is directly proportional to log(P). The

COSMO-RS method has been previously benchmarked against the

SAMPL challenges for log(P) of small neutral drug-like molecules, with

root mean squared deviations of around 0.7 pKa units overall, and

with model performance depending on the solvent.36,37 One such

study observed higher errors for log(D), which accounts for ioniza-

tion.38 The SM8 implicit solvation model has been evaluated on log(P)

for organic solutes between water and other solvents, with mean

unsigned errors reported to exceed 3 log units.39,40 Given the high

uncertainty in computing transfer free energies, particularly for ionic

solutes, the accuracy of this method is dependent on the degree of

error cancellation.

If pKa data for a compound is available in multiple solvents, it is

possible to compute the pKa using an ensemble of reference values

rather than using a single reference. The fitting procedure can also be

done simultaneously with multiple references utilizing all available

data for a given solvent (see Supporting Information).

2.3 | QM details

A large set of initial conformers of each molecule was constructed

using CREST41 with GFN2-xTB version 6.6.042 using the analytical lin-

earized Poisson-Boltzmann (ALPB) model43 with water as the

solvent. The 20 lowest-energy conformers for each species were

re-optimized using TURBOMOLE v7.744 at the BP8645,46/def2-TZVP47

level of theory with the COSMO model at the conductor limit (ϵ¼∞).

These 20 conformers were further filtered by pruning conformer

geometries based on dihedral angles, removing conformers that

matched dihedral angles with a maximum absolute deviation less than

10 degrees and a root mean square deviation within 20 degrees. The

conformers were also screened using the Python package RDMC48 to

ensure that their 3D geometries correspond to their molecular graphs.

The σ-profiles and single-point gas-phase energies of the remaining

optimized conformers were then calculated using TURBOMOLE at

the BP-TZVPD-FINE level. COSMO-RS was then used to calculate

the solvation energies at 298K via COSMOtherm 2023.49,50

Optimized geometries were then manually inspected to ensure

that they converged to reasonable structures. Geometries for all spe-

cies were constructed independently using this approach

(i.e., optimized conformers for neutral species were not used to gener-

ate initial geometries for ionic conjugate acids/bases). The optimized

geometries are included in the SI.

3 | RESULTS

3.1 | Evaluation of model on parameterization data

The pKa of acids and bases in six solvents (acetonitrile, DMF, DMSO,

ethanol, formamide, and methanol) were calculated to MAEs within 1

pKa unit (Figure 3). Model errors were higher in acetone, nitrometh-

ane, pyridine, and dichloroethane. A summary of the error statistics is

shown in Table 2. The six best-performing solvents all include R2

values exceeding 0.9, MAEs less than 1 pKa unit, and RMSEs less than

1.3 pKa units. The best performance was seen in formamide, with an

RMSE of 0.39 pKa units.

The four worst-performing solvents fared worse in every metric,

reflecting both worse agreement for the majority of predictions and

the presence of more numerous outliers. The results for these four

solvents, along with reasons for the high error, are described later in

this manuscript.

3.2 | Evaluation of model on external test data

For each of the six solvents shown in Figure 3, we obtained additional

experimental pKa data, filtering out any data that were used to fit the

δ†H parameters.

fi δð Þ¼
pKref

ai
�pKsolvent

ai
þ 1
ln 10ð ÞRT δ�ΔΔGsolv BHþ

i

� �þΔΔGsolv Bið Þ� �
pKai ¼basic

pKref
ai

�pKsolvent
ai

þ 1
ln 10ð ÞRT δ�ΔΔGsolv A�

j

� �
þΔΔGsolv AHið Þ

� �
pKai ¼ acidic

,

8>><
>>:

ð3Þ
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3.3 | Description of test data

Data were selected from seven sources:

• Zevatskii (2009):51 Various small acids and bases: 11 in water, six

in methanol, seven in ethanol, and 11 in formamide.

• Cantu (2005):52 Four basic drug molecules and their pKa values in

water, methanol, and acetonitrile.

• Sirén (2005):53 Five acidic neurotransmitter derivatives and 12

basic β-blocker drugs with pKa values in water and methanol.

• Headley (1994):54 Eight simple carboxylic acids with values in

water, methanol, and ethanol.

• Ludwig (1986):55 Benzoic acid derivatives and their pKa values: 27

in water, 26 in methanol, 27 in ethanol, 27 in DMF, and 25 in

acetonitrile.

