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Abstract

In protein-ligand docking, the score assigned to a protein-ligand complex is approxi-

mate. Especially, the internal energy of the ligand is difficult to compute precisely

using a molecular mechanics based force-field, introducing significant noise in the

rank-ordering of ligands. We propose an open-source protocol (https://github.com/

UnixJunkie/MMO), using two quantum mechanics (QM) single point energy calcula-

tions, plus a Monte Carlo (Monte Carlo) based ligand minimization procedure in-

between, to estimate ligand strain after docking. The MC simulation uses the ANI-2x

(QM approximating) force field and is performed in the dihedral space. On some pro-

tein targets, using strain filtering after docking allows to significantly improve hit

rates. We performed a structure-based virtual screening campaign on nine protein

targets from the Laboratoire d'Innovation Thérapeutique—PubChem assays dataset

using Cambridge crystallographic data centre genetic optimization for ligand docking.

Then, docked ligands were submitted to the strain estimation protocol and the

impact on hit rate was analyzed. As for docking, the method does not always work.

However, if sufficient active and inactive molecules are known for a given protein

target, its efficiency can be evaluated.
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1 | INTRODUCTION

Several researchers have warned about the difficulty of precisely cal-

culating the internal energy of a ligand using Molecular Mechanics

(MM) based methods.1–3 This fact has important implications for

protein-ligand docking scores.

Tirado-Rives and Jorgensen formally investigated the fact that

when a ligand binds to a protein, it is typically not in the same lowest-

energy conformation as the unbound ligand.1 The authors name “con-
former focusing” the loss of conformational freedom in the ligand

upon binding to a protein. The authors explain that misestimation or

neglect of this free-energy change alone is sufficient to prevent

proper rank-ordering of chemically diverse ligands in a protein-ligand

docking screen: docking scores are noisy. With force-fields at the time

(2006), the authors optimistically estimated that the error in calculat-

ing the free-energy change due to conformer focusing might be

between five to 10 kcal/mol.

In the same vein, Winkler3 noticed that “The inability to properly

account for entropy in the binding interactions is one of the contribu-

tors to the relatively poor performance of scoring methods even when

the docking force fields can generate good poses.” So, while it is

known that docking can predict the binding-mode of a known ligand
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(the “docking power”,4,5 as assessed by redocking experiments),

Winkler acknowledges that the virtual screening (VS) power4,5 is

lacking.

Peach and colleagues2 did a literature review and gathered that esti-

mates of ligand strain energy in protein crystal structures vary wildly

(between zero to 25 kcal/mol). Brueckner et al.6 proposed a formula to

compute an upper bound of ligand strain upon binding, solely based on

the ligand's number of heavy atoms (HA): Sub¼0:3 HA�10ð Þ.
To those remarks about the inaccuracy of computing a ligand's

conformer internal energy and so the significant noise in protein-

ligand docking scores, we must add that to the best of our knowledge

all flexible-ligand rigid-protein docking software only perform a heu-

ristic search in a high dimensional space. For example, for a ligand

with seven rotatable bonds, there are 13 degrees of freedom (three

rotational plus three translational plus the seven ligand internal

degrees of freedom). So, while a heuristic search can find a good solu-

tion in a timely manner, it does not guarantee it has found the global

minimum. And, this global minimum might be several kcal/mol away

from the found solution. In our opinion, this is another significant

source of noise in protein-ligand docking scores.

Recently, researchers have tried to exploit ligand strain after

docking.7 Rather than trying to “fix” docking scores, the authors pro-

pose to use a qualitative approach flagging docked ligands as

“strained” or “non-strained.” One way they propose to do this is to

compute the total ligand strain (measured in an unspecified “Torsion
Energy Unit” [TEU]). Their approach uses an adapted version of the

knowledge-based torsion library from Guba and colleagues.8 It is very

fast, taking on average 0.04 s for one ligand conformer on their test

computer. With their approach, if the total strain of a compound is

≤7.0 TEU, the conformer is classified as unstrained. Conversely, with

a total strain > 7:0 TEU the conformer is deemed strained. In their

benchmark on 40 database of useful decoys enhanced (DUD-E)9 tar-

gets and using DOCK3.7,10 the authors notice that with a total strain

threshold of 7.0 TEU, 30 targets see an increase in δLogAUC7

(a measure of early enrichment in VS). Encouraged by those results

and recent developments in neural network potentials (NNP),11–14 we

decided to investigate if a quantitative approach to estimate ligand

strain after docking was feasible and study its effect on post proces-

sing docking results from a commercial software (Cambridge crystallo-

graphic data centre [CCDC] genetic optimization for ligand docking

[GOLD]) on the stringent Laboratoire d'Innovation Thérapeutique—

PubChem assays (LIT-PCBA)15 dataset.

