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ABSTRACT
The magnetic nature of nonalternant hydrocarbon (Azulene) bridged nitronyl nitroxide (AzNN2) and imino-nitroxide (AzIN2) 
diradicals are investigated with 38 different DFT functionals to find out a correct functional to predict the magnetic nature of 
these diradicals. The effect of Hartree–Fock exchange (HFX) in the hybrid functionals are investigated for the prediction of 
magnetic nature of the nonalternant hydrocarbon bridged diradicals. The utility of Borden and Davidson's proposal of disjoint 
and nondisjoint SOMOs for the prediction of magnetic nature of alternant hydrocarbon bridged diradicals is assessed for the non-
alternant hydrocarbon based diradicals. The more affordable meta-GGA functionals was found to be outperforming the costlier 
hybrid and double-hybrid functionals in predicting the magnetic properties of nonalternant hydrocarbon-bridged diradicals. 
HFX significantly influences a functional's ability to predict a diradical's magnetic nature. Interestingly, Borden and Davidson's 
concept of disjoint and nondisjoint SOMOs, which is used to predict the magnetic behavior of alternant hydrocarbon diradicals, 
is reversed for nonalternant hydrocarbon-bridged diradicals. The difference in the magnetic nature of the two diradicals come 
from the canonical molecular orbitals of the diradicals, one has set of disjoint SOMOs and other has nondisjoint SOMOs.

1   |   Introduction

Magnetic exchange coupling between organic radicals through 
alternant π-systems has been extensively studied experimen-
tally [1–4] and theoretically [5–18]. The existing theoretical 
model is adequate to explain the magnetic nature of the di-
radical systems of alternant hydrocarbons. For the theoret-
ical prediction of the magnetic nature of molecules, density 
functional theory (DFT) is widely applied. The DFT results of 
magnetic interaction of diradical systems with alternating hy-
drocarbons are compared with the experimental results, and 
the results of ab initio methods such as CASSCF, CASPT2, and 
NEVPT2. Nonalternant hydrocarbons show strange physical 

and chemical properties [19–21], such as the breakdown of the 
interference rule [19]. Azulene (Az) is an aromatic hydrocarbon 
with a nonalternating double bond in its ground state, antiaro-
matic in the first excited state and again aromatic in the second 
excited state [22]. It has a five-membered, electron-rich ring and 
a seven-membered, electron-deprived ring, which enables Az to 
provide intrinsic redox activity [23].

On the other hand, diradical systems of nonalternant hydro-
carbons are less explored experimentally and theoretically [3]. 
Hewitt et  al. [2] synthesized nonalternant hydrocarbon-based 
diradicals. The inference of their work is that Az-bridged diradi-
cals do not follow the rule of magnetic interaction like alternant 
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hydrocarbon bridged diradicals [3, 24–26]. Haraguchi and co-
workers [3] synthesized nonalternant hydrocarbon (azulene)-
based bis-nitronyl nitroxide and bis-imino nitroxide diradicals. 
Surprisingly, they found that bis-nitronyl nitroxide diradicals 
show intramolecular ferromagnetic interactions, whereas bis-
imino nitroxide diradicals show intramolecular antiferromag-
netic interactions. This behavior is quite surprising because 
both diradicals have the same number of atoms between radical 
centers. In their study, they found that the hybrid density func-
tionals could not predict the experimental results of magnetic 
interaction for bis-imino nitroxide diradicals but correctly pre-
dicted the magnetic nature of bis-nitronyl nitroxide diradicals, 
and used the experimental geometry to calculate the magnetic 
exchange coupling constant.

The presence of HF exchange (HFX) in DFT functionals plays 
a crucial role to calculate molecular properties. Calculation of 
magnetic exchange coupling constant with DFT depends on the 
percentage of HFX in the functional. It has been shown that ap-
proximately 15% HFX hybrid functionals give most accurate re-
sults [27]. By keeping this point in mind, we have calculated the 
magnetic exchange coupling constant with hybrid DFT func-
tionals with varying HFX in the functionals. Cho et al. [28] stud-
ied the effect of HFX on the calculation of magnetic exchange 
coupling constant and they found that the low value of HFX is 
better to produce experimental findings.

