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ABSTRACT
The chemical bond is a fundamental concept in chemistry, and various models and descriptors have evolved since the advent 
of quantum mechanics. This study extends the overlap density and its topological descriptors (OP/TOP) to multiconfigurational 
wavefunctions. We discuss a comparative analysis of OP/TOP descriptors using CASSCF and DCD-CAS(2) wavefunctions for a 
diverse range of molecular systems, including X–O bonds in X–OH (X  H, Li, Na, H2B, H3C, H2N, HO, F) and Li–X′ (X  F, Cl, and 
Br). Results show that OP/TOP aligns with bonding models like the quantum theory of atoms in molecules (QTAIM) and local 
vibrational modes theory, revealing insights such as overlap densities shifting towards the more electronegative atom in polar 
bonds. The Li–F dissociation profile using OP/TOP descriptors demonstrated sensitivity to ionic/neutral inversion during Li–F 
dissociation, highlighting their potential for elucidating complex bond phenomena and offering new avenues for understanding 
multiconfigurational chemical bond dynamics.

1   |   Introduction

Chemical bonds represent a fundamental and pervasive con-
cept in chemistry, providing an intrinsic foundation that assists 
chemists in comprehending the properties and characteristics 
of molecules and materials as well as their potential reactions. 
Since the inception of quantum mechanics [1–4], a multitude 
of theories have arisen to model and characterize the nature 
of chemical bonds, resulting in the development of diverse 
chemical bond descriptors from various perspectives [5, 6]. 
Some of the most renowned approaches for analyzing chem-
ical bonds can be broadly categorized into three groups. The 
first group includes energy-based descriptors, such as the Bond 
Dissociation Energy (BDE) or Binding Energy (BE) [7] and re-
lated Energy Decomposition Analysis schemes (EDA) [8–12], 

or the Activation Strain Model (ASM) [13]. One has to keep 
in mind that energies and related properties only provide an 
overall insight into chemical bonding given their cumulative 
nature, that is, reflecting the energy needed for bond break-
ing, but also containing energy contributions due to geometry 
relaxation and electron density reorganization in the dissocia-
tion fragments  [14–19]. The second group comprises methods 
based on wavefunction or electron density analysis, such as the 
Quantum Theory of Atoms in Molecules (QTAIM) [20–23], the 
Electron Localization Function (ELF) [24] and the Electron 
Localizability Indicator (ELI-D), as well as Molecular Orbital 
(MO) analysis [25] and Natural Bond Orbitals (NBO) analysis 
[26, 27]. A third group is based on vibrational spectroscopy with 
the Local Vibrational Mode (LVM) theory [28–34] as the most 
prominent representative.
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Recently a new set of density-based-decomposition bond de-
scriptors was introduced as part of the Chemical Bond Overlap 
(OP) model [35]. The OP model builds upon overlap properties 
initially introduced by Malta, Batista, and Carlos [36], encom-
passing a range of chemical bond descriptors that have been ex-
panded in recent work [37]. This extension includes topological 
descriptors (TOP) derived from a numerically obtained overlap 
density through localized molecular orbitals. Originally devised 
for the analysis of diatomic or diatomic-like systems [36], the OP 
model initially found utility in describing Ln–L bonds within 
lanthanide complexes [38]. Subsequently, it has proven versatile 
and has been successfully applied to a variety of systems, includ-
ing diatomics [39, 40], molecular species [35, 41], coordination 
compounds [42–45], and solid-state materials [40, 46]. An un-
derstanding of overlap polarizability is crucial for comprehend-
ing the relationship between 4f–4f transition intensities and the 
covalent character of Ln–L bonds [30, 44, 47, 48]. Moreover, the 
OP approach has been effectively employed to describe chemical 
bonding in organic reaction systems [41]. This application has 
yielded results in excellent agreement with other chemical bond 
analysis models, such as Quantum Theory of Atoms in Molecules 
(QTAIM) [20] and Local Vibrational Mode (LVM) [28, 29, 31].

All of the previously mentioned methods (BDE, EDA, ASM, 
LVM, QTAIM, ELF, and NBO) provide chemical bond descrip-
tors that are only as accurate as the model chemistry employed to 
describe the wavefunction and/or the electron density of the tar-
get molecular system. In this context, the simplicity and compu-
tational efficiency of Density Functional Theory (DFT) methods 
and approximations, which implicitly handle electron correla-
tion, may falter when dealing with strong correlation effects, that 
is, systems with significant multireference character [49].

Wavefunction theory has long established that not all chemical 
species can be adequately represented by a single-determinant 
wavefunction. For cases where the electronic state of a molecule 
cannot be reasonably described by a single Slater determinant, 
the Complete Active Space Self-Consistent Field (CASSCF) 
method [50] provides a robust approach to account for static 
electron correlation. To further address dynamic electron cor-
relation, widely used post-CASSCF methods include Complete 
Active Space Second-Order Perturbation Theory (CASPT2) 
[51, 52] and Second-Order N-Electron Valence State Perturbation 
Theory (NEVPT2) [53].

Many studies have emphasized the necessity of multiconfig-
urational approaches for achieving more accurate descrip-
tions of a wide range of molecules. Kraka, He, and Cremer 
[54] pointed out that when a molecule contains multiple 
bonded electronegative atoms, a high degree of multiconfig-
urational character is often expected. They explored how dif-
ferent levels of theory describe the equilibrium geometry of 
the FOOF molecule, noting that while MP6/CBS provided the 
most reasonable estimate among single-determinant meth-
ods, multiconfigurational approaches could offer a more re-
alistic description. Similarly, Wardzala et al. [55] emphasized 
the importance of multiconfigurational methods in under-
standing chemical reactivity, especially in transition states 
and intermediates. Wysocki and Park [56] reported the im-
plementation and application of Douglas-Kroll-Hess (DKH2) 
CASSCF calculations to determine the magnetic properties 

of atoms, diatomic molecules containing d-metal atoms, and 
large Tb-based systems within the Molcas/OpenMolcas pro-
gram. Loreti et al. [57] introduced the wave function overlap 
tool (WFOT), designed to evaluate the overlap between wave 
functions computed at both single-reference and multirefer-
ence levels of electronic structure theory. Verma and Truhlar 
[58] provided a comprehensive assessment of the accuracy of 
DFT in predicting charge distributions for single-reference 
and multireference molecules, concluding that, as expected, 
single-reference DFT performs less effectively for multiref-
erence systems. Recently, Carlson, Truhlar, and Gagliardi 
[59, 60] introduced multiconfiguration pair-density functional 
theory (MC-PDFT), which offers improved accuracy for sys-
tems with significant multireference character, including mol-
ecules containing transition metals. Grimme and Waletzke 
[61] proposed computational strategies and algorithms to per-
form multi-reference Møller-Plesset (MR-MP2) calculations 
efficiently for large molecules, achieving accuracy compara-
ble to CASPT2 but with reduced computational costs.

Given that CASPT2 and NEVPT2 methods retain a frozen 0th-
order wavefunction [62], any chemical bond descriptor being, 
for example, based on the electron density derived from this 
0th-order wavefunction reflects the quality of the pure CASSCF 
ansatz, that is, the descriptor does not account for dynamic cor-
relation. This scenario is commonly found in numerous appli-
cations of QTAIM across various systems, a few of which are 
highlighted below.

Malček et  al. [63] explored how QTAIM describes electronic 
densities in M–M bonds (M  Cu, Cr) within tetrakis complexes, 
considering both single-determinant methods and CASSCF. 
Additionally, Li et  al. [64] provided QTAIM descriptors for 
M–M (M  B, Al, and Ga) bonds in M3 clusters, utilizing the 
CASSCF wavefunction. Their findings revealed the presence of 
3-center-2-electron bonds and classified B–B and Al–Al bonds 
as covalent, while Ga–Ga bonds exhibited metallic behavior. 
Giricheva et al. [65] investigated the nature of the Co–O bond 
in Gaseous Oxopivalate Cobalt(II) using QTAIM topological de-
scriptors with the CASSCF wavefunction. Pech et al. [66] con-
ducted an investigation into the effects of spin-orbital coupling 
in astatine diatomic molecules and trihalide anions. Their study 
revealed that spin-orbital coupling reduces the covalent nature 
of At–X bonds, where X represents At, I, Br, Cl, or F. Reuter and 
Lüchow [67] introduced a QTAIM-based methodology for pre-
dicting the composition of ionic or covalent bonds, employing 
Valence Bond or CASSCF wave functions. Their study demon-
strates the effectiveness of this model on small, well-known 
molecules. Zhabanov and Zhabanov [68] employed QTAIM to 
analyze CASSCF wavefunctions in order to investigate chemical 
bonds in iron and cobalt metal complexes of porphyrazines.