2 | METHODS

The standard definition of ligand strain is the difference in internal

energy between the lowest energy conformer of a ligand in vacuum

and its docked conformer on a protein.16 Unfortunately, we cannot

guarantee that we are able to compute the lowest energy conformer

of a ligand (a global minimum). Instead, we have opted to run a Monte

Carlo (MC) simulation in the dihedral space starting from the docked

ligand conformer. Bond lengths and bond angles are considered rigid.

Only single bonds out of rings and not connecting a terminal atom

(a heavy atom with degree one on the molecular graph) are consid-

ered rotatable during this simulation. The idea is that if there is a local

energy minimum near the docked conformer, an MC simulation

should be able to reach it. After looking into a few books,17–19 we

implemented Algorithm 1 in order to perform minimization of the

docked ligand conformer in vacuum, with a force field (ANI-2x11–14)

described as reaching quantum mechanics (QM) accuracy. Our imple-

mentation uses the ANI-2x11 model provided by the torchani20

Python package. On our test computer, ANI-2x allows the ligand

internal energy to be calculated about 100 times per second for a typ-

ical drug-like molecule. Experiments were run using MC simulations of

10�103 steps. ANI-2x enables running MC simulations at QM-accu-

racy, which would be computationally intractable using a standard

QM method (cf. Figure 2). Using psi4, the average run-time of a single

point ligand internal energy calculation is 633 s when using a single

core of our computing node (the minimum run-time is 1 s, median

536 s and maximum �48 min!). It would have been possible to run

MC simulations using a MM force field, but such force fields are
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F IGURE 1 Overview of the protocol to estimate ligand strain after docking: (1) Flexible-ligand rigid-protein docking. (2) QM calculation
of the docked ligand's internal energy (Edock). (3) MC minimization of the docked ligand conformer in the dihedral space using the ANI-
2x (QM approximating) NNP. (4) QM calculation of the minimized ligand's internal energy (Emin). (5) Calculation of the strain (Estrain ¼ Edock�Emin).
MC, Monte Carlo; NNP, neural network potential; QM, quantum mechanics.
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known to be of poor accuracy1–3 when describing a ligand's internal

energy. At each MC step, one of the rotatable bonds is selected uni-

formly at random. The angular value of the corresponding dihedral

angle is tweaked by adding a uniform random quantity δr� �dr,dr½ �,
where dr is the currently allowed maximal rotation increment for this

bond (dr¼5
�
at start). Every 100 MC steps, the selected bond is

instead tried to be set to a new value in �π,π½ �. Acceptance or rejec-

tion of the last move (and hence of a new ligand conformer) is subject

to the standard Metropolis criterion. If n is the number of rotatable

bonds of a ligand, every 100n steps, each rotatable bond maximum

rotation increment allowed (dr) is updated using a hysteresis scheme

taking into account the move acceptance ratio for this bond and the

target acceptance ratio (Algorithm 1). In essence, the more likely

moves are accepted for this bond, the more this bond will be allowed

to rotate. For bonds which are more constrained, the opposite is true.

These schemes are intended to make the conformational space explo-

ration more efficient.17

QM single point energy calculations (Figure 1) were performed

using psi421 driven by Mayachemtools;22 using the Becke,

3-parameter, Lee-Yang-Parr (B3LYP) method and the 6-31G** basis

set (6-31+G** for sulfur containing compounds) (Tables 1, 2).

In order to compare diverse molecules, the calculated strain is

divided by the number of rotatable bonds in a molecule; giving an

average dihedral strain. To compute hit rates among strained or

unstrained molecules, docked ligands were first sorted by increasing

strain (Figures 6 and 7).

TABLE 1 The nine ligand-binding sites that were used for docking.

ALDH1 (5l2m) ESR1-(5ufx) FEN1 (5fv7)

GBA (2v3d) KAT2A (5mlj) MAPK1 (4zzn)

MTORC1 (4dri) PKM2 (3gr4) VDR (3a2j)

Note: The protein target name is on top of each binding-site with the corresponding protein data bank (PDB) id between parenthesis. Figures made at

www.rcsb.org using NGL23 viewer.
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3 | DATASET

3.1 | A subset of the LIT-PCBA dataset

Structure-based virtual screening (SBVS) experiments were conducted

on nine protein targets from the LIT-PCBA dataset15 (Figures 1–3).