In this work we chose Az-bridged nitronyl nitroxide (NN) and 
imino nitroxide (IN) diradicals (Figure  1), which were exper-
imentally synthesized, and the magnetic exchange coupling 
constant was measured experimentally [3]. The objective of 
this work is two fold: (i) finding an appropriate density func-
tionals that can correctly predict the magnetic nature of non-
alternant hydrocarbon bridged diradicals and (ii) determine 
why Az-bridged NN and IN diradicals show opposite magnetic 
natures in contrast to aromatic alternant hydrocarbon bridged 
diradicals.

2   |   Theoretical and Computational Details

We optimized all the molecular structures in their high spin 
state using all 38 functionals taken in this work in combination 

with the def2-TZVP basis set. We use the Yamaguchi [29] for-
mula for the evaluation of the magnetic exchange coupling con-
stant J for all the systems, depicted as:

where EBS and EHS and 
⟨
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average spin square values of the BS states and their corre-
sponding high-spin states, respectively. Positive and negative 
values of J correspond to ferromagnetic and antiferromagnetic 
coupling, respectively. To confirm the BS solutions of the wave 
functions we have checked the spin square values of the triplet 
and BS state with all the functionals given in the Supporting 
Information. To test the consistency of the J values we have 
calculated it with spin unprojected formulae given in the 
Supporting Information.

All calculations were performed using spin-unrestricted KS-
DFT employing the ORCA 5.0.1 program package [30]. The visu-
alization of molecular structure, molecular orbitals and so forth, 
has been carried out using Avogadro software [31].

3   |   Results and Discussion

DFT functionals from across the Jacob's ladder has been chosen 
to test the predictive power of each functional for the magnetic 
exchange coupling constant of nonalternant hydrocarbon (azu-
lene) bridged diradicals. At the same time, we focused on the hy-
brid DFT functionals as these functionals are known to be good 
for magnetic property prediction. The % of HFX in different hy-
brid functionals are tested and tried to understand the effect on 
the magnetic exchange coupling constant of the diradicals under 
study. Another debatable argument for testing performance of dif-
ferent methodology whether we should calculate a desired prop-
erty on same geometry or optimize the geometry in each method. 
In our earlier works [32, 33], we optimized all the geometries using 
various functionals, arguing that for a new molecule without ex-
perimental geometry, it is essential to first determine the geom-
etry before predicting its properties. If we calculate on the same 
geometry and perform property calculation, then there is no point 
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FIGURE 1    |    Azulene bridged imino nitroxide (AzIN2) and nitronyl nitroxide (AzNN2) diradicals.
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of testing the validity of the methods. In that case we obtain the ge-
ometries from different methods and then calculate the properties. 
Here, in this study we follow both the methodology (i) optimize the 
geometry in each functionals and then calculate the magnetic ex-
change coupling constant with the same functionals and (ii) calcu-
lation of magnetic exchange coupling constant on same geometry.

3.1   |   Efficiency of Local and Gradient Corrected 
Functionals

In the local spin density (LSD) approximation, the exchange cor-
relation functional can be defined as.

where n(↑)(r) and n(↓)(r) are the electron spin densities and �unif
XC

 is 
the exchange correlation energy per particle of a uniform elec-
tron gas.

When n = n↑ + n↓, is the generalized gradient approximation 
(GGA) exchange correlation functional can be expressed as [34, 35].

GGA has several advantages over LSD in terms of total energy 
calculation, atomization energies, energy barriers and structural 
energy differences [34, 36–41] The GGA functionals account for 
the realistic fact that a molecule's electron density is not spatially 
uniform.

