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Abstract

The prediction of (un)binding rates and free energies is of great significance to the drug design 

process. Although many enhanced sampling algorithms and approaches have been developed, 

there is not yet a reliable workflow to predict these quantities. Previously we have shown 

that free energies and transition rates can be calculated by directly simulating the binding and 

unbinding processes with our variant of the WE algorithm “Resampling of Ensembles by Variation 

Optimization”, or “REVO”. Here, we calculate binding free energies retrospectively for three 

SAMPL6 host-guest systems and prospectively for a SAMPL9 system to test a modification of 

REVO that restricts its cloning behavior in quasi-unbound states. Specifically, trajectories cannot 

clone if they meet a physical requirement that represents a high likelihood of unbinding, which 

in the case of this work is a center-of-mass to center-of-mass distance. The overall effect of this 

change was difficult to predict, as it results in fewer unbinding events each of which with a 

much higher statistical weight. For all four systems tested, this new strategy produced either more 

accurate unbinding free energies or more consistent results between simulations than the standard 

REVO algorithm. This approach is highly flexible, and any feature of interest for a system can be 

used to determine cloning eligibility. These findings thus constitute an important improvement in 

the calculation of transition rates and binding free energies with the weighted ensemble method.
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1 ∣ INTRODUCTION

The prediction of ligand (un)binding free energies and rates is important to make 

systematic improvements in potency during the preclinical stages of drug design.1 Over 

the years, numerous computational methods have been developed to predict both relative 

and absolute binding free energies (and more recently, their binding and unbinding 

rates, kon and koff, as well).2-10 These methods make different assumptions that affect 

accuracy11,12 and methodological errors are compounded by more general sources of error 

such as approximations in force-fields or the choice of water model. The performance 

of free energy predictors can be rigorously examined by comparison with experimental 

quantities.13,14 However, reported retrospective predictions are often overly optimistic. A 

more authentic way of assessing these tools is through participation in blind challenges 

such as the Statistical Assessment of Modeling of Proteins and Ligands (SAMPL): a 

series of challenges for the prediction of quantities such as unbinding free energies for 

small molecule (host-guest) pairs.15,16 In this challenge, the computational predictions are 

made without knowledge of the experimental results. Methods for the determination of 

free energies used in the SAMPL challenges vary from path sampling algorithms such as 

weighted ensemble15,17 to alchemical perturbation techniques such as double decoupling 

methods with thermodynamic integration or Hamiltonian replica exchange.15

While there have been significant improvements in the methods used to determine free 

energies, all methods come with limitations and drawbacks. Even for small systems 

including the host-guest pairs provided by the SAMPL challenge, computationally 

calculated values of ΔG for processes such as ligand (un)binding are often inconsistent, and 

can vary up to several kcal/mol from experimental reference values.15,16 Efforts to determine 

“computational reference values” using extensive sampling for a given set of conditions 

(e.g., force field, binding pose, temperature) are important to isolate methodological sources 

of error for competing approaches. In the SAMPL6 challenge, the results of the OpenMM/

HREX method—double decoupling with Hamiltonian Replica Exchange—were used as the 

computational reference value and were primarily used for the determination of relative 

efficiencies of different methods. It was found that even for simulations with seemingly 

converged predictions for ΔG and nearly identical simulation parameters, results varied up 

to ~1.0 kcal/mol, and while possible sources of methodological error were determined, the 

exact source of these discrepancies was unknown.

For alchemical methods, a major bottleneck is achieving adequate sampling of different 

binding modes.18 In addition, inclusion of the residual charges of vanishing atoms in single 

topology methods or overlap of groups in the system in double topology models can also 

be significant sources of error.11 Alchemical methods also have the major drawback of only 

determining free energy differences between the points of interest, and subsequently do 

not provide free energy profiles for the unbinding/transition pathway of interest. Physical 

sampling methods, such as metadynamics,19,20 umbrella sampling,21,22 multi-ensemble 

Markov Models,23-25 and weighted ensemble (WE),26-30 can determine these free energy 

profiles, but are limited by the determination of collective variables and convergence 

issues. In particular, the WE method allows for the generation of continuous trajectories 

between points of interest without employing any biasing forces. It does this by iteratively 
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“resampling” a collection of otherwise independent trajectories, referred to as “walkers,” 

each of which carrying a statistical weight. The resampling process clones walkers in 

underrepresented regions of interest – dividing their weight evenly among the clones – and 

merges walkers in overrepresented regions – combining their weights in order to conserve 

probability. The use of the “REVO” resampler (Resampling of Ensembles by Variation 

Optimization)28 builds upon these benefits as it resamples trajectories based upon their 

distances to one another, instead of constructing a set of bins. This makes it easier to sample 

high-dimensional spaces of collective variables, while avoiding exponential increases in 

simulation time associated with regularly-spaced bins.