LIT-PCBA was designed to benchmark ligand and SBVS methods. It

was carefully curated from 149 PubChem26 assays. It contains 7844

confirmed actives and 407381 inactive molecules. In LIT-PCBA, for a

given protein target a true positive is a molecule passing all LIT-PCBA

filters15 for “true active” (only C, H, N, O, P, S and halogens allowed,

dose-response curve with Hill slope 0:5< h<2:0, molecule not a

TABLE 2 Possible protein-ligand interactions identified in crystal structures by PoseEdit24 (https://proteins.plus); legend at the bottom of the
figure.
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known PubChem aggregator or luciferase inhibitor or autofluores-

cent). A true negative is a molecule which is not detected as a hit in

the corresponding PubChem assay, but still has to pass all LIT-PCBA

filters (organic compound, adequate property ranges, etc.); cf. the LIT-

PCBA article15 for details. LIT-PCBA is a tough but realistic dataset

for VS experiments. Our nine targets were selected based on the

existence of at least 100 known active molecules, so that hit rates are

calculated using a significant number. Then, inactive molecules were

randomly selected to achieve a total of about 1000 molecules per pro-

tein, to keep the computational cost reasonable. Numbers vary slightly

(Figure 3) because some molecules fail the ligand preparation protocol

or QM calculation with psi421 or scoring with ANI-2x.11 One protein

structure protein data bank (PDB) was selected for each

protein (Figure 3), mostly based on the high resolution of the crystal-

lographic data (LIT-PCBA proposes several PDB entries for each pro-

tein target).

3.2 | Protein preparation and docking

Each protein was prepared using the Hermes graphical interface from

CCDC GOLD. Starting from PDB files downloaded from rcsb.org

ALGORITHM 1 LIGAND-ONLY (VACUUM) MONTE CARLO SIMULATION IN THE DIHEDRAL SPACE. THE FORCE

FIELD IS ANI-2X. COMMENTS ARE PREFIXED WITH //

function ligand_only_MC rng,steps,t, lð Þ
param rng // properly initialized random number generator

param steps // number of MC steps to perform

param t // simulation temperature in Kelvin (for Metropolis criterion)

param l // ligand with previously identified rotatable bonds

output lbest,Ebestð Þ // minimized ligand conformer and its energy

// initial maximum rotation allowed per rotatable bond is ±5�

set_default_rbonds_dr l, 5π
180

� �

a 0:5 // target acceptance ratio

low a�0:05 // hysteresis low bound

high aþ0:05 // hysteresis high bound

num_rbonds j get_rbonds lð Þ j
block 100�num_rbonds

Eprev þ∞
Ebest þ∞
lprev l

lbest l

for frame in 1::steps do

l tweak_rbond rng, lð Þ // a single rotatable bond is affected

Ecurr ene_intra lð Þ // the force field is ANI-2x

if Ecurr ≤ Eprev _metropolis_criterion rng,t,Eprev ,Ecurrð Þ then
Eprev Ecurr

lprev l

end if

// record lowest energy conformer

if Ecurr < Ebest then

Ebest Ecurr

lbest l

end if

if framemodblock¼0 then

// update maximum rotation allowed per rotatable bond

update_rbonds_dr low,high, lð Þ
end if

end for

return lbest,Ebestð Þ
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(5l2m, 5ufx, 5fv7, 2v3d, 5mlj, 4zzn, 4dri, 3gr4 and 3a2j), hydrogen atoms

were added, all water molecules and the cognate ligand were removed,

then the protein was saved in MOL2 format. The cognate ligand's geo-

metric center in combination with a radius of 10 Å were used as the

binding-site definition (GOLD's defaults). All other parameters were left

to their default values. Only the highest scoring pose per ligand was con-

sidered for further analysis (default ChemPLP scoring function).