In Table  1, we present the computed magnetic exchange cou-
pling constants for AzIN2 and AzNN2 using 11 different local 
and gradient-corrected functionals. The data in Table 1 reveals 
that all the functionals consistently yield accurate results for 
antiferromagnetically coupled AzIN2 diradicals. However, for 
ferromagnetically coupled AzNN2 diradicals, the functionals 
provide divergent predictions. These findings suggest that local 
functionals show promise in predicting the behavior of antifer-
romagnetically coupled diradicals that are linked through Az, 
a nonalternant hydrocarbon. LSD and GGA functionals has no 
admixture of HFX part in them, which is required to capture the 
exchange interaction in ferromagnetic complexes. The lack of 
HFX in the LSD and GGA is one of the reasons not to correctly 
predict the ferromagnetic interaction. Calculation of magnetic 
exchange coupling constant on optimized geometry of each 
functional and on the B3LYP optimized geometry gives similar 
qualitative results (Table 1).

3.2   |   Efficiency of Meta GGA Functionals

Meta GGA functionals take into account the local kinetic energy 
density, which enables them to be more accurate than GGAs. 
The general form of the meta-GGA functional can be written as.

where,

is the kinetic energy density for the occupied Kohn–Sham or-
bitals � i�(r), which are nonlocal functionals of the density n�(r).

We can see from Table 1 that the revTPSS functional predicts 
the correct sign of the magnetic exchange coupling constant for 
antiferromagnetic diradicals on B3LYP geometry as well as on 
optimized structure. Whereas TPSS and M06L predicts the cor-
rect sign of magnetic interaction of ferromagnetic and antifer-
romagnetic diradicals when optimized in each functionals. The 
unexpected correctness of M06L functional does not come from 
a well-suited exchange or correlation part of the functional. 
Instead, it is believed to arise from a fortuitous cancellation of 
errors [42]. Meta-GGA functional contains nonlocal part in the 
form of kinetic energy density which makes them superior to 
the GGA. This added correction over GGA enables meta-GGA 
functional to predict the sign of ferromagnetic interaction in 
the diradicals. However, the single point calculation on B3LYP 
geometry gives inconsistent results for ferromagnetic diradicals 
except M06L functional.

3.3   |   Efficiency of Hybrid Functionals

Hybrid functionals are the most successful for the calculation 
of the magnetic exchange coupling constant of the organic di-
radical, especially the B3LYP functional. The general form of a 
hybrid DFT functional can be expressed as [41].

where a0, aX, and aC are semiempirical coefficients to be de-
termined  by an appropriate fit to experimental data, EexactX  is 
the exact exchange energy, ΔEB88X  is Becke's 1988 gradient cor-
rection (to the LSDA) for exchange [43], and ΔEPW91

C  is the 1991 
gradient correction for the correlation of Perdew and Wang 
[36, 44].

In Table  1, the magnetic exchange coupling constants of the 
Az-coupled diradicals with all the functionals are listed. All 
the hybrid functionals predict qualitatively correct results for 
ferromagnetically coupled diradicals, whereas they give oppo-
site results for antiferromagnetically coupled diradicals. This 
is because hybrid functionals are biased to the high spin state. 
Among the four hybrid functionals, the BHANDHLYP func-
tional abruptly overestimates the coupling constant for the ferro-
magnetically coupled diradical. The hybrid functionals contains 
HFX part in them from 10% to 100% which makes them enable 
to predict ferromagnetic interaction correctly however, disabled 
them to predict the correct antiferromagnetic interactions. Fine 
tuning of the HFX in them could have enabled them to predict 
the ferro and antiferromagnetism both accurately. All the hybrid 
functionals gives inconsistent results for antiferromagnetic di-
radical with both of the methods single point and optimization 
of geometry.
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TABLE 1    |    The magnetic exchange coupling constant of the diradicals with all the functional and def2-TZVP basis sets.