• Hughes (1986):56 Amino acids and two basic small molecules, total-

ing six values in water and 9 in DMSO. The remaining entries with-

out aqueous data were supplemented by aqueous pKa values from

the IUPAC Digitized pKa Dataset.11

• Ogston (1935):57 Three amino acids and one small molecule, in

water and methanol, and one amino acid in methanol.

There were two cases in which different values were available

from two sources. The maximum difference in pKa was 0.4 pKa units,

so we used the average of their values in these two cases. We then

further curated the data as was done for the parameterization set

(see SI).

The test compounds include small acids and bases, much like

the set of compounds used for parameterization, but also includes

drug molecules with many rotatable bonds as well as amino acids,

which we represent in their zwitterionic form in the QM calcula-

tions. Figure 4 shows the number of rotatable bonds for the mole-

cules in the test set; all but one of the small molecules have fewer

than four, whereas nearly all of the basic drug molecules have four

or greater.

F IGURE 3 pKa values calculated relative to a reference pKa, for the six solvents with MAEs less than 1 pKa unit. Blue circles refer to acidic
pKa (involving anions) and orange triangles to basic pKa (involving cations). The RMSE and MAE are shown in pKa units, and the corresponding δH
in kcal mol�1.

TABLE 2 Error Statistics of δ†H and pKa.

Solvent δ†H (kcalmol�1) RMSE MAE R2

Acetonitrile 10.1 1.16 0.72 0.94

DMF �6.9 1.18 0.90 0.92

DMSO �6.1 1.26 0.95 0.96

Ethanol �1.5 1.00 0.87 0.93

Formamide �1.6 0.39 0.34 0.98

Methanol �0.2 0.81 0.70 0.93

Acetone 1.3 2.18 1.88 0.77

Nitromethane 9.4 2.37 1.96 0.67

DCE 9.5 3.98 3.51 0.32

Pyridine �13.6 2.12 1.43 0.43
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Using the same modeling methodology as described previously,

and using the shift parameters obtained from the previous fitting

(Table 2), we computed the pKa values and compared them to the

literature data.

3.3.1 | Test results

Figure 5 shows the parity between our predictions and the test data.

The predicted pKa values show satisfactory agreement in most

F IGURE 4 Distribution of the number
of rotors in the test sets, demarcated by
the class of molecule. The small molecule
with the large number of rotors is
tributylamine.

F IGURE 5 Test of pKa values calculated relative to their experimental data, for the six solvents depicted in Figure 3. The MAE and RMSE are
shown in pKa units.
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solvents, especially for small molecules. In fact, for solvents with only

small molecules tested, we observed RMSEs of less than 1.1 pKa unit.

The best performance was in formamide, with an RMSE of 0.72 pKa

units. Also, in DMF, formamide, and DMSO, the pKa values come from

only one source, which further minimizes the chance of systematic

error from different acidity scales within the same solvent (such sys-

tematic error can be quite significant, on the order of several kcal

mol�1, and is discussed later). Hence, the remaining uncertainty is due

to the quantum chemical calculations as well as any inherent aleatoric

uncertainty in the reference data.

We focus here on a few outliers. First, in acetonitrile and

methanol, several basic drug molecules showed a significant under-

prediction compared to the acids, which were generally overpre-

dicted. This follows a pattern seen in Figure 3, where the same

behavior was generally seen for acids and bases, albeit to a lesser

extent. Similarly, in ethanol, there was a large underprediction in

the pKa of tribuytlamine, which has a large number of conformers

(the rightmost bar in the small molecule section of Figure 4). Hence,

the molecules with the largest number of rotors tended to have much

larger errors using this method. Note that in our computational work-

flow, we limited the number of conformers in the COSMO-RS calcula-

tion to 20 or fewer, as finding numerous thermodynamically

significant conformers for very large molecules is a time-expensive

task. However, it is not clear whether conformer effects are primarily

responsible for these errors, as experimental inconsistencies,

COSMO-RS limitations based on theory or parameterization, and

incomplete sets of conformers are all implicated in systematic error.

Future work should elucidate the effect of conformers on the efficacy

of this method.

Despite the underprediction of pKa values for large molecules, we

observed generally good agreement between our calculations and the

reference data, including for zwitterionic amino acids and neurotrans-

mitter derivative molecules. We thereby recommend using this

method to determine acidities and basicities of small organic mole-

cules and amino acids in acetonitrile, DMF, DMSO, ethanol, formam-

ide, and methanol.