In contrast to density-based descriptors, CASPT2 and NEVPT2 
energy-based descriptors, including descriptors based on first, 
and second energy derivatives, incorporate dynamics correla-
tion effects, making them superior. However, as mentioned 
above, these descriptors provide only an overall measure of 
bond strength, caused by their cumulative nature. It is critical 
to acknowledge that dynamic correlation effects may exert a 
significant influence on certain chemical systems. For systems 
exhibiting both pronounced static and dynamic correlation 
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effects, Multi-Reference (MR) Configuration Interaction (CI) 
methods are particularly suitable. These methods handle 
multireference situations where single-reference approaches 
might be inadequate. However, it is important to consider 
that the computational costs associated with MRCI methods 
can be substantial, particularly for larger systems. High-level 
multireference (MR) methods, such as configuration interac-
tion with single and double excitations (MR-CISD) and aver-
aged quadratic coupled-cluster (MR-AQCC), along with their 
variants, are a specialty of the COLUMBUS software [69, 70], 
which employs the graphical unitary group approach (GUGA) 
[71, 72]. Hans Lischka has played a pivotal role in the devel-
opment of new methodologies and tools for the application 
of Multiconfigurational Self-Consistent Field (MCSCF) and 
MRCI methods [73], contributing to various aspects of quan-
tum chemistry calculations [73–77].

Despite ongoing efforts, MR-CISD and the aforementioned 
methodologies still present high computational costs and 
significant time demands. Pathak, Lang, and Neese [78] also 
provided a thoughtful discussion on incorporating dynamic 
correlation effects into the 0th-order wavefunction. Their work 
introduced the Dynamic Correlation Dressed Complete Active 
Space with Second-Order Treatment (DCD-CAS(2)) method. 
They highlighted the cost-effectiveness and superior perfor-
mance of this approach when compared to NEVPT2 energies.

In light of the significance of MCSCF methods for providing 
a more accurate description of chemical bond descriptors for 
notorious multireference systems [70], this report elaborates 
on the extension of OP/TOP descriptors using MCSCF wave-
functions. Initially, we demonstrate that canonical molecular 
orbitals yield a consistent representation of the overlap density 
comparable to that obtained using their localized molecular 
orbitals counterparts. The implementation is designed to be 
applicable to any multideterminantal type of wavefunction, 
such as MCSCF, MR-CI, MR-CISD, MC-PDFT, or similar 
methods. In order to showcase this new functionality, we dis-
cuss in this paper a comparative analysis between OP/TOP 
descriptors using CASSCF wavefunctions as a representative 
example. Additionally, a complementary study focusing on the 
dissociation profile of the Li–F bond is presented, utilizing the 
DCD-CAS(2) wavefunction. The H2O molecule 01 served as a 
benchmark example for the evaluation of basis set and active 
space size convergence, while the set of test examples 02–12, 
presented in Figure 1, were adopted to challenge the MCSCF 
implementation of OP/TOP bond descriptors, reported in 
this work, and their comparison with QTAIM and LVM de-
scriptors. The targeted bonds in polyatomic molecules were 
selected from the report by Fugel et al. [79]. The dissociation 
pattern of the Li–F bond was selected to emphasize the differ-
ences in OP/TOP descriptors when using the CASSCF and a 
second-order corrected wavefunction (DCD-CAS(2)).

2   |   Methodology

We begin the methodology section by demonstrating that canon-
ical molecular orbitals (MOs) provide a consistent representation 
of the overlap density comparable to that obtained using their lo-
calized molecular orbitals (LMOs) counterparts. Subsequently, 

we derive the overlap density from an MCSCF wavefunction. 
Finally, we will delve into the main OP/TOP descriptors.

2.1   |   Electron Density Overlap Terms From 
Canonical and Localized MOs

Stewart [27] emphasized the importance of LMOs for theoretical 
chemistry. One of the most valuable advantages of using LMOs 
is the possibility to interpret chemical problems through con-
cepts derived from a Lewis notation, allowing the association of 
LMOs with two-electron bonds, lone-pairs, and � delocalization.

The expanded OP model, introduced in 2020 [35] decomposes 
the electron density of a single LMO into atomic (one-center) 
and overlap (two-center) components. In that initial approach, 
it was assumed that each LMO, denoted as l, corresponded to 
a specific chemical bond A–B within a molecule. Based on this 
assumption, the overlap density at a spatial point r⃗ is computed 
from a single LMO, as outlined by the following expression:

Here, �i represents the primitive or contracted functions, cli are 
the LMO expansion coefficients, and m is the number of basis 
functions or atomic orbitals. This overlap component was then 
utilized to calculate various chemical bond descriptors, such 
as electron density, Coulomb repulsion, and polarizability. 
This was achieved by applying the appropriate operator to 
the overlap contribution, which was generated using a single 
LMO. Localization techniques, such as the well-known Pipek-
Mezey localization [80], rely on atomic-charge based methods 
and may involve various types of charge partitions, including 
Mulliken, Bader, Becke, Löwdin, or Hirshfeld populations 
[81]. It is important to note that localization procedures can 
introduce bias into the overlap density when obtained for in-
dividual LMOs.

Therefore, in the present report, we demonstrate the direct 
acquisition of overlap density using MOs instead of LMOs. 

(1)𝜌l,OP
(
r⃗
)
=

m∑
i∈A

m∑
j∈B

cliclj𝜙i
(
r⃗
)
𝜙j
(
r⃗
)

FIGURE 1    |    Schematic representation of the studied molecular 
systems. The examined chemical bonds are highlighted in green.
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To implement this approach, the single-particle density function 
can be calculated by evaluating the expectation value of the �(r) 
operator [82], expressed as:

Here, �
(
x1, x2, … , xN

)
 represents a normalized N-electron 

wavefunction, and �(r) serves to probe the electrons at a specific 
point in space and can be expressed as the one-electron operator:

This operator sums over all electron arrangements ri within the 
system, describing the electron density at each point r in space.

For a Hartree-Fock (HF) or DFT ��⟩ single determinant wave-
function, the total electron density at a point r⃗ in space is com-
puted as follows:

l ranges in Equation (4) over all M MOs (spatial components of 
spin-orbitals), nl represents the MO occupancy, m is the number 
of atomic orbitals (AOs), cli denotes the AOs' expansion coeffi-
cients from the Linear Combination of Atomic Orbitals (LCAO), 
and �i corresponds to the primitive or contracted basis functions 
describing the AOs.

Without losing any information, the summations involving i and 
j in 𝜌mol

(
r⃗
)
 in Equation (4) can be decomposed into one-center 

and two-center contributions. This decomposition is applica-
ble to a molecule with a structure element –R–A–B–R′–, where 
our primary interest lies in the chemical bond A–B, while  R 
and R′ represent general molecular fragments. Considering 
𝜌l
MOij

�
r⃗
�
=
∑m

i

∑m
j cliclj𝜙i

�
r⃗
�
𝜙j
�
r⃗
�
, the modified form of 

Equation (4) is expressed as follows:

In Equation (5) 𝜌l
MOAA

(
r⃗
)
 and 𝜌l

MOBB

(
r⃗
)
 represent the one-center 

terms (with i ∈ A and j ∈ A), and 𝜌l
MOAB

(
r⃗
)
 is the two-center 

(overlap) term (with i ∈ A and j ∈ B) of the l-th MO contribu-
tion to the total electron density. The terms 𝜌l

MOothers

(
r⃗
)
 represent 

the contributions of the remaining atoms in the molecule, which 
include other one-center and two-center terms, specifically: 
𝜌l
MOAR

(
r⃗
)
, 𝜌l

MOAR′

(
r⃗
)
, 𝜌l

MOBR

(
r⃗
)
, 𝜌l

MOBR′

(
r⃗
)
, 𝜌l

MORR

(
r⃗
)
, and 𝜌l

MOR′R′

(
r⃗
)
. 

Since we are specifically interested in the A–B bond, its overlap 
term is expressed for a single determinant as:

Equation (6) exclusively considers the two-center terms (when 
i ∈ A and j ∈ B). 𝜌mol

(
r⃗
)
 in Equation  (4) represents the one-

particle density, typically determined by X-ray crystallographers 
[62], which solely involves terms of one electron (from the same 
spin-orbitals). 𝜌AB

(
r⃗
)
 in Equation  (6) is a component resulting 

from a Mulliken-like decomposition of Equation (4) into atomic 
basis and does not encompass two-electron (electron pair) den-
sity terms [83].

2.2   |   Overlap Density From MCSCF Wavefunctions

To obtain OP/TOP descriptors from an MCSCF wavefunc-
tion, the first step involves constructing what is referred to 
in the OP model as the overlap density, �OP. To do this, we 
start from the configuration interaction (CI) expansion of the 
wavefunction:

where ℂ� are the CI expansion coefficients, and ����⟩ represents 
different determinants. Taking ���0⟩ as the HF-reference, the 
configuration interaction wavefunction ��⟩ with singles and 
doubles excitations (CISD) can be expressed as:

Here, ||�r
a

⟩
 is a single Slater determinant generated when spin-

orbital a is replaced by spin-orbital r, and |||�rs
ab

⟩
 is the Slater de-

terminant generated when spin-orbitals a and b are replaced by 
spin-orbitals r and s. The total electron density of the wavefunc-
tion expressed by Equation (8) is written as follows:

where a significant number of Slater determinants must be 
considered. The matrix elements ⟨�� � �(r)���⟩ involve determi-
nants that can be equal or may differ by one, two, or more spin-
orbitals. Using the rules of Slater-Condon [84, 85] for matrix 
elements and considering the one-electron density operator, the 
evaluation of overlap between ⟨��

�� and ����⟩ leads to the matrix 
elements ⟨�� � �(r)���⟩ and ⟨�� � �(r)���⟩. The latter is nonzero 
only when the interaction between determinants ⟨��

�� and ����⟩ 
involves a difference of one spin-orbital [62], affecting the one-
electron density.