Systems

Single point on B3LYP optimized geometry Optimized in each functional

AzIN2 AzNN2 AzIN2 AzNN2

J (cm−1)

Experiment −3.06 (−4.4 K) 6.95 (10 K) −3.06 (−4.4 K) 6.95 (10 K)

Local and gradient corrected functionals

HFS −1.63 −3.52 −2.28 −3.02

LSD −1.15 −2.87 −0.82 −3.84

VWN5 −0.90 −3.41 −0.84 −3.84

VWN3 −0.75 −3.06 −0.57 −3.80

PWLDA −1.15 −2.86 −0.78 −3.87

BP86 −0.99 −2.11 −1.16 −2.29

PBE −1.03 −2.33 −1.04 −2.39

RPBE −1.04 −1.69 −0.58 −1.89

PW91 −1.11 −2.37 −1.07 −2.45

mPWPW −1.01 −2.10 −0.97 −2.24

Meta-GGA functionals

TPSS −0.55 −0.28 −1.52 0.01

M06L 0.24 2.53 −0.59 0.24

revTPSS −0.58 −0.52 −1.46 −0.69

Hybrid functionals

B3LYP 3.60 12.42 3.18 12.17

PBE0 8.44 32.52 7.45 32.88

PW6B95 4.01 15.51 3.38 9.40

BHANDHLYP 66.95 217.65 52.99 203.80

TPSSh 2.55 9.76 1.96 10.50

TPSS0 15.34 55.68 12.97 55.96

M06 4.39 17.98 3.26 12.97

M062X 3.89 23.53 3.13 17.55

B97M-V 0.73 3.12 0.94 1.19

B97M-D3BJ 1.01 3.63 1.18 1.95

Range-separated hybrid functionals

ωB97 46.57 23.6626 37.77 225.36

ωB97X 28.53 144.59 22.67 125.36

ωB97X-D3 19.30 98.81 15.79 74.99

ωB97X-D3BJ 21.75 117.01 18.43 97.87

ωB97X-V 9.46 113.41 17.78 93.59

ωB97M-V 9.46 58.35 59.67 66.04

ωB97M-D3BJ 9.82 60.36 58.77 67.26

CAM-B3LYP 18.68 84.09 15.35 75.61

(Continues)
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3.4   |   Efficiency of Hybrid Meta-GGA Functionals

We can formulate a global hybrid version of the novel MGGA 
functional by blending TPSS with exact exchange, which can be 
expressed as follows:

where a is an empirical parameter fit to experimental data for 
atomization energies and EmGGAX  is the energy density meta-
generalized approximation [45] for exchange, is constructed 
using Becke's inhomogeneity parameter [46].

All the hybrid meta GGA functionals give inaccurate predic-
tions of antiferromagnetically coupled diradicals. However, 
these functionals predict the exact sign of the magnetic ex-
change coupling constant of the ferromagnetic diradical. 
Therefore, it can be said that the hybrid meta GGA functionals 
are good for ferromagnetic diradicals and cannot be used for an-
tiferromagnetic diradicals based on nonalternant hydrocarbon. 
The hybrid meta GGA functionals are further corrected over 
hybrid functional and eventually overestimated the ferromag-
netic interaction in the diradicals. All the hybrid functionals 
gives inconsistent results for antiferromagnetic diradical with 
both of the methods single point and optimization of geometry.

3.5   |   Efficiency of Range-Separated Hybrid 
Functionals

The range-separated hybrid functionals are designed on the 
basis of the smooth partition into short range (SR) and long 
range (LR) parts of the Coulomb operator, 1/r, as:

by the inclusion of short-range erfc(�r) and long-range erf(�r) 
functions, the two smooth weighing functions, where � is the 

parameter describing part of the separation, and r is the inte-
relectronic distance. These smooth weighting functions are 
the Gauss error functions and complementary Gauss error 
functions. These functions have the properties that erf(0) = 0, 
erf(∞) = 1, erfc(0) = 1 and erfc(∞) = 0. Based on this partitioning 
scheme we can divide the exchange energy into two parts:

Using this partitioning scheme, many different range-separated 
functionals have been designed [47–62].