Weighted ensemble methods are particularly useful for determining binding and unbinding 

rates.17,31,32 This is done by measuring the transition flux into either the bound or unbound 

state as the sum of walker weights per unit time. These binding and unbinding rates are 

interesting in their own right, as they are necessary to model drug behavior in typical 

nonequilibrium conditions. In addition, the unbinding rate (or equivalently, its inverse, 

the residence time) is the crucial quantity in some systems to determine drug efficacy 

in vivo.17,33,34 Although much progress has been made in the calculation of residence 

times for pharmaceutically-relevant ligands, as of now there are no blind challenges 

for the prediction of binding or unbinding kinetics. While researchers can compare to 

experimental data, as discussed above sampling errors are hard to isolate, and connecting 

computational and experimental models (for instance, in the definition of the bound and 

unbound states) is not trivial. For this reason our approach is to indirectly validate the 

transition rate calculations by using them to calculate binding affinities in the SAMPL 

challenges. Specifically, we calculate the binding free energy ΔGb as a function of transition 

rates using: ΔGb = − kT lnkoff (C0kon).

Although WE has been successful in simulating a wide variety of long-timescale events 

ranging from seconds, such as the opening of the SARS-CoV-2 spike protein,35 to 

multi-minute long events, such as ligand unbinding,36,37 a common problem is the high 

variation of walker weights between independent replicates, which causes large uncertainties 

in calculated observables such as free energies and rate constants.17 REVO itself was 

developed as a way to lower the variation between independent replicates, however previous 

applications of REVO to the same systems used in this work still yielded rate calculations 

with large differences from one run to another.17,38 This is caused by the rare occurance of 

high probability walkers crossing into the unbound state in unbinding simulations, which 

introduces large jumps in transition fluxes and unbinding rates. Interestingly, our previous 

work sought to identify microscopic determinants of these differences in probability and 

found that there was a correlation between guest-ion interactions and the unbinding weight 

of a given trajectory for several SAMPL systems.39 Specifically, rare high-probability 

trajectories that contributed most significantly to the unbinding rate had a lower amount 

of guest-ion interaction than the far more numerous low-probability trajectories. By tracking 

the center of mass (COM)-to-COM distance (dCOM), we also found that the high- and low-

probability trajectories could be distinguished even relatively early on in the unbinding 

pathway (dCOM = 7 Å) based on their guest-ion interaction, prior to there being a discernible 

difference in the trajectory weight. This dCOM distance also corresponded to a “commitment 
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to unbinding” point, where reactive trajectories left the binding pocket and no re-crossings 

were observed. This observation implied that the final weight of an unbinding trajectory 

was, to some extent, already determined early on. If so, it suggests that cloning trajectories 

with dCOM >7 Å is wasteful, as it is already known that these trajectories are going to unbind. 

Therefore, it may be beneficial to prevent cloning of trajectories that had already reached 

dCOM = 7 Å, as this leaves more spots available in the ensemble for other events to occur and 

will result in the generation of a high weight unbinding events.

Here, we determine unbinding free energies for four systems through binding and unbinding 

simulations with a new modification to the REVO algorithm. Three of these systems come 

from the SAMPL6 challenge15,16: “OA-G6,” “OA-G3,” and “CB8-G3.” For these systems, 

we had prior knowledge of ΔG, however the binding free energy for a fourth system, 

β-CD-PMZ, was predicted prospectively as part of the SAMPL9 challenge. To determine 

these free energies, a modification of REVO28 was used for unbinding simulations. In 

this method, which we refer to as cutoff-REVO, cloning is prevented for trajectories that 

have met a system-specific dCOM distance between the host and guest molecules. This 

cloning cutoff value is determined from previously run standard REVO simulation data. 

The use of a cloning cutoff produced ensembles with fewer unbinding events, but with much 

higher weights. Using these simulations, koff, kon, and ΔG are calculated for all systems for 

both standard and cutoff-REVO. The ΔG values are compared to computational (SAMPL6 

systems) and experimental (all systems) reference values. Differences in resampling patterns 

between standard REVO and cutoff-REVO are also analyzed and visualized using a network 

algorithm. A comprehensive tutorial for running standard REVO unbinding simulations, 

cutoff-REVO unbinding simulations, and rebinding simulations (along with all relevant 

code) is provided along with this paper.40

2 ∣ METHODOLOGY

2.1 ∣ Host-guest systems

The SAMPL systems used here are small molecule pairs that come from the SAMPL6 

and SAMPL9 challenges. These are artificial systems whose primary purpose is to test the 

accuracy and efficiency of new computational methods for the prediction of binding free 

energy. The systems used here include the OA-G6, OA-G3, and CB8-G3, systems from 

SAMPL6 and β-CD-PMZ from SAMPL9 (Figures 1 and S1). These are all host-guest 

systems, where the host molecules are referred to as: OA (octa-acid), CB8 (cucurbit[8]uril) 

and β-CD (β-cyclodextrin). The SAMPL6 guest molecules are named according to their 

index in the challenge: OA-G6 refers to 4-methyl pentanoic acid, OA-G3 refers to 5-

hexenoic acid, and CB8-G3 is quinine. PMZ refers to promazine hydrochloride.