3.3 | Ligands preparation prior to docking

Starting from the SMILES provided by LIT-PCBA: OpenEye tauto-

mers27 was used to generate one reasonable tautomer at pH 7.4 for

each ligand. Then, OpenEye OMEGA28,29 was used to generate one

low energy conformer per protonated ligand. Finally, OpenEye mol-

charge30 was used to assign partial charges to each conformer using

merck molecular force field 94.31

4 | RESULTS

Experiments were run on computers running Linux CentOS-7.9;

equipped with 2.6 GHz Intel Xeon CPUs (56 threads per node) and

256 GB of RAM.

4.1 | Flexible-ligand/rigid-protein docking VS
performance

In Figure 4, Receiver operating characteristic (ROC) area under the

curve (AUC) curves corresponding to the VS performance of CCDC

GOLD are shown. If one considers the virtual screen to have accept-

able performance only if the two following conditions are met: (1) the

AUC's 95% confidence interval32,33 is higher than 0.5 (Figure 5) and

(2) the early enrichment is better than random (i.e., the left part of the

ROC curve, between 0% false positive rate [FPR] and 5%, 10% or

20% FPR, is higher than the diagonal line), then only three targets

are amenable to a docking screen: ALDH1 (AUC = 0.63), GBA

(AUC = 0.6) and MAPK1 (AUC = 0.59). On ESR1m, the ROC AUC is

borderline (AUC = 0.57), but the early enrichment is random or

slightly worse. On three proteins (FEN1, KAT2A and VDR), with

respective AUC values (0.37, 0.38 and 0.32), the VS performance is

significantly worse than random. On the remaining two protein targets

MTORC1 and PKM2, the AUC values (0.51 and 0.54 respectively) are

dangerously close to 0.5, indicating random VS performance. While such
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results might be surprising, they are in line with our own past

experience34 when trying to dock the full LIT-PCBA dataset (only

five out of 15 protein targets had an acceptable enrichment factor

at 1% and only six had an AUC ≥ 0.6). Some other facts about

protein-ligand docking are worrisome: in a recent study on the

PDBScan2235 dataset, Flachsenberg and colleagues35 found that

only �30% of ligands were positioned at most 2 Å away from the

crystal ligand in a large, fully automated redocking study. In terms of

Enrichment Factor at 1% (EF1%), the LIT-PCBA authors used Surflex-

Dock and observed an average EF1% ≥2:0 on only six out of 21 pro-

tein targets.

4.2 | Effect of ligand strain filtering on hit rates

In Figure 6, the impact of strain filtering on hit rates is shown. On two

protein targets (FEN1 and VDR), the method could be used to

improve hit rates among selected molecules regardless of docking

scores. For FEN1, the background hit rate is about 20%. Using a strain

threshold of maximum 0.15 kcal/mol (average ligand strain per rotat-

able bond) the hit rate can be improved to 30%. Using a strain thresh-

old of maximum 0.1 kcal/mol, the hit rate can be doubled. On the

VDR protein, a threshold of 0.2 kcal/mol allows to improve the back-

ground hit rate from 20% to 30%. Deciding on a threshold to double
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the hit rate on this protein does not seem advisable: the range is too

narrow and the filter would reject too many molecules. One has to

keep in mind that the smaller the strain threshold, the more docked

molecules are going to be rejected by the filter. In Figure 6, the green

curve indicates the fraction of the docked molecules which pass the

filter. For the two proteins where the method looks useful (FEN1 and

VDR), a 0.2 kcal/mol strain threshold would keep about 5% of the

docked molecules. We do not see a usable strain threshold for

the seven other protein targets (ALDH1, ESR1m, GBA, KAT2A,

MAPK1, MTORC1, PKM2). Especially, for five proteins (ALDH1, GBA,

MAPK1, MTORC1 and PKM2), there is not any advisable strain filter-

ing threshold. Strain filtering would be detrimental to the hit rate

among docked molecules for those proteins.

4.3 | Effect of total ligand strain filtering on
hit rates

To check our results, we also analyzed our dataset using the method

of Gu and colleagues.7 1 When considering total ligand strain, our

method has a positive but small Spearman ρ correlation with the Uni-

versity of California, San Francisco (UCSF) method7 (0:4≤ ρ≤0:5

depending on the protein target). Looking at Figure 7, the method

looks advisable on one protein target (KAT2A), and to some extent to

two others (FEN1 and VDR). On KAT2A, a total ligand strain threshold

F IGURE 5 ROC AUC values with their 95% confidence intervals
for CCDC GOLD on the nine protein targets. AUC, area under the
curve; CCDC, Cambridge crystallographic data centre; GOLD, genetic
optimization for ligand docking; ROC, receiver operating
characteristic.
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of four TEU allows to bump the hit rate from about 20% to 30%. Such

a threshold would keep about 25% of the docked molecules. A strain

filter of two TEU allows to double the hit rate. On FEN1, a total ligand

strain threshold of two to three TEU allows to bump the hit rate

slightly, from 20% to about 25% to 30%. On VDR, a similar strain filter

of two to three TEU bumps the hit rate from 20% to 30%. On the six

other protein targets (ALDH1, ESR1m, GBA, MAPK1, MTORC1 and

PKM2), we do not see an advisable total strain filtering threshold.