The range-separated hybrid functionals give the wrong sign for 
the magnetic exchange coupling constant of antiferromagnet-
ically coupled diradicals (Table  1). However, they predict the 
correct sign of the magnetic exchange coupling constant of fer-
romagnetic diradicals, although they overestimate the value of 
the coupling constant. All the hybrid functionals gives incon-
sistent results for antiferromagnetic diradical with both of the 
methods single point and optimization of geometry.

3.6   |   Efficiency of Perturbatively Corrected 
Double-Hybrid Functionals

The amalgamation of KS-DFT and perturbation theory (PT) 
is founded on the subsequent expression for the exchange-
correlation energy, denoted as EXC, and is explicitly provided as 
follows: [63].

where (in the spin-orbital form)

The expression presented is a conventional second-order 
Møller–Plesset-type equation for the correlation energy. 

(7)E
hybrid−mGGA
XC

= aEexactX + (1 − a)EmGGAX + EmGGAC

(8)1

r
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}
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{
erf(�r)

r

}
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(9)EX = ESX(�) + ELX(�)

(10)EXC =
(
1 − aX
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EGGAXC + aXE

HF
X + bEGGAC + cEPT2C

(11)EPT2C =
1

4

∑

ia

∑

jb

[
(ia| jb)− (ib| ja)

]2

�i + �j − �a − �b

Systems

Single point on B3LYP optimized geometry Optimized in each functional

AzIN2 AzNN2 AzIN2 AzNN2

J (cm−1)

LC-BLYP 16.80 93.15 12.93 93.16

Perturbatively corrected double-hybrid functionals

B2PLYP 136.35 351.14 99.07 252.75

mPW2PLYP 156.08 384.50 108.67 284.92

B2GP-PLYP 98.15 753.22 250.22 536.58

Range-separated double-hybrid functionals

ωB2PLYP 78.85 790.31 257.40 625.83

ωB2GP-PLYP 735.67 1100.01 446.88 870.61

Note: The bold values represent the functionals which give correct signs of magnetic exchange coupling constant for both the complexes.

TABLE 1    |    (Continued)
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However, it is assessed using the Kohn–Sham orbitals with 
their corresponding eigenvalues. The indices ia and jb signify 
single occupied-virtual replacements, and the terms enclosed 
in brackets represent standard two-electron integrals over the 
Kohn–Sham orbitals.

In Equation (10), aX signifies the HFX mixing parameter, while 
b and c correspond to the GGA and perturbative correlation con-
tributions, respectively.

The expensive perturbatively corrected double-hybrid function-
als predict the opposite sign of the magnetic exchange coupling 
constant of the antiferromagnetic diradical. However, it predicts 
the correct sign of magnetic coupling for ferromagnetic diradi-
cals, although there is a very high overestimation of the coupling 
constant. All the hybrid functionals gives inconsistent results 
for antiferromagnetic diradical with both of the methods single 
point and optimization of geometry.

3.7   |   Efficiency of Range-Separated Double-Hybrid 
Functionals

The range-separated double hybrid functionals ωB2PLYP and 
ωB2GPPLYP can be written as [64].

In both the methods, the exchange components are divided 
into two parts: SR (short range) and LR (long range). The SR 
exchange part consists of scaled and SR-adjusted Becke-88 
exchange  [62] (ωB88) and Fock exchange (ExSR-HF), while 
the LR exchange part comprises unscaled Fock exchange 
(ExLR-HF).

Regarding the correlation components, they are identical to 
those found in B2PLYP and B2GPPLYP, which involve a combi-
nation of scaled Lee, Yang, and Parr [65] (LYP) correlation and 
scaled nonlocal correlation. Specifically, for ground states, this 
nonlocal correlation is derived from MP2, and for excited states, 
it is obtained from CIS(D).

The computationally expensive range-separated double-hybrid 
functionals predict the exact sign of the magnetic exchange cou-
pling constant of ferromagnetic diradicals with very high over-
estimation of the coupling constant values. However, it fails to 
predict the correct sign of the magnetic coupling of antiferro-
magnetic diradicals.