3.4 | Sources of error

As discussed previously, this method was also used to parameterize

acetone, nitromethane, DCE, and pyridine, but the model agreement

was observed to be worse. Figure 6 shows the poor quality of the

model predictions during the parameterization step.

This occurs in some part due to inconsistencies in experimental

data. pKa data in non-aqueous solvents are prone to systematic errors;

they can deviate due to inconsistent calibration methods, as pKa

values in a solvent are typically measured with reference to each

other and then anchored to an absolute scale. Another potential

source of error comes from the solvation model, which previous work

has shown can systematically differ in solvation free energies by sev-

eral kcal mol�1 based on the ionization center.34 Although we curated

the data to reduce the occurrence of data-sourced errors, it is possible

that several errors are still present. Furthermore, there are experimen-

tal considerations such as ion pairing, which occurs in low-polarity sol-

vents such as pyridine and DCE, and may further contribute to

error.33 On the basis of our data curation, we labeled the experimental

data in nitromethane and DCE as unreliable, but still include our

F IGURE 6 pKa values
calculated relative to a reference
pKa, for the four solvents with
MAEs greater than 1 pKa unit.
The RMSE and MAE are shown in
pKa units, and the corresponding
δH in kcal mol�1. Data are colored
by functional site of the ionization
center.
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predictions herein in the absence of more reliable values for demon-

strative purposes. For a more rigorous discussion of the data curation,

we refer readers to the SI.

3.4.1 | Experimental data for nitromethane

We observed that carboxylic acid pKa values were overpredicted

compared to the amine and phenol values (Figure 6).

The carboxylic acids are benzoic acid derivatives from the same

single source, anchored to the pKa value of 10.5 for picric acid. The

pKa used in this work for benzoic acid is 17.7356 and for picric acid

(the only phenol in this solvent) the pKa was 10.5.59 However, values

reported elsewhere on the same acidity scale have included 13.2 for

benzoic acid and 7.94 for picric acid.60,61 The high deviations for car-

boxylic acids therefore cannot be immediately explained.

The amine values are anchored to a pKa of 17.2 for 1,3-diphenyl-

guanidine. This is possibly a different scale than the one for the acids.

The Izutsu pKa compilation16 reports values of 13.2 for benzoic acid

when anchored to this value of 17.2 for the amines; but the value for

benzoic acid used in our work was 17.73, which would imply that the

benzoic acids are systematically misaligned from amines by 4.5 pKa

units. This is approximately the same amount by which acidic carbox-

ylic acids were overpredicted in Figure 6. Therefore, we expect that

anchoring the experimental data to the same scale in nitromethane

would improve the performance of the COSMO-RS method.

Even if the acidity scales were to be aligned, the nitromethane

data still overall remain questionable, as the shift parameters esti-

mated herein are vastly different from estimates obtained from com-

parisons of transfer energies from water to nitromethane and from

water to acetonitrile (see SI). Hence, we assess the nitromethane pKa

data in general to be highly unreliable and do not recommend its

usage.

3.4.2 | Experimental data for DCE

In DCE, generally poor agreement was observed, with amines signifi-

cantly underpredicted compared to carboxylic acids. The pKa values

for the carboxylic acids and picric acid come from the same collection

of papers62–66 (except for acetic acid at pH=29.2, the outlier on the

right of Figure 6), and are anchored to the pKa of hydriodic acid=7.9

(corresponding to pKa of picric acid=13.7). The pKa values for the

three bases are also anchored to the same value.67 Therefore, most of

the data in DCE is aligned. We could not determine the sources for

the other two phenols and for acetic acid.

Note, further, that theoretical values for the dissociation of picric

acid have been reported to be as high as 45.0, if the experiment is

done with a completely pure and dry sample, which would strongly

disagree with the scale followed by all other values herein.33

In summary, the data appear to be almost, if not fully, anchored

to the same scale. Therefore, the issue of consistent anchor values

cannot solely explain the poor model performance. DCE is known to

be a solvent with considerable experimental challenges including ion

pairing, and therefore, we consider this set of data to also be

unreliable.

3.4.3 | Model error

An unfortunate limitation of this method is that experimental data

and model error cannot be decoupled. Therefore, there also remains

the possibility that error from the solvation model (e.g., limitations of

modeling ions, insufficient sampling of conformers) is a significant

contributor to error. Previous work34,68 has shown that COSMO-RS

predictions of ionic solvation energies deviate from experimental pre-

dictions by an offset that is systematically too high for cations and too

low for anions. A single parameter added to the model predictions

(with a different sign depending on the ion's charge) accounted for

most of that offset. However, it is not clear how much of the offset

arises from uncertainty in anchoring the proton's solvation energy

versus from model accuracy. Because the value of that optimal param-

eter changes significantly depending on the model type, we believe it

possible that a portion of the systematic deviation is from model error.