The matrix elements ⟨�� ���⟩ encompass all Slater determinants 
for the MCSCF wavefunction, as described in Equation  (4), 
where ℂk represents their expansion coefficients. It's important 
to note that Equation  (9) simplifies to Equation  (4) when con-
sidering only one determinant, with ℂ� = 1.0. Matrix elements 
⟨�� ���⟩ involve only the term with one different spin-orbital. By 
applying the same decomposition as in Equation (5) and utiliz-
ing Equation (6) for each matrix element, the overlap term (AB) 
takes the following form:

(2)

�(r) = ∫ �
(
x1, x2, … , xN

)
�(r)�∗

(
x1, x2, … , xN

)
dx1dx2 … dxN
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�
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)
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Here, ℂk represents the CI expansion coefficients for the k-th 
Slater determinant (SD). The index l ranges over the Mk molec-
ular orbitals (the spatial part of the spin-orbital) that constitute 
the k-th SD, with nl denoting the occupancy of the l-th MO. 𝜙i

(
r⃗
)
 

and 𝜙j
(
r⃗
)
 are atomic orbitals evaluated at position r⃗, while cli 

and clj are their respective coefficients. The factor 2 on first term 
in right side of Equation  (10) accounts for the possibilities of 
(i ∈ A)(j ∈ B) and (i ∈ B)(j ∈ A). Here, c� and c� denote the differ-
ing spin-orbitals within the pair of determinants ⟨��

�� and ����⟩ , 
respectively. It's notable that only spin-orbitals with the same 
spin contribute non-zero values in this context. In a CASSCF 
procedure, ℂ and c coefficients are adjusted to obtain the total 
electronic wavefunction with the lowest possible energy. The 
expressions in Equations (9) and (10) strictly adhere to the ap-
proach adopted by many textbooks [62, 82] concerning the con-
struction of the one-electron density matrix.

Also, NBOs can be employed to build the one-particle density 
matrix thus facilitating the extraction of the overlap density. This 
offers a more concise expression compared to the summations 
over determinants in Equation  (10). In the ChemBOS package 
[35, 86], we have opted to retain the determinant form, mainly 
due to the inclusion of an OP/TOP descriptor not addressed in the 
context of the present work—the overlap polarizability [35, 37]. 
Calculating this descriptor involves a sum-of-states form, which 
can easily be implement into the current form of our ChemBOS 
software in the context of MCSCF and TDDFT when determi-
nants are employed. It has to be emphasized that the numerical 
values of descriptors are not influenced by the chosen expansion.

It should be noted that, by definition, Equation (10) can be used 
for any CI expansion, including any multiconfigurational self-
consistent field, multireference CI, or full-CI function. The only 
difference lies in the amount and quality of information that 
will be passed to our ChemBOS software (www.​chemb​os.​websi​
tewww.​chemb​os.​website), which already has the functionality 
to use MCSCF wavefunctions. This functionality is available in 
a development version of ChemBOS that allows the reading of 
wavefunctions generated by program packages such as Gaussian 
[87] or Orca [88].

The overlap of atomic orbitals can lead to either constructive or 
destructive interference, affecting electron density across differ-
ent regions of space. Nodes in molecular orbitals arise where de-
structive interference causes the contributions from overlapping 
atomic orbitals to cancel out, resulting in zero contribution to 
the total electron density from that molecular orbital at those 
nodes. The mutual orthogonality between molecular orbitals 
plays a crucial role in determining the presence and location 
of these nodes [89, 90], as it reflects the interference patterns 
formed during the combination of atomic orbitals. The presence 
of molecular orbitals with nodes, such as antibonding orbitals 
that exhibit nodes in the interatomic region, contributes to the 
overall electron density of the molecule. The presence or absence 

of these nodes influences electron concentration or depletion in 
the bonding region.

The spatial distribution of the overlap terms, as described by 
Equation  (10), exhibits nodes and is characterized by positive 
and negative portions. These nodes, situated very close to the 
atomic positions, result in overlap density with regions of neg-
ative lobes, extending beyond the bonding region, and positive 
lobes, distributed within the bond region. Accordingly, 𝜌OP

(
r⃗
)
 

is utilized in regions with positive values, while negative por-
tions are considered as part of the atomic counterparts for 
the total electron density. This approach ensures the equality 
�mol = �A + �B + �OP + �rest, where the last term refers to con-
tributions from R and R′ when considering an A–B bond in a 
system R − A − B − R�. To avoid the nodal and negative regions, 
the calculation of 𝜌OP

(
r⃗
)
 involves numerically evaluating the ex-

pression given in Equation (10) at various grid points r⃗ in space. 
Only the positive (constructive combination) portion is consid-
ered, as explained in our recent reports [37, 45],

Furthermore, all numerical integrations are conducted with 
our Adaptive Subspace by Integral Importance (ASII) algo-
rithm [86], which is an integral part of ChemBOS.

2.3   |   Overlap Density Physical Meaning

The physical meaning of overlap can be interpreted as a man-
ifestation of the interplay of the electronic effects contributing 
to the formation of a molecule. Levine and Head-Gordon [91], 
along with Martín and Francisco [92], provide an insightful dis-
cussion on the quantum mechanical origin of chemical bonds. 
The authors delve into the role of quantum mechanical interfer-
ence and its connection to a reduction in kinetic energy when 
two approaching molecular fragments form a chemical bond. 
They use the overlap between the orbitals of each fragment as 
a common indicator of how the electron density responds to or 
influences various factors, such as kinetic energy reduction or 
increase, utilizing valence-core and core–core overlap to deduce 
kinetic energy reduction in bond formation for different sys-
tems. They further propose that the increase in kinetic energy 
can be attributed to the overlap of those orbitals which are prin-
cipally involved in bonding with core orbitals.

Levine and Head-Gordon emphasize the importance of frag-
ment interference and analyze the energetic contributions to 
bond formation. These authors establish a causal relationship in 
which the overlap of orbitals (considering MOs in their reported 
approach) defines the energetics of bond formation. Although 
the methodology proposed here does not provide any energy de-
composition or aim to explain the interference phenomenon, it 
is noteworthy that the overlap of orbitals is frequently used to 
explain a variety of phenomena.

The overlap density (OP density in Equations 6, 10, or 11) presented 
in this work quantifies how all atomic orbitals overlap to form 
MOs, with the additional feature of decomposing the MOs den-
sities into one-center and two-center contributions, with the OP 
density serving as the two-center portion in this decomposition.

(10)

𝜌AB
(
r⃗
)
=2

SDs∑
𝜅

ℂ
2
𝜅

M𝜅∑
l

nl

m∑
i∈A

m∑
j∈B

cliclj𝜙i
(
r⃗
)
𝜙j
(
r⃗
)
+

SDs∑
𝜅𝜆

ℂ𝜅ℂ𝜆

m∑
i∈A∕B

m∑
j∈B∕A

c𝜅ic𝜆j𝜙i
(
r⃗
)
𝜙j
(
r⃗
)

(11)𝜌OP
(
r⃗
)
= 𝜌AB

(
r⃗
)
wherer⃗ ∈

{
r⃗ | 𝜌AB

(
r⃗
)
> 0

}

http://www.chembos.websitewww.chembos.website
http://www.chembos.websitewww.chembos.website


6 of 20 Journal of Computational Chemistry, 2024

2.4   |   OP/TOP Descriptors

The central idea of the OP/TOP model is to use 𝜌OP
(
r⃗
)
 to ac-

cess descriptors related to the chemical interaction between 
pairs of atoms. Here, we discuss four OP/TOP descriptors for 
the MCSCF wavefunction, namely: overlap density �OP, intra-
overlap Coulomb repulsion JintraOP , as well as the density (𝜌l

OCP

(
r⃗
)
) 

and the Laplacian (∇2𝜌l
OCP

(
r⃗
)
) at the overlap critical point. These 

descriptors have been introduced previously [35, 37].

The overlap density �OP is determined by integrating 
Equation (11) over the positive 𝜌OP

(
r⃗
)
 values. In our OP model, 

�OP specifically represents the electron density shared between 
the atoms involved in a bond and is calculated as follows:

The integration is performed in real space, where dv and dV  rep-
resent volume elements. To evaluate this integral, we employ an 
adaptive subspace scheme [86] for discretizing the 3D grid and 
conducting the integration, where ΔV  represents the volume ele-
ment of the corresponding numerical integration scheme.

The intra-overlap Coulomb repulsion JintraOP , within the con-
text of the OP model, is defined as:

r12 represents the distance between points r1 and r2 where the 
overlap densities 𝜌OP

(
r⃗ 1
)
 and 𝜌OP

(
r⃗ 2
)
 are examined. Typically, 

�OP is higher for electron-rich chemical bonds. In the same vein, 
electron-rich chemical bonds that exhibit concentrated OP den-
sity in small regions tend to have higher JintraOP  values.