The above analysis of all types of functionals reveals that the 
LSD and GGA functional hold good for antiferromagnetic cou-
pling, meta-GGA functionals (TPSS and M06L) predicts exact 
sign of ferromagnetic and antiferromagnetic coupling. The hy-
brid and other sophisticated functionals are overestimated the 
ferromagnetic interaction and wrongly predict the antiferro-
magnetic coupling. The qualitative reason for such behavior is 
the presence and absence of HFX in the functionals. All the hy-
brid functionals gives inconsistent results for antiferromagnetic 

diradical with both of the methods single point and optimization 
of geometry.

Figure 2a–g displays a visual look of the performance of all the 
functionals studied here in this work.

3.8   |   Geometrical Parameters of the Diradicals 
With Different Functionals

The geometry of molecules is very important for the magnetic 
interaction in organic diradicals where the magnetic interac-
tion occurs via itinerant exchange  [10, 66]. The planarity of 
radical and the coupler plays an important role in the magnetic 
interaction in diradical molecules. The geometrical parameters 
of the diradicals studied here are given in Table 2. We can ob-
serve from the Table 2 that the distance between radical and 
the couplers are same (1.45 Å) for both the diradicals in the 
crystal structure (experiment), however, the dihedral angle be-
tween the radical and coupler is high (40°) for the NN diradical 
which is ferromagnetic in nature. On the other hand, IN dirad-
ical the dihedral angle between the radical and coupler is low 
(4.3° and 8.8°) and the diradical is antiferromagnetic in nature. 
Now if we see the calculated values of radical-coupler distance 
it varies from 1.43 to 1.46 Å which is close to the experimental 
values as compared to the range of the dihedral angle which is 
huge (for IN diradical it is from 7° to 24°; and for NN diradical 
it is from 23° to 37°). Careful inspection of the Table 2 turns 
out that local functionals give lower dihedral angle and range 
separated hybrid functionals gives higher values of dihedral 
angle and of course this is not uniform. This could be a reason 
why the local functionals give correct results for IN diradicals 
and the hybrid and expensive functionals give correct sign of 
magnetic coupling of NN diradical as they reach the near ex-
perimental geometry with the respective functionals.

3.9   |   Effect of the HFX Parameter in Hybrid 
Functionals to Predict the Magnetic Exchange 
Coupling Constant

To investigate the effect of HFX on the calculation of the magnetic 
exchange coupling constant, we choose three hybrid functionals, 
namely, B3LYP (HFX 20%), M06 (HFX 27%), and M06-2X (HFX 
54%). The % of HFX versus magnetic exchange coupling constant 
plots are given in Figure 3. From Figure 3, we can observe that 
in every functional, there is a crossing point where the coupling 
constant changes its sign for both the diradical ferromagnetic and 
antiferromagnetic molecules. Most importantly, every functional 
gives a correct prediction of the magnetic exchange coupling sign 
for both diradicals at a certain value of HFX. For B3LYP 11%, HFX 
predicts the correct sign of the magnetic exchange coupling con-
stant, and for M06 and M06-2X, these values are 20% and 42%, 
respectively. Below 11% HFX, the B3LYP functional predicts the 
correct sign of antiferromagnetic diradicals, whereas for ferromag-
netic diradicals, it predicts the correct sign of magnetic exchange 
above 11% HFX in the functional. For the M06 functional, the 
optimal value of HFX is ≤ 20% for antiferromagnetic diradicals 
and ≥ 20% for ferromagnetic diradicals. For the M06-2X functional, 
the optimal value of HFX is ≤ 42% for antiferromagnetic diradicals 
and ≥ 42% for ferromagnetic diradicals. These results signify that 

(12)
E�B2PLYP
XC = 0.47EωB88

X (�) + 0.53ESR−HFX + ELR−HFX + 0.73ELYPC + 0.27EnonlocalC

(13)
E�B2GPPLYP
XC = 0.35EωB88

X (�) + 0.65ESR−HFX + ELR−HFX + 0.64ELYPC + 0.36EnonlocalC
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the % of HFX in a functional plays a major role in the prediction of 
the magnetic exchange coupling constant. The so-called universal 
functional B3LYP failed to predict the correct nature of magnetic 
exchange coupling for the Az-coupled diradical. The expensive 

DFT functional, such as the double hybrid and range-separated 
double hybrid functional, overestimate the magnetic exchange 
coupling constant for ferromagnetic diradicals, and they are over 
biased towards high spin states.