In Equations (1) and (2), the difference in anion solvation energies

between two solvents is added while the difference for cations is sub-

tracted; so, any such oppositely-signed systematic model error would

manifest as a systematic offset in δ†H as well. Previous work has also

shown that there is systematic error based on the functional group at

the ionization center; this may contribute to the poor prediction qual-

ity in some of the solvents that appear to be dependent on the type

of acid.34

We emphasize here that our workflow lumps together model

error with experimental error. This has two important conse-

quences: (1) unambiguously discerning the cause of outliers is diffi-

cult, if not impossible, and (2) values of δ†H may not be understood

as accurate, empirical determinations of ΔΔG†
solv Hþ� �

but rather as

estimates. Recovering a reliable value of the proton transfer

energy based on δ†H implies that ΔΔGsolv BHþ
i

� �
and ΔΔGsolv A�

i

� �

computed using COSMO-RS have negligible systematic error, and

all experimental pKa data are anchored to consistent anchor

values, both internally (i.e., the same acidity scale for all com-

pounds in a single solvent) and among solvents (i.e., the chosen

anchor value for each solvent is based off of sensible extrather-

modynamic assumptions, whether implicitly or explicitly). These

assumptions are certainly not perfectly valid, so to probe the

strength of them, we compare our computed values of δ†H to pro-

ton transfer energies derived using separate extrathermodynamic

assumptions.

3.5 | Comparison of δ†H to proton transfer energies
in literature

We compared our computed values of δ†H to experimental values of

ΔΔG†
solv Hþ� �

from water. In the most ideal case, the values of δ†H

8 of 11 ZHENG ET AL.



should exactly equal the difference in solvation energies of the proton

(ΔΔG†
solv Hþ� �

). However, this is complicated by the fact that any sys-

tematic error in COSMO-RS corrections will also contribute to δ†H, as

will any systematic errors in pKa reference data. Furthermore, the

choice of anchor value in non-aqueous solvents is based on consis-

tency with extrathermodynamic assumptions. Hence, any proton

transfer energy that is recovered from this approach will agree most

strongly with the value corresponding to the extrathermodynamic

assumption used to anchor the scale. That said, comparing our com-

puted values to proton transfer energies reported in the literature

could at least provide a loose estimate for how much of the term δ†H
originates from correcting for the proton solvation energies versus

from systematic error.

Most efforts in the literature are concentrated around just a

few solvents, limiting the scope of our comparison.69 Additionally,

depending on the extrathermodynamic assumption invoked in fix-

ing the energy scale, different values derived from experiments have

been reported for each solvent.40 Values have been reported using the

tetraphenylarsonium-tetraphenylborate (TATB) assumption,70,71 the

cluster-pair approximation (CPA),27,28,72,73 and by comparing experi-

mental and computed pKa values (Rossini and this work).24,26,29,30 We

refer interested readers to the corresponding references for more

information about these approaches.

Table 3 shows that our δ†H parameters showed general agreement

with experimental transfer energies of the proton in several solvents.

There is no single method or solvent that agrees perfectly with our

values; for instance, our values for acetonitrile and methanol agree

well with the Rossini values, but disagree with the transfer energy

reported in DMSO. The ordering of very positive values (acetonitrile)

and very negative values (DMSO, DMF) are in agreement across all

methods, while the intermediate values show considerably greater

deviation.

The Rossini estimates were derived using a similar approach to

the one presented herein, but were computed by adding solvation

energy corrections to quantum-chemical calculations rather than to

reference pKa values. Our estimates for δ†H appeared to match closely

with Rossini's estimates except for in the case of DMSO, in which

case our estimates match the TATB and CPA estimates far more

closely. Values for ethanol and DMF could only be compared to ener-

gies obtained from the TATB assumption. These estimates were also

comparatively worse than those in other solvents, with differences of

4.2 kcalmol�1 for ethanol and 3.5 kcalmol�1 for DMF compared to

estimates using the TATB assumption. Though there are substantial

deviations among the estimates for proton transfer energies, our com-

puted values of δ†H roughly agree with the proton transfer energies

estimated in the literature. These results suggest that the δ†H regres-

sion parameter generally captures the proton transfer energy, and can

be used to approximate such energies in solvents where other esti-

mates are unavailable.