Finally, the two different approaches agree on two protein targets

(FEN1 and VDR) where strain filtering might be useful.

5 | DISCUSSION

5.1 | Advantages

While we would have loved to see the method work on a majority of

protein targets, this is not the case but the same can be told for dock-

ing. Docking's VS performance is acceptable on ALDH1, GBA and

MAPK1 while strain filtering works on FEN1 and VDR. Strain filtering

can be used regardless of the performance of docking in terms of VS

power. That is, docking can be trusted to optimize non-bonded pro-

tein ligand interactions (optimizing a ligand's conformer into the bind-

ing site), then strain filtering used to select molecules instead of

relying on docking scores.

5.2 | Drawbacks

The method does not seem applicable in general and needs to be

benchmarked on a given protein target of interest. The proposed pro-

tocol (Figure 1) is not fail-safe: in about 4% of the 7895 ligands ana-

lyzed after docking, the MC simulation failed to minimize the docked

conformer. That is, the calculated strain was negative. Of course, such

points were excluded from the hit rate calculations and figures. We

attribute this to some local disagreement between the ANI-2x NNP

and an actual QM calculation. We also wonder about the transferabil-

ity of the analysis. Probably, results for one protein structure should

not be used to infer anything about other structures. Also, results

obtained using one docking software and docking parameters are

probably not advisable for another docking software or set of docking

parameters. For example, Gu and colleagues, using DOCK3.710 on
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F IGURE 7 Effect of strain filtering on hit rate using the University of California, San Francisco (UCSF) method; Blue spikes: hit rate among
unstrained ligands; Red curve: hit rate among strained ligands; Black horizontal line: random hit rate; Green curve: fraction of docked molecules
passing the strain filter.
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DUD-E9 recommend a seven TEU total strain filtering threshold. In

our benchmark and using CCDC-GOLD, it seems that the optimal

total strain filtering threshold lies between two to four TEU (if and

when the method is advisable).

The filter is very selective (cf. the retained curves in Figure 6).

With a too low strain filtering threshold, no molecule will pass the

filter.

While our protocol is computationally tractable for a thousand

molecules and one protein target using at least one massively multi-

core computer, it does take a few hours to run all the QM single-point

energy calculations (cf. the outliers in Figure 2).

Following a suggestion from an anonymous reviewer, we did

rerun all calculations with geometry optimization at the QM level

(bond lengths and bond angles only; rotatable bonds were fixed) for

the docked ligands prior to running the rest of the pipeline. Indeed,

this could make the estimated strain values less noisy. However, this

resulted in an explosion of the required computing power

(we estimate, by a factor of at least 20�). Also, only about 10% of the

molecules for each protein target survived such treatment without

any error. cf. Figure S1 for results. Using this more accurate protocol,

three protein targets seem amenable to strain filtering: ALDH1, ESR1-

and VDR. Interestingly, in all those three cases, a threshold filtering

range of maximum 0.2 kcal/mol per rotatable bond seems adequate.

Also, we note that VDR is the only protein target that seems amena-

ble to strain filtering whatever protocol we were using. We do note

that the crystallographic ligand in this protein is completely buried

inside a protein cavity and almost completely desolvated (PDB: 3A2J,

ligand of interest identifier: TEJ), unlike all other protein-ligand com-

plexes that were studied.

We leave to courageous researchers investigating if taking into

account solvation36 during the QM single-point energy calculation

might make such strain filtering protocol more generally applicable.

6 | CONCLUSION

In this study, we have performed a SBVS campaign (protein-ligand

docking) on nine protein targets of the LIT-PCBA dataset using CCDC

GOLD. An open-source protocol taking advantage of the ANI-2x NNP

was developed then used to estimate ligand strain after docking. The

effect of strain filtering on hit rate was analyzed. The protocol was

also checked against a torsion library8 based method.7

Because of the computational cost of the method and the low

number of protein targets where it does benefit, we recommend

potential users to first consider simpler and faster methods like phar-

macophore filtering,37 Protein-Ligand Interaction Fingerprints38,39 or

maybe some rescoring function.40
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