FIGURE 2    |    The visual look of the performance of the functional when optimized in each functional.
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TABLE 2    |    Structural parameters of the diradicals with different functionals.

Systems

AzIN2 AzNN2

r1 (Å) r2 (Å) θ1 (°) θ2 (°) r1 (Å) r2 (Å) θ1 (°) θ2 (°)

Experiment [3] 1.45 1.45 4.30 8.80 1.45 1.45 40.38 40.38

HFS 1.45 1.45 8.66 8.66 1.45 1.45 26.12 27.88

LSD 1.43 1.43 7.30 7.30 1.43 1.43 24.85 23.79

VWN5 1.43 1.43 7.29 7.29 1.43 1.43 24.85 23.79

VWN3 1.43 1.43 7.14 7.14 1.43 1.43 24.61 23.38

PWLDA 1.43 1.43 7.30 7.30 1.43 1.43 24.87 23.81

BP86 1.45 1.45 16.85 16.85 1.45 1.45 33.32 29.81

PBE 1.45 1.45 17.12 17.12 1.45 1.45 33.57 29.79

RPBE 1.46 1.46 20.06 20.06 1.46 1.46 35.15 37.08

PW91 1.45 1.45 16.82 16.82 1.45 1.44 29.52 33.09

mPWPW 1.45 1.45 17.40 17.41 1.45 1.45 30.51 33.96

TPSS 1.45 1.45 12.13 12.14 1.45 1.45 33.10 29.61

M06L 1.44 1.44 9.75 9.75 1.44 1.43 31.77 35.97

revTPSS 1.45 1.45 12.70 12.70 1.44 1.44 29.28 33.27

B3LYP 1.45 1.45 19.83 19.83 1.45 1.45 34.91 31.24

PBE0 1.45 1.45 19.86 19.85 1.44 1.44 34.67 29.60

PW6B95 1.44 1.44 20.74 20.74 1.44 1.44 36.23 33.24

BHANDHLYP 1.45 1.45 9.81 9.81 1.44 1.44 34.78 29.48

TPSSh 1.45 1.45 18.57 18.57 1.44 1.44 33.63 29.64

TPSS0 1.45 1.45 12.25 24.24 1.44 1.44 34.29 29.29

M06 1.45 1.45 20.70 20.70 1.44 1.44 30.25 37.83

M062X 1.45 1.45 21.63 21.81 1.44 1.44 31.0 37.10

B97M-V 1.44 1.44 20.45 20.45 1.43 1.43 30.40 34.72

B97M-D3BJ 1.44 1.44 20.40 20.40 1.43 1.43 30.40 34.57

ωB97 1.46 1.46 19.15 19.15 1.45 1.45 30.60 33.03

ωB97X 1.46 1.46 21.58 21.58 1.45 1.45 31.65 36.03

ωB97X-D3 1.45 1.45 22.0 22.0 1.45 1.44 34.01 37.42

ωB97X-D3BJ 1.46 1.46 21.89 21.88 1.45 1.45 33.45 36.91

ωB97X-V 1.46 1.46 21.79 21.79 1.45 1.45 33.11 36.70

ωB97M-V 1.45 1.45 22.08 22.08 1.45 1.44 32.83 36.60

ωB97M-D3BJ 1.45 1.45 22.20 22.20 1.45 1.45 33.14 36.96

CAM-B3LYP 1.45 1.45 20.51 20.51 1.44 1.44 34.95 30.81

(Continues)