Because we observed a good quality fit for δ†H and good test per-

formance in formamide, we assign an estimate of the proton transfer

energy from water to formamide as �1:6 kcal mol�1.

To our knowledge, there is no consensus value for the proton's

transfer energy in formamide for any given extrathermodynamic

assumption. Values reported in the IUPAC compilation of transfer

free energies from water include 1.0, �3.3, �4.1, and

�1.7 kcal mol�1, which on average satisfatorically agree with the

value we report herein; however, these values were considered

“unsatisfactory”, and do not reflect a consensus value.74 The trans-

fer energy reported above should be considered as an estimate, not

a definitive value, and reflect the underlying assumptions used to

construct the pH scale in the reference data. We further advise

against using the δ†H obtained in this work to estimate proton transfer

energies for acetone, nitromethane, pyridine, and DCE, as in these sol-

vents, our linear regression was unable to determine the fitting param-

eters satisfactorily.

4 | CONCLUSION

We have discussed how experimental acid dissociation constants in

one solvent can be combined with COSMO-RS solvation energy cal-

culations to compute the pKa in a different solvent. This technique

requires an estimate of the proton's solvation energy in each solvent,

and in this work we propose a way to estimate the needed proton

transfer energies via regression. Our computed proton transfer ener-

gies are in rough agreement with other estimates in the literature.

During parameterization, we observed residuals within 1 pKa unit of

MAE for 6 solvents using this method. Errors are larger for 4 other

solvents—in those cases, a large portion of error is likely due to poor

data quality. Further, we tested this method to predict the acidities

and basicities of an external set of compounds in acetonitrile, DMF,

DMSO, ethanol, formamide, and methanol. We observed generally

good agreement, with MAE <1.1 pKa unit in all of those six solvents.

The pKa values of small molecules were predicted particularly accu-

rately, but values for bases with large numbers of rotatable bonds

were consistently underpredicted by several pKa units. One potential

reason is that the computational workflow used herein restricted the

number of conformers in the COSMO-RS method to 20 or fewer;

however, it is difficult to disentangle conformer effects from uncer-

tainty due to experimental error and limitations of the implicit solva-

tion model method. In addition, it is possible that performing the

conformer search in only the aqueous phase instead of other solvents

TABLE 3 Comparison of δ†H to consensus proton transfer energies
derived from experiment (kcal mol�1).

Solvent δ†H

ΔΔG†
solv Hþ� �

(TATB)35 (CPA)27 (Rossini)29,30

Acetonitrile 10.1 10.7 5.7 10.8

DMSO �6.1 �4.6 �7.4 �0.5

Ethanol �1.5 2.7 – –

Methanol �0.2 2.1 2.4 0.0

DMF �6.9 �3.4 – –

Formamide �1.6 – – –
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may affect prediction accuracy. The potential for conformer search in

different solvents to affect computed solvation free energies has been

observed in previous work for neutral solutes,75 and is not yet well-

understood for ionic solutes. Future work should investigate the

extent of these effects for pKa prediction, particularly in the four sol-

vents that were identified to have poor performance.

We also used this method to estimate the transfer free

energy of the proton from water to formamide. We emphasize

that the proton transfer free energy is implicitly or explicitly

assumed when establishing the pH scale in non-aqueous sol-

vents, and thus depends entirely on the anchor values used in

anchoring the acidity scales. One disadvantage to this method is

that at least one reference pKa is required for each desired sol-

vent system. Furthermore, potentially time-expensive QM calcu-

lations are required to generate the conformers used in the

COSMO-RS calculation, especially for very large molecules. How-

ever, we are optimistic that ongoing advances in data availability

and processing power will reduce the impact of these obstacles.

Because the method described herein relies only on calculations

of solvation free energies, any solvation model that can consider

ionic solutes can be used. Future efforts should investigate the

performance of this method when employing other solvation

models, such as the implicit Minnesota SMx models76–78 or

cluster-continuum solvation methods.79

A key challenge for using this approach is the lack of high-quality

reference data in many solvents. We hope that large datasets of dis-

sociation constants in diverse solvent systems with unified acidity

scales will become available, enabling the computation of useful ther-

mochemical properties in more solvents. One other barrier is the lack

of consensus around the use of extrathermodynamic assumptions in

accurately determining proton solvation energies. We hope that

future research can glean insight into the merits of the different extra-

thermodynamic assumptions and their effects in anchoring energy

scales.
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