Topological analysis of overlap density. Further insights 
into the shape of 𝜌OP

(
r⃗
)
 can be gained through a topological 

analysis of the OP density, similar to the QTAIM approach. 
This analysis aims to identify what are referred to as overlap 
critical points (OCP) [37]. In this context, two TOP descrip-
tors have been recently introduced: the density at a chemical 
bond OCP, denoted as �OCP, and its Laplacian, ∇2�OCP. OCPs 
in chemical bonds exhibit all negative curvatures, which are 
calculated using the Hessian of the density at the OCP, repre-
sented as:

Subsequently, HOCP
�OP

 is diagonalized to obtain the eigenvectors 
collected in ΛOCP as follows:

In this equation, P is a square 3 × 3 matrix, with its i-th column 
representing the eigenvector of HOCP

�OP
, and ΛOCP is a diagonal ma-

trix, with its diagonal elements as the corresponding eigenval-
ues, ΛOCP

ii  = �i. The Laplacian of the overlap density at the OCP 
is then defined as:

TOP descriptors provide insights into the shape of �OP. Generally, 
a more localized overlap density �OP leads to more negative 
∇2𝜌OCP

(
r⃗
)
 values and larger 𝜌OCP

(
r⃗
)
 [37].

2.5   |   Quantum Theory of Atoms in Molecules

QTAIM bond critical point (BCP) descriptors [20–22] are em-
ployed here for comparison purposes. These descriptors include 
the total electronic density (�rBCP) and Laplacian (∇2�rBCP) at a spe-
cific BCP, which provide insights into the charge concentration 
(higher �rBCP values and ∇2𝜌rBCP < 0) or depletion (lower �rBCP val-
ues and ∇2𝜌rBCP > 0) in the inter-atomic region [20].

In addition to these descriptors, the local energy density 
H
(
rBCP

)
 at a BCP, following the Cremer-Kraka criterion [93], 

is widely adopted as a measure of covalence. H
(
rBCP

)
 is de-

fined as the sum of kinetic and potential energy density at the 
BCP: H

(
rBCP

)
 = G

(
rBCP

)
 + V

(
rBCP

)
. The potential energy contri-

bution is stabilizing (V
(
rBCP

)
< 0), while the kinetic energy is 

destabilizing (G
(
rBCP

)
> 0). Therefore, BCPs with H

(
rBCP

)
< 0 

are expected to exhibit covalent character, whereas those with 
H
(
rBCP

)
> 0 are indicative of ionic character or weak chemical 

interactions [93, 94]. It's important to note that although excep-
tions have been discovered regarding the characterization of io-
nicity and covalency based solely on the sign of H

(
rBCP

)
, these 

findings do not diminish the significance of assessing this bond 
descriptor [79, 95–98]. Analyzing the behavior of both ∇2�rBCP and 
H
(
rBCP

)
 has proven to be a useful approach for describing the to-

pology of chemical bonds within the framework of QTAIM [79].

2.6   |   Local Vibrational Mode Theory

Normal vibrational modes within polyatomic systems are typi-
cally delocalized [99, 100]. This presents a significant challenge 
when one attempts to determine the intrinsic bond strength di-
rectly using normal mode frequencies and normal mode force 
constants. This is where LVM theory becomes invaluable. LVM, 
originally introduced by Konkoli and Cremer [101, 102] has trans-
formed over the past decade into a powerful tool for the quantita-
tive analysis of chemical bonds and/or weak chemical interactions 
for systems in the gas phase, solution and enzymes as well as for 
solid state systems. For a comprehensive review of LVM, includ-
ing its theoretical foundation and wide-ranging applications in 
chemistry and beyond, readers are encouraged to explore two re-
cent review articles and the references therein [28, 29].

The normal vibrational mode vector dn expressed in internal 
coordinate qn (where n = 1, ⋯ ,Nvib and Nvib equals to 3N − 6 
for a non-linear N-atomicsystem and 3N − 5 for linear N-atomic 
systems) and the diagonal normal mode force constant matrix K 

(12)𝜌OP = ∫
+∞

−∞

𝜌OP
(
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)
dv ≈

∑
3Dgrid

𝜌OP
(
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)
ΔV
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(
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)
r−112 𝜌OP
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)
dr1dr2

(14)HOCP
�OP

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�2�OCP

�x2
�2�OCP

�x�y

�2�OCP

�x�z

�2�OCP

�y�x

�2�OCP

�y2
�2�OCP

�y�z

�2�OCP

�z�x

�2�OCP

�z�y

�2�OCP

�z2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
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(16)∇2�OCP = �1 + �2 + �3
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given in normal coordinates Qn (both are found in the output of 
a standard normal mode analysis [103] is all what is needed to 
derive the corresponding local vibrational mode vector an that 
is associated with internal coordinates qn through the following 
expression):

The calculation of the corresponding local mode force constant 
kan can be performed using the following expression:

Local mode force constants ka have proven to be a reliable tool 
for quantifying the strength of a wide range of chemical bonds 
and/or weak chemical interactions [28, 29].

2.7   |   Computational Procedure

All geometry optimization and frequency calculations were 
conducted using the Domain Based Local Pair Natural Orbital 
Coupled Cluster (DLPNO-CCSD(T)) method [104–106], utiliz-
ing the def2-QZVPPD basis set [107, 108] and the correspond-
ing def2-QZVPPD/C auxiliary basis [109]. Numerical gradients 
were applied in all calculations.

The selection of the CAS active space was based on the Natural 
Orbital Occupation Numbers (NOON) [110] at the RI-MP2/
SVP level of theory. NBOs with NOON values between 1.98 
and 0.02 were adopted as active space. A wavefunction conver-
gence test was performed for the H2O molecule by increasing 
the active space from CAS(6,6) to CAS(6,30), using various basis 
sets including def2-TZVP, def2-TZVPPD, def2-QZVP, and def2-
QZVPPD. DCD-CAS(6,6), DCD-CAS(6,8), and DCD-CAS(6,10) 
were also applied. These convergence tests were carried out 
based on the total dipole moment value and the overlap density 
descriptor. It should be noted that the geometry of the H2O mol-
ecule optimized at the DLPNO-CCSD(T)/def2-QZVPPD level of 
theory was adopted for all CAS and DCD-CAS(2) convergence 
test calculations.

The X–O bond in X–OH or X–OF (where X = H, Li, Na, H2B, H3C, 
H2N, HO, FO, F) and Li–X′ (where X = F, Cl, and Br) molecular 
test systems underwent analysis using CAS(10,16) (for H2B–OH, 
H3C–OH, H2N–OH, HO–OH, and F–OH) and CAS(6,20) (for 
H–OH, Li–OH, Na–OH, Li–F, Li–Cl, and Li–Br). The dissocia-
tion profile of the Li–F bond was investigated using the CAS(2,6) 
method, along with its correction at the DCD-CAS(2) level of 
theory. The calculation of OP/TOP descriptors utilized CAS 
and DCD-CAS(2) (For Li–F) wavefunctions, whereas QTAIM 
counterparts were determined through CAS calculations for the 
molecules in equilibrion geometries. Since the equilibrium ge-
ometries of the test systems were determined using the DLPNO-
CCSD(T)/def2-QZVPPD level of theory, the LVM analysis was 
also performed at the same level.

All geometry optimization, frequency calculations, CAS, and 
DCD-CAS(2) single-point calculations were conducted using 

Orca 5.0 [88]. OP/TOP descriptors were obtained using our 
ChemBOS software [35, 86],1 while QTAIM descriptors were 
computed using Molden2aim [111] and MultiWFN [112] soft-
ware. LVM analyses were performed using the LModeA pack-
age [113]. Details regarding Orca(output) → (input)ChemBOS 
conversion tools can be found in Figure  S20 in Supporting 
Information.

3   |   Results and Discussion

The OP/TOP descriptors were initially predicated from com-
puted LMOs, where a single bond LMO was chosen as the exclu-
sive molecular orbital (MO) for conducting the OP/TOP analysis. 
However, LMOs depend on atomic-charge based methods and 
may involve various charge partitions, which can influence 
each LMO and, consequently, the OP/TOP descriptors if these 
are obtained from individual LMOs. On the other hand, apply-
ing Equation  (11) necessitates an MCSCF procedure in which 
both MO coefficients cli, and determinant coefficients ℂk are op-
timized. This implies the need to use canonical MOs instead of 
localized MOs due to the potential loss of the locality of LMOs 
after an MCSCF calculation. Therefore, demonstrating that the 
overlap density can be obtained from a canonical MO basis is 
crucial for extending OP/TOP descriptors from an MCSCF wave-
function. To address this, Figure  2 illustrates the equivalence 
between the overlap density derived from a single-determinant 
wavefunction (Equation 6) when utilizing a single localized MO 
(Figure 2a), spanning all LMOs (Figure 2b), and encompassing 
all canonical MOs (Figure 2c). The H3C–OH bond was chosen, 
and the LMO associated with the pair of atoms C and O was spe-
cifically selected to construct the OP/TOP descriptors depicted 
in Figure  2a. Figure  2b,c, encompassing all LMOs or CMOs, 
respectively, were generated with a focus on the separation of 
overlap density between the selected atoms C and O.