9 of 13

3.10   |   Molecular Orbitals

Canonical molecular orbitals are often used to define the mag-
netic properties of diradicals. According to Borden and Davidson, 
nondisjoint SOMOs (which are confined to sets of atoms with 
no common number) favor ferromagnetic interactions, and dis-
joint SOMOs (atoms are common) favor antiferromagnetic in-
teractions in case of alternant hydrocarbon diradicals. Dias [67] 
showed that for nonalternant hydrocarbon diradicals disjoint di-
radical favor nonmagnetic state whereas, nondisjoint character 
favored triplet state. Haraguchi et al. [3] calculated the natural 
orbital of the same diradicals studied here. They found that the 
natural orbitals of both the diradical AzIN2 and AzNN2 are the 
same and that they are disjointed. However, in our work, we 

found that the canonical orbital SOMOs of AzIN2 are nondisjoint 
and that the SOMOs of AzNN2 are disjoint. Nevertheless, here, 
for Az-coupled diradicals, this trend is the opposite of Borden 
and Davidson's proposal [68, 69]. Therefore, for nonalternant 
hydrocarbon bridged diradical disjoint-nondisjoint formula is 
the opposite of alternant hydrocarbon-based diradicals. In the 
earlier work [3] the SOMOs of both the diradicals are disjoint 
whereas in this work we found different SOMOs for the diradi-
cals, the reason is that the earlier author gives the natural orbital 
SOMOs whereas we plotted the canonical orbitals. To rule out 
the alternation in SOMOs for unrestricted DFT calculation we 
also calculated with restricted open shell model and the result is 
replicated (see Supporting Information) as unrestricted calcula-
tion (Figure 4).

Systems

AzIN2 AzNN2

r1 (Å) r2 (Å) θ1 (°) θ2 (°) r1 (Å) r2 (Å) θ1 (°) θ2 (°)

LC-BLYP 1.45 1.45 16.17 16.17 1.44 1.44 28.67 31.01

B2PLYP 1.45 1.45 20.25 20.25 1.45 1.45 34.93 35.32

mPW2PLYP 1.45 1.45 18.88 18.88 1.45 1.45 33.78 34.45

B2GP-PLYP 1.45 1.45 18.18 18.18 1.45 1.44 32.61 34.08

ωB2PLYP 1.45 1.45 16.08 16.08 1.44 1.44 29.50 31.45

ωB2GP-PLYP 1.45 1.45 16.05 16.05 1.44 1.44 29.01 31.12

TABLE 2    |    (Continued)

FIGURE 3    |    The variation in the magnetic exchange coupling constant (J) with respect to the % of HF exchange in the functionals.
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3.11   |   Spin Density of the Diradical

The spin density analysis gives an insight into the spin polariza-
tion of magnetic systems. The spin density plot of the diradicals 
is shown below in Figure 5. A close look at Figure 5 tells us that 
in the case of the AzIN2 diradical, the spin density distribution 
over Az is less than that over the AzNN2 diradical. This signifies 
that the NN diradical induce more spin polarization in the coupler 
compared to the IN diradical. The more spin polarization reflected 
in the higher absolute values of coupling constant of AzNN2.

4   |   Conclusions

Nonalternant hydrocarbon bridged diradicals show a different 
magnetic behavior compared to the alternant hydrocarbon based 
diradicals. We have found that the less expensive meta-GGA 
functionals are better due to the absence of HFX in them for 

the prediction of magnetic nature of nonalternant hydrocarbon 
bridged diradicals compared to the expensive hybrid and dou-
ble hybrid functionals. This behavior in turn indicates that the 
over sophistication in functionals may not be good for property 
prediction, especially the magnetic interaction. The HFX plays a 
major role in a functional to predict the magnetic nature of a di-
radical. The value of HFX is different for different functional to 
predict a correct nature of magnetic interaction. The Borden and 
Davidson's proposal of disjoint and nondisjoint SOMOs for the 
prediction of magnetic nature of a diradical is opposite for nonal-
ternant hydrocarbon bridged diradical in contrast to the alternant 
hydrocarbon bridged diradicals. The IN radical creates less spin 
polarization compared to the NN diradical in the coupler (Az).
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