When comparing OP/TOP descriptors using a single local-
ized MO (Figure  2a) with those obtained spanning all LMOs 
(Figure 2b), it is evident that both �OP and JintraOP  are higher when 
employing a single localized MO. Additionally, �OCP exhibits a 
similar behavior. Conversely, ∇2𝜌OCP

(
r⃗
)
 assumes more negative 

values. This suggests a slightly higher charge concentration in 
the overlap density when a single localized MO is utilized, pos-
sibly due to the design of LMOs to maximize electron density 
locality. Furthermore, considering only one LMO to build the 
overlap density means that the nodal regions from other LMOs 
are not taken into account. These nodal regions contribute 
negatively to the total (and positively defined) electron density. 
Consequently, constructing the overlap density using only the 
bonding LMO may result in higher values of �OP.

Figure  2b,c clearly demonstrate that the OP density remains 
invariant under general orbital unitary transformations. MO 
localization procedures, being unitary transformations, main-
tain the total electron density unchanged, and similarly, the 
OP density is found to be invariant to these transformations. In 
Figure 2d, the electron densities (total 𝜌

(
r⃗
)
 and overlap 𝜌OP

(
r⃗
)
) 

profiles along the O–C bond axis are illustrated. It is evident that 
both the total electron density and the overlap portion are en-
tirely equivalent when spanning all LMOs or CMOs, resulting 
in superimposed profiles along the O–C bond.

(17)an =
K−1d†

n

dnK
−1d†

n

.

(18)kan = a†nKan.
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Interestingly, it is observed that the localized nature of the over-
lap density is maintained even when canonical MOs are utilized. 
This preservation of equivalence results in entirely similar OP/
TOP descriptors, permitting the use of canonical MOs as a suit-
able basis for deriving the overlap density and its corresponding 
OP/TOP descriptors. While LMOs of any type could be em-
ployed for obtaining OP/TOP descriptors, CMOs are chosen here 
as the primary and straightforward option, widely adopted by 
various quantum chemistry packages. In the MCSCF procedure, 
the reference set of LMOs undergoes reoptimization, leading to 
a loss of their locality character. However, if the MOs result-
ing from the reoptimization of an initial set of LMOs maintain 

orthogonality, they can be utilized to construct the total electron 
density and obtain the OP density and its descriptors.

3.1   |   Active Space Size Convergence

The convergence of CASSCF wavefunctions has been a subject 
of study for some time, and it's well-known that properties other 
than the energy converge with the active space size in a different 
manner than the energy [62]. Moreover, it has been established 
[118] that certain properties, such as the molecular dipole and 
polarizability, exhibit weak dependence on the size of the active 
space. It's important to note that even with a use of a large active 
space CASSCF may not recover a significant portion of dynamic 

FIGURE 2    |    OP/TOP descriptors for the O–C bond in H3C–OH 
obtained using a single localized MOs (a), spanning all LMOs (b), and 
encompassing all canonical MOs (c). Panel (d) displays total (𝜌

(
r⃗
)
) and 

overlap (𝜌OP
(
r⃗
)
) electron densities (along O–C bond axis) spanning all 

LMOs/CMOs. 𝜌OP
(
r⃗
)
 maps in (a), (b), and (c) isosurfaces with contour 

values of 0.01, 0.03, 0.06, 0.10, and 0.15 e∕a3
0
 were used in a red-green-

blue color scheme, as indicated in (a). Calculations at the HF/def2-TZVP 
level of theory. The figures were generated utilizing the ChimeraX 
software [114–117], wherein a clipping plane was applied in the O–C 
bond planes.

FIGURE 3    |    Variations in molecular dipole moment (a) and O–H 
overlap density �OP (b) with active space size in H2O for different basis 
sets. The calculations were conducted using CASSCF active space sizes 
ranging from 6 to 30 and the DCD-CAS active space sizes from 6 to 10.
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correlation. Even in cases where dynamic correlation is not dom-
inant, it is crucial to test for each system under investigation 
CASSCF convergence with regard to increasing active space size 
and quality of basis set and their interplay. Figure 3 shows the mo-
lecular dipole moment (Figure 3a) and overlap density integral �OP 
(Figure 3b) for different active spaces sizes and different basis sets.

It is observed that the inclusion of extra polarization and diffuse 
function at basis sets def2-TZVPPD and def2-QZVPPD leads to 
equivalent values of both dipole (CAS(6,22) and higher) and �OP 
(CAS(6,16) and higher), with a value converging (1.846 Debye) 
to literature reference (1.864 Debye [119]). Interestingly, from 
CAS(6,16) to CAS(6,22), even with different molecular dipole 
moments, the overlap density integral for O–H bonds assume 
the same values for both def2-TZVPPD and def2-QZVPPD basis. 
The dynamic correlation corrected by the DCD-CAS method 
yields dipole moment values that are essentially the same as 

those obtained from the CASSCF counterparts up to CAS(6,10). 
A slight difference is observed in the �OP values, but the trends 
remain similar. It is important to note that DCD-CAS was per-
formed for an active space consisting of 6 electrons and up to 10 
orbitals, due to the strong scalability of computational resource 
requirements with the number of determinants that DCD-CAS 
involves [78].

In addition to the observed convergence for the def2 basis set 
series, it is crucial to highlight some caveats. The achieved 
wavefunction convergence may not be replicated when uti-
lizing other basis set families, such as Dunning's or Pople's 
basis sets. Figure 4 illustrates the electron density profiles (at 
CAS(6,30) level) along the O–C bond in H3C–OH for Dunning's 
aug-cc-pVnZ (for n = D, T, Q), Pople's 6-311++G(2df,2p), and 
def2QZVPPT basis sets. Additionally, the electron density dif-
ference maps among Dunning's basis sets are presented.

FIGURE 4    |    (a) Profiles of total and overlap electron densities along the HO–H bond axis calculated at HF/def2QZVPPD, (b) and (c) respectively 
depict the total and overlap density profiles along the HO–H bond axis at CAS(6,30) level of theory using various basis sets. (d) Illustrates isosurfaces 
of the difference electron density (±0.006 e∕a3

0
 in blue/red) obtained with different Dunning's basis sets within the CAS(6,30) framework. (e) Presents 

OP/TOP descriptors for various basis sets at the CAS(6,30) level. In (a), (b), and (c) profiles, the oxygen atom is on the left, and the hydrogen atom is 
on the right side.
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First, in Figure 4a, the total and overlap electron densities con-
structed with canonical and localized MOs are shown, once 
again highlighting the invariance of OP density with MOs trans-
formation. Additionally, in both Figures 2d and 4a, the elimina-
tion of contributions from one center to the total electron density 
can be observed. Naturally, heavier atoms exhibit increased 
atomic contributions. As it is not straightforward to perform 
CASSCF with LMOs as a starting point and maintain locality 
throughout the MCSCF procedure, Figure 4a was constructed 
for an HF wavefunction solely for the purpose of comparing the 
use of LMOs and CMOs in a system other than CH3OH, specifi-
cally H2O in this case.

Figure 4b illustrates profiles of the total electron density along 
the H–OH bond axis at the CAS(6,30) level of theory using 
various basis sets. It is evident that, with the progression from 
n = D to Q in aug-cc-pVnZ basis sets, the total electron density 
undergoes significant changes in its distribution along the bond 
region, with a more pronounced impact close to the H atomic 
position. Additionally, in the bonding region, the basis sets aug-
cc-pVQZ, 6-311++G(2df,2p), and def2QZVPPD lead to more 
similar density profiles. Figure 4d provides a 3D visualization of 
the density shifts corresponding to the changes in the basis set 
from n = D to Q in aug-cc-pVnZ, highlighting a notable decrease 
in electron density in the bonding region characterized by the 
red isosurfaces (− 0.006e∕a3

0
).

Rappoport and Furche [107] emphasized that the adage “bigger 
is not necessarily better” holds true for diffuse basis set augmen-
tation. These authors argued that finding the right balance be-
tween improved response properties and stability of the ground 
state can be difficult, particularly for smaller valence basis sets. 
Excessive diffuse augmentation may lead to issues such as spu-
rious overpolarization, ill-conditioned overlap matrices, and a 
breakdown of integral prescreening and other low-order scaling 
methods. A fundamental tenet of def2 basis sets is the adoption 
of the smallest possible number of diffuse functions to mitigate 
these challenges.

Figure 4e provides a summary of OP/TOP descriptors for vari-
ous basis sets at the CAS(6,30) level. Notably, OP/TOP descrip-
tors sensitively reflect small variations in the electron density at 
the bond region, as measured by the OP density. It is emphasized 
that the OP density, being decomposed from atomic (one-center) 
contributions, is revealed to be more sensitive to changes in the 
basis set. It is important to highlight that the sensitivity lies not 
in the OP density being basis-set dependent but in its descriptors 
changing due to alterations in the total electron density caused 
by the change in the basis set.

The OP density is obtained by using orbitals expanded in atomic-
centered bases and is partitioned in a Mulliken-like manner. 
Consequently, the intrinsic problems behind any Mulliken-like 
partition persist in our OP density. However, the main pitfall of 
a Mulliken-like partition is related to the excessive extension 
of diffuse functions when they are centered on one atom but 
reach a neighboring atom, artificially attributing electron den-
sity to the former atom. In the case of the OP density, we posit 
that adopting the overlap between atoms is mitigating this issue. 
This is primarily because we are not attributing any exponent 

that is centered on one atom (but pertains information from 
the neighbor atom) to that individual atom, but rather, we are 
considering exactly the shared contributions. This is evident as 
different basis sets, with a range of diffusion exponents, lead to 
similar OP density shapes.

An important aspect is that integrating Equation  (10) yields 
the well-known Mulliken overlap population between atoms 
A and B. However, a significant distinction between Mulliken 
integrated overlap terms and the overlap model described here 
is that 𝜌OP

(
r⃗
)
 (as written in Equation 11) is utilized in regions 

with positive values, while negative portions are considered as 
part of the atomic counterparts for the total electron density. 
This approach ensures the equality �mol = �A + �B + �OP + �rest, 
where the last term refers to contributions from R and R′ when 
considering an A–B bond in a system R–A–B–R′. Furthermore, 
it is worth noting that all descriptors offered by the OP model 
are not accessible through traditional Mulliken analysis, as 
demonstrated in recent literature employing the OP model 
[35, 37, 41, 45, 86, 120, 121]. Moreover, since the converged wave-
function is not influenced by any further basis set and/or active 
space extension, we can conclude that in this situation the over-
lap descriptor basis set and active space size dependencies are 
mitigated.

3.2   |   QTAIM and LVM Trends in Test Systems

The chosen test systems represent various changes in the bond-
ing situations arising from different chemical environments. 
Molecules numbered from 1 to 8 in Figure 1 encompass X–OH 
bonds with a diverse range of interaction classifications, encom-
passing polar covalent, charge-shift bonds, and ionic bond types 
(with increased multiconfigurational character calculated via 
the M-diagnostic—see Table S4). Fugel et al. [79] conducted a 
comprehensive analysis of these systems, primarily using DFT 
methodologies. Their bond analysis encompasses a wide range 
of bond descriptors, although it does not include OP/TOP and 
LVM descriptors. Additionally, it's worth noting that our test 
systems 1, and 9–12 were not considered in Fugel's report.

Table 1 provides a comprehensive summary of the obtained re-
sults for each chemical bond descriptor across all test systems. 
Notably, all QTAIM results are consistent with those previously 
reported by Fugel et al. [79].

In general, for test systems 1–3, it is observed that the H–O bond 
is the sole covalent bond, exhibiting both HBCP and ∇2�OCP with 
negative values. These negative values indicate a shared inter-
action (HBCP < 0) and a bond charge concentration (∇2�OCP < 0). 
In test systems 2 and 3, the bond distance gradually increases, 
followed by a slight decrease in the already low values of �rBCP. 
From Li–OH to Na–OH bonds, there are low positive values for 
HBCP and relatively high positive values for ∇2�OCP, that decrease 
from Li to Na. This suggests that these bonds are primarily de-
termined by electrostatic interactions and are characterized as 
ionic in nature. The local force constants of X–OH in test sys-
tems 1–3 qualitatively agree with bond distance, with ka values 
decreasing as the bond distance increases, following the order 
ka(H–OH) > ka(Li–OH) > ka(Na–OH).
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Test systems 4–8 demonstrate variations in the bond situations 
for X–OH with X ranging from B to F. The results are generally 
consistent with those reported by Fugel et  al. [79], with some 
slight differences, likely attributable to the different computa-
tional methods (single- vs. multi-determinant) employed. As 
expected, B–O exhibits a positive ∇2�BCP and a negative HBCP, 
characterizing it as a highly polarized covalent bond. In contrast, 
C–O and N–O are classified as polarized covalent bonds due to 
both ∇2�BCP and HBCP being negative. The O–O bond shows a 
negative HBCP and a positive, nearly zero ∇2�BCP, which increases 
in the case of the F–O bond.

Test system 9 (FOOF) is known to exhibit multiconfigura-
tional character (with a high Mindex value, see Table  S4 in the 
Supporting Information) and possesses unusual chemical prop-
erties. It has been reported [54] to have an atypical geometry 
with a very short O–O bond, approximately 1.22 Å, as a result 
of the anomeric effect, which delocalizes a �-type lone pair on 
oxygen into a low-lying �∗(O–F) orbital. Consequently, the O–O 
bond in FOOF shows a high negative ∇2�BCP, indicating charge 
concentration in the bond region and a strong covalent charac-
ter, with HBCP being negative.

It's worth noting that both O–O (in HOOH) and F–O (in FOH) 
bonds are characterized as being stabilized by the resonance of 
ionic forms rather than the covalent sharing of electrons, known 
as charge-shift bonds (CSBs) [122]. A characteristic of CSBs is 
that the electron density between the bonded atoms is predicted 
to be low, which is not entirely reflected in the high values of 
�rBCP for O–O and F–O bonds obtained from QTAIM. As CSB 
is inherently a multi-determinant concept, a deeper analy-
sis of this behavior can be facilitated through a comparison of 
Hartree-Fock (single determinant) and CASSCF (including 
multi-determinants). Figure 5a,b provides OP/TOP descriptors 
for the O–O bond in HO–OH obtained using Hartree-Fock 

(Figure  5a) and CAS(10,16) (Figure  5b) wavefunctions, while 
Figure 5c depicts total (𝜌

(
r⃗
)
) and overlap (𝜌OP

(
r⃗
)
) electron den-

sities along the O–O bond axis. It is observed that the HF calcu-
lation, when compared with the CASSCF counterpart, results in 
an OP density that is more electron-rich (higher �OP), with also 
higher JintraOP . The HF wavefunction also exhibits more negative 
∇2�OCP and higher �OCP.

Despite the prediction in CSBs that the electron density between 
bonded atoms is expected to be low, the CASSCF total electron 
density along the O–O bond axis is higher than the HF counter-
part. This is probably a consequence of the ionic determinants 
taking place in the CASSCF procedure, which are not present 
in the HF calculation. Conversely, when considering the OP 
density, a decrease in �OP when multi-determinantal effects take 
place is observed, aligning with the resonance of ionic forms 
rather than the covalent sharing of electrons idea of CSBs. A 
more detailed analysis of the relationship between OP descrip-
tors and CSBs can be found in the literature [35]. Essentially, 
using DFT-based OP densities, it was found that larger CSBs 
resonance energies were associated with more compact overlap 
densities. A further analysis on this subject using MCSCF, de-
spite being relevant, is outside the scope of the present report.

The comparison presented in Figure  5 also serves as a com-
pelling example highlighting the motivation for the effort 
involved in transitioning from monodeterminantal to multi-
determinantal wavefunctions when studying chemical bonds, 
even for small systems.

From the perspective of LVM theory, the local force constants 
decrease in the series from B to F, with the exception of the HO–
OH case, which exhibits an increased ka value. In this sense, the 
O–O bond is stronger than the C–O and N–O bonds in test sys-
tems 5 and 6, and the O–O bond in test systems 9.

TABLE 1    |    Results for test examples 1–12 (see Figure 1): Bond distance r (in Å), overlap density �OP (in e), intra-overlap repulsion Jintra
OP

 (in Eh), 
overlap critical point density �OCP (in e∕a3

0
), Laplacian of �OCP at OCP ∇2�OCP (in e∕a5

0
), electron density at BCP �rBCP (in e∕a3

0
), local energy density 

HBCP (in Eh ∕a30), Laplacian of �rBCP (in e∕a5
0
), and local bond stretching force constant ka (in mDyn/Å). Calculations were performed at the CASSCF/

def2-QZVPPD level of theory (details in Section 2.7).

No. Bond r �OP Jintra
OP

�OCP �
2
�OCP �rBCP

HBCP �
2
�rBCP

ka

1 H–OH 0.96 0.685 9.926 0.188 −1.796 0.370 −0.810 −2.860 8.400

2 Li–OH 1.59 0.905 11.526 0.108 −1.262 0.072 0.014 0.667 2.604

3 Na–OH 1.94 0.230 0.649 0.017 −0.174 0.051 0.011 0.430 1.877

4 H2B–OH 1.35 0.749 12.000 0.165 −1.531 0.215 −0.195 1.029 6.479

5 H3C–OH 1.42 0.577 7.749 0.137 −1.064 0.265 −0.426 −0.692 4.689

6 H2N–OH 1.44 0.369 3.837 0.116 −0.865 0.294 −0.268 −0.372 4.294

7 HO–OH 1.45 0.280 2.369 0.101 −0.777 0.283 −0.204 0.020 5.595

8 F–OH 1.43 0.244 1.856 0.098 −0.899 0.280 −0.190 0.230 4.096

9 FO–OF 1.22 0.472 6.861 0.205 −1.929 0.557 −0.795 −1.048 4.320

10 Li–F 1.57 0.582 6.391 0.166 −3.440 0.077 0.014 0.718 3.891

11 Li–Cl 2.03 0.655 5.934 0.045 −0.216 0.044 0.005 0.276 1.401

12 Li–Br 2.18 0.665 5.641 0.033 −0.125 0.038 0.003 0.208 2.103
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Test systems 10–12 (Li–F, Li–Cl, and Li–Br) exhibit small 
and positive �BCP and HBCP, both decreasing along the series. 
Additionally, the high and positive ∇2�rBCP value also decreases 
along this series. These values indicate charge depletion in these 
bonds (∇2�rBCP > 0) and major electrostatic interactions (HBCP > 0). 
The local force constants for test systems 10–12 agree with the 
normal mode force constants, but their behavior does not follow 
either the bond distances or the QTAIM descriptors.

3.3   |   OP/TOP Descriptors for the Studied 
Molecules

Considering the performance and computational demands of 
CASSCF calculations for OP/TOP descriptors is crucial. These 
calculations are notorious for their time-consuming nature, 
with computational resources scaling notably with basis set size 
and active space [123]. For instance, a CAS(6,6) calculation gen-
erates 141 Slater determinants, while a CAS(6,30) calculation 
produces around 1.4 × 106 Slater determinants, illustrating the 
challenge of larger active spaces (see Figure  S1 in Supporting 

Information). Despite this, once converged, the number of Slater 
determinants required for accurate wavefunction description 
varies by system. Our implementation in ChemBOS efficiently 
handles Slater determinants with strong parallel performance. 
For instance, in a CASSCF(6,6)/def2-QZVPPD calculation 
for H2O, ChemBOS achieves a remarkable speedup of approx-
imately 105 when run with 128 threads on an AMD EPYC 
7763 with 512 GB of RAM (details in Figure S16 in Supporting 
Information).

The increase in bond polarization, as captured by QTAIM 
through ∇2�rBCP and HBCP descriptors, is interpreted as a decrease 
in covalent character. This aligns with the well-established 
Bent's rule [124], which posits that bonds between elements of 
varying electronegativities tend to be polar, causing the electron 
density in such bonds to shift towards the more electronegative 
element. Recently, Alabugin, Bresch, and Manoharan [125] used 
a polarization percentage (Pol%) calculated as the square of 
natural hybrid orbital (NHO) coefficients in the bonding NBOs 
from MP2/6-311++G(d,p) level of theory and reported results 
consistent with Bent's rule, showing that polarization towards X 
(in HnX–OH) bonds increases from B–O to F–O.

In a similar vein, other chemical bond descriptors are antic-
ipated to yield chemically meaningful values that align with 
these trends. According to the OP model, chemical bonds formed 
between atoms with different electronegativities are likely to 
exhibit overlap density (𝜌OP

(
r⃗
)
) shifted towards the more elec-

tronegative atom. Profiles of 𝜌OP
(
r⃗
)
 along the bond axis for test 

systems 1–12 are presented in Figure 6.

It is evident that 𝜌OP
(
r⃗
)
 tends to be more concentrated around 

the most electronegative atom and less dispersed in the bond-
ing region, consistent with the expected behavior. �OP represents 
the two-center contribution of a specific bond to the total one-
electron density and generally has higher values for electron-
rich chemical bonds. This trend is also evident in Table  1 
and Figure 6. Across all subgroups (test systems 1–3, 4–8, and 
10–12), the overlap critical point density (�OCP) decreases as one 
transitions from H to Na in O–X bonds for test systems 1–3, from 
B to F in test systems 4–8, and from F to Br in Li–X bonds for test 
systems 10–12.

In the series of alkali (and hydrogen) hydroxides (test systems 
1–3), the H–O bond stands out with the highest �OCP and ∇2�OCP 
values, even though it doesn't have the highest �OP and JintraOP  val-
ues when compared to the Li–OH bond. This distinction arises 
from the inherently polar covalent nature of the H–O bond, as 
revealed by the QTAIM analysis. Additionally, hydrogen (H) 
lacks core electron shells, which further contributes to these dif-
ferences. Consequently, the overlap density in H–O bond is dis-
tributed throughout the entire bond region but predominantly 
concentrates along the bond axis (as depicted in the gray plot 
in Figure 6a). As we progress down the Periodic Table, moving 
from Li to Na, a significant decrease in overlap density becomes 
evident, primarily due to the heightened ionic character of these 
bonds. 2D color maps of the overlap density for test systems 1–3 
are available in the Supporting Information.

In test systems 4–8, the B–O bond, which has the highest �OCP 
in the series and is less spread (exhibiting the most negative 

FIGURE 5    |    OP/TOP descriptors for the O–O bond in HO–OH 
obtained using Hartree-Fock (a) and CAS(10,16) (b) wavefunctions. 
Panel (c) displays total (𝜌

(
r⃗
)
) and overlap (𝜌OP

(
r⃗
)
) electron densities 

along O–O bond axis. 𝜌OP
(
r⃗
)
 maps in (a) and (b) ranging from 0 to 0.16 

e∕a3
0
 in a red-green-blue color scheme. Calculations using def2QZVPPD 

basis set. The figures were generated utilizing the ChimeraX software 
[114–117], wherein a clipping plane was applied in the O–O bond planes.
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∇2�OCP), also exhibits the largest JintraOP . The qualitative scenario 
of overlap charge spreading across the chemical bond is quanti-
fied by the �OCP and ∇2�OCP descriptors, indicating less spread 
(i.e., less negative ∇2�OCP) bonds from C–O to F–O, as illustrated 
in Figures 6b and 7.

Figure  7 is equipped with lines that pass through the middle 
of the bonds, aiding the visualization of bond overlap density 
polarization towards the more electronegative atom. An ob-
servable trend is the gradual decrease in the values of �OP, �OCP, 
and JintraOP  as we progress from B–O to F–O. Notably, ∇2�OCP be-
comes less negative up to O–O, but then increases for the F–O 
bond. Local bond stretching (ka) inversely follows the trend of 
∇2�OCP, decreasing along the series but inverting the behavior 

FIGURE 6    |    Profiles of 𝜌OP
(
r⃗
)
 along the bond axis for test systems 

1–11. In plots (a) and (b), the oxygen atoms are depicted on the 
left side, while in plot (c), it is the lithium atom. Calculations were 
performed at the CASSCF/def2-QZVPPD level of theory (details in 
Section 2.7).

FIGURE 7    |    OP/TOP descriptors and 𝜌OP
(
r⃗
)
 maps for O–X bonds, 

where X = BH2, CH3, NH2, OH, and F. Isosurfaces with contour values 
of 0.01, 0.03, 0.06, 0.10, and 0.15 e∕a3

0
 were used in a red-green-blue 

color scheme, as indicated in (a). Calculations were performed at the 
CASSCF/def2-QZVPPD level of theory. The figures were generated 
utilizing the ChimeraX software [114–117], wherein a clipping plane 
was applied in the C–X bond planes.
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for HO–OH. It's interesting to note that QTAIM does not align 
with the trends observed in both OP/TOP and LVM analyses.

It's interesting to note that QTAIM indicates that the B–O bond 
is associated with a relatively high negative value of HBCP, which 
Fugel et al. [79] attributed to the additional orbital overlap aris-
ing from the B–O � bond. The �OP values in Table 1 take into 
account the overlaps between all MOs of different shapes in a 
multiconfigurational fashion, and indeed, the B–O bond exhib-
its a high �OP value, which can be attributed to the extra stabili-
zation of this bond. This extra stabilization is also supported by 
LVM analysis, which identifies the B–O bond as the strongest in 
the series of test systems from B–O to F–O.

Test system 9 exhibits a dihedral angle of 88.2°, which is close to 
90°. Kraka and collaborators [54] reported that this conforma-
tion reduces lone pair-lone pair repulsion in the FOOF molecule. 
This dihedral arrangement facilitates the delocalization of the 
�-type lone pairs on oxygen into a low-lying �∗(OF) orbital via 
the anomeric effect. Bridgeman and Rothery [126] also noted 
that the balance between F–O orbital repulsion and the O–O 
bond explains the anomalously long F–O and short O–O bond 
distances. In general, F–O single bonds are destabilized and 
lengthened due to repulsion between the lone pairs on fluorine 
atoms and the � orbitals of the O–O bond, a phenomenon not 
observed in HOOH. From the perspective of the OP/TOP model, 
the balance between different repulsive interactions, lone-pair 
delocalization, and lone-pair interaction with other orbitals in-
creases the O–O overlap density (see Figure 7f), which is clearly 
reflected in the overlap descriptors.

In test systems 10–12, which include Li–F, Li–Cl, and Li–Br 
bonds, the same trend as in the other test system groups is ob-
served, where �OP increases with increasing covalency or de-
creasing ionicity. However, there is an interesting difference 
between these two groups of systems. In test systems 1–8, higher 
values of �OP are generally followed by high values of JintraOP . In 
test systems 10–12, on the other hand, we notice that as �OP in-
creases, JintraOP  decreases.

A more detailed analysis of TOP descriptors reveals that in the 
Li–X series, where X ranges from F to Br, the variation in ∇2�OCP 
is much more pronounced. For example, it is −3.440 e∕a5

0
 for 

Li–F and −0.125 e∕a5
0
 for Li–Br. Essentially, as we move from 

Li–F to Li–Br, the overlap density becomes significantly more 
spread along the bond region, as measured by ∇2�OCP (as seen in 
Figure 6c). This leads to a drop in JintraOP  even though there is an 
increase in the overlap density integral.

3.4   |   OP/TOP Descriptors Li–F Bond Dissociation

We have chosen the dissociation pattern of the Li–F bond to 
highlight the differences in OP/TOP descriptors when utilizing 
CASSCF and a second-order corrected wavefunction, specifi-
cally the Orca implementation DCD-CAS(2). The primary aim 
is to demonstrate that even a partial correction addressing dy-
namic correlation in the wavefunction leads to differences in the 
OP density and its descriptors. Notably, in this Li–F example, a 
proper treatment of dynamic coupling is known to be manda-
tory, especially as one approaches the dissociation point in Li–F. 

We utilized a state-averaged CAS(2,6) wavefunction, giving 
equal weights to the ground and first excited states. This active 
space includes the molecular orbital mainly composed of a pz 
orbital located on the F atom, with small contributions from Li 
s-type atomic orbitals (illustrated in Figure 8a and referred to 
as MO-A), and a �-type orbital primarily composed of Li s-type 
orbitals with small contributions from Fs- and pz-type atomic 
orbitals (depicted in Figure 8b and referred to as MO-B), among 
others.

At the equilibrium geometry, which is close to 1.5 Å, the ground 
state is primarily characterized by the Slater determinant in-
volving MO-A, with a doubly occupied status. The Slater de-
terminant composed of MO-B at a Li–F distance of 1.5 Å has 
negligible weight. However, as the dissociation of the Li–F 

FIGURE 8    |    Visualization of the two primary molecular orbitals 
(MOs) constituting the CAS(2,6) wavefunction during the Li–F 
dissociation process. Label 1 refers to Li and 2 to F atom. MO (a) is 
predominantly composed of F pz-type atomic orbitals, while MO (b) is 
mainly derived from Li s-type atomic orbitals. Each box corresponds 
to a specific distance along the Li–F dissociation, displaying CASSCF 
coefficients and information about the compositions of Slater 
determinants. The numbers within each Slater determinant denote the 
occupation of the respective MO, with blue representing (a) and red 
representing (b). MOs are depicted with isosurfaces set at 0.05 e∕a3

0
.
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molecule proceeds, both the weights (CASSCF coefficients) and 
MO shapes undergo significant changes. MO-A gradually loses 
its Li s-type character, while the weight of the Slater determi-
nant involving both MO-A and MO-B as single occupied orbitals 
increases. As depicted in Figure  8, at approximately 4.1 Å, an 
inversion in weights occurs, with the Slater determinant where 
both MO-A and MO-B are singly occupied having the larger 
coefficient. At greater distances (6.5 Å in Figure  8), MO-A is 
characterized by a pure 2pz orbital at the F atom, while MO-B 
exhibits a pure 2s orbital at the Li atom. At this point, it can be 
considered that two neutral species are formed, with each MO 
having one electron.

It's important to mention that CASSCF calculations usually 
predict an avoided crossing point (between ground and excited 
states energies) at a distance of approximately 4.1 Å, as reported 
in previous studies [78, 127]. In contrast, a Full CI reference in-
dicates an avoided crossing occurring at roughly 6.6 Å [128], and 
DCD-CAS(2) calculations with a CAS(2,2) active space result in 
a crossing point at 5.65 Å [78].

While the CASSCF (or other more accurate) wavefunction coef-
ficients provide valuable insights into the ionic/ neutral nature 
of the chemical species, it is equally important to evaluate how 
chemical bond descriptors capture the changes in the wave-
function as a bond is broken. In this context, Figure 9 presents 
OP/TOP descriptors along the dissociation profile of the Li–F 
ground state using the CAS(2,6) wavefunction, as well as its cor-
rection at the DCD-CAS(2) level of theory. These curves focus 
on the range of 3.0 to 6.5 Å, covering the crossing points for 
both CASSCF and DCD-CAS(2) wavefunctions. Generally, for a 
given distance, the DCD-CAS(2) wavefunction yields higher val-
ues of �OP, �OCP, and JintraOP  compared to the CASSCF counterpart. 
Additionally, ∇2�OCP is more negative with the DCD-CAS(2) 
wavefunction.

It is worth noting that OP/TOP descriptors sensitively reflect 
the ionic/neutral inversion in each type of wavefunction along 
the Li–F dissociation profile. Figure 9c shows that �OCP drops to 
nearly zero precisely at the Li–F distance of 4.1 Å, the point at 
which the inversion occurs. JintraOP  and ∇2�OCP approach zero for 

FIGURE 9    |    OP/TOP descriptors: (a) �OP, (b) JintraOP , (c) �OCP, and (d) ∇2�OCP for Li–F bond dissociation profile using CASSCF(2,6) and DCD-
CASSCF(2,6) wavefunctions.
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distances above 4.1 Å. The overlap density integral exhibits an 
interesting behavior. It experiences a significant decrease near 
4.1 Å, but then �OP gradually decreases, becoming similar to the 
DCD-CAS(2) counterpart at a Li–F distance of 5.5 Å. This indi-
cates that even when the neutral determinant dominates (with 
neutral Li having one electron in the 2s orbital and neutral F 
with a hole in the 2pz orbital), there is still some orbital overlap-
ping occurring.

Both CASSCF and DCD-CAS(2) yield �OP values that approach 
zero at approximately 6.5 Å. Specifically, for the CAS(2,6) wave-
function, �OP vanishes close to 4.1 Å, whereas for the DCD-
CAS(2) counterpart, this occurs near 6.1 Å. The disparity in the 
zero points of �OP and �OCP suggests a widely distributed overlap 
density, with its maximum critical point close to zero but still 
maintaining integrated overlap density. These insightful details 
about the MCSCF wavefunction, as provided by OP/TOP, can 
pave the way for novel applications in understanding chemical 
bond dynamics across various multiconfigurational and mul-
tireference classes of wavefunctions. Certainly, methodologies 
such as FullCI, MRCI, or other more robust approaches that 
account for dynamic coupling would result in a more accurate 
wavefunction and, consequently, more precise OP descriptors. 
It's crucial to recognize that with OP density descriptors, the 
accuracy is inherently tied to the quality of the wavefunction. 
While the ChemBOS implementation readily accommodates 
these methodologies, it's important to note that they are beyond 
the scope of the present report.

4   |   Conclusions

In conclusion, this study delved into the realm of chemical bond 
descriptors, focusing on the extension of OP/TOP descriptors 
based on MCSCF wavefunctions. Through a comparative anal-
ysis of CASSCF wavefunctions for various molecular systems, 
including the X–O and Li–X′ test systems, we gained valuable 
insights into the behavior of these descriptors. The OP density 
invariance under general orbital unitary transformations offers 
a practical approach to compute overlap densities and OP/TOP 
descriptors accurately. Furthermore, the results highlighted the 
importance of converged wavefunctions in achieving precise 
property calculations.

Our investigation encompassed a broad spectrum of molecular 
systems, including X–O bonds in X–OH and Li–X′ interactions, 
each subjected to CAS(10,16) and CAS(6,20) calculations. 
These analyses challenged the MCSCF-based OP/TOP bond 
descriptors, offering valuable insights and allowing for com-
parisons with QTAIM and LVM descriptors. OP/TOP descrip-
tors, guided by the OP model, demonstrated that chemical 
bonds formed between atoms with differing electronegativities 
tend to exhibit overlap density shifted towards the more elec-
tronegative atom. This effect was quantified using �OCP and 
∇2�OCP descriptors, which indicated reduced spreading (i.e., 
less negative ∇2�OCP) in bonds with increasing electronegativ-
ity differences.

Additionally, our analysis of the Li–F dissociation profile re-
vealed that OP/TOP descriptors sensitively reflected the ionic/
neutral inversion along the Li–F dissociation pathway. The 

overlap density integral exhibited a distinctive behavior, expe-
riencing a significant decrease near 4.1 Å, followed by a gradual 
decrease in �OP, aligning with the DCD-CAS(2) counterpart at 
a Li–F distance of 5.5 Å. The analysis of �OCP and ∇2�OCP along 
the dissociation pathway suggests a widely distributed overlap 
density near the ionic/neutral inversion. This intriguing obser-
vation suggests that even when the neutral determinant domi-
nates, with neutral Li possessing one electron in the 2s orbital 
and neutral F exhibiting a hole in the 2pz orbital, some degree of 
orbital overlap persists.

Notably, OP/TOP descriptors provided unique perspectives on 
chemical bond dynamics, particularly in the context of multi-
configurational and multireference wavefunctions. The sensi-
tivity of OP/TOP descriptors to ionic/neutral inversion during 
Li–F dissociation showcases their potential to elucidate differ-
ent bonding phenomena. Our findings open the door to novel 
applications targeting a deeper understanding of chemical bond 
dynamics across diverse wavefunction classes and further ad-
vancing our comprehension of molecular properties and chem-
ical interactions.
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