The OA host molecule has a four-fold symmetry along the vertical axis and a − 8 charge. 

Its guest molecules, G6 and G3 are both small molecules with an explicit charge of −1. The 

CB8 host has eight-fold symmetry along the vertical axis and two-fold symmetry along the 

horizontal axis. CB8, as well as its quinine guest are both neutral molecules. The β-CD host 

has no net charge and seven-fold symmetry along its vertical axis. Its guest, PMZ, has a + 1 

explicit charge.
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2.2 ∣ The weighted ensemble method

The WE26 method is an unbiased path sampling method that allows for the efficient 

generation of (un)binding paths. A generalized framework for this two-step method is as 

follows: in the first step an ensemble of trajectories, also called “walkers,” are independently 

propagated forward in time by molecular dynamics (MD), and in the second step these are 

“resampled,” using merging and cloning operations. The purpose of resampling is to clone 

walkers that are desirable and to merge walkers that are less desirable; this was originally 

guided by the populations of a set of bins that spanned the conformation space, but can 

be thought of more generally, as we discuss below. The goal of cloning, generally, is to 

help increase the chance of escaping local energy minima and observe a process of interest. 

The goal of merging is to reduce redundant trajectories in the ensemble and decrease the 

computational cost of the simulation.

In a WE simulation, all of the walkers have a probability, or a statistical weight. When a 

walker undergoes a cloning operation, two new independent trajectories are created with 

the same conformation as the original walker and half of its weight. When two walkers 

A and B undergo a merging operation they are combined to create walker C with weight 

wc = wA + wB. Walker C takes on either the conformation of walker A or B, with a probability 

proportional to their weights. Generally, a resampling algorithm can be thought of as a 

function that takes in the ensemble of trajectories, guides the merging and cloning process, 

and returns a new ensemble where the conformations are taken from the input ensemble. In 

this new ensemble, while the number of returned walkers can vary, the sum of the walker 

weights (most often ∑i = 1
n wi = 1), remains unchanged.

2.3 ∣ REVO

The resampling algorithm used to perform both the binding and unbinding simulations in 

this work is the REVO (Resampling Ensembles by Variation Optimization) resampler.28 

After a cycle of dynamics has been run, REVO guides the merging and cloning operations 

for an ensemble by maximizing the “trajectory variation”, V  (Equation 1), which is a scaled 

sum of the all-to-all distances between the walkers in the ensemble.

V = ∑
i

V i = ∑
i

∑
j

dij

d ⋆

α
ϕiϕj, (1)

Where V i is the “trajectory variation” for walker i, dij, is a distance calculated between 

walkers i and j, and ϕi is a “novelty” term that describes the significance of each individual 

walker in the ensemble. The distance metric dij is different for unbinding and rebinding 

REVO simulations, each of which is described below. The variable d⋆ is a “characteristic 

distance,” which is used to make the variation function unit-less, and is equal to the mean 

of the distance metric after one cycle of MD. Note that this value does not have an impact 

on resampling behavior and is used for ease of comparison between varying distance metrics 

for the same system, α is a parameter that balances the “exploitation” (novelty) with the 
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“exploration” (distance) in the REVO algorithm. The novelty term, ϕ, is usually defined 

according to the walker weight, wi, as follows:

ϕi = log(wi) − log pmin

C , (2)

Where pmin is the predefined minimum walker weight allowed in the simulation, and C is a 

constant. The value of pmin should be set according to the anticipated probability of the events 

of interest, here we use 10−12 to be consistent with previous work.17,38 We also enforce 

a maximum weight of 0.1, by preventing merging events that would exceed that weight. 

As weights range from 10−12 to 0.1, ϕi is in the range [logC, logC + 25.3]. The parameter 

C acts as an additive constant that raises the range of the novelties, reducing the ratio 

of the maximum to minimum novelty values. Here we use C = 100, as done in previous 

work,17,38,41 resulting in a novelty range of [4.6, 29.9], and a max:min novelty ratio ≈ 6.

After a cycle of dynamics has been run and the distances have been calculated, REVO 

guides merging and cloning operations by first calculating the value of V . Walkers are then 

proposed for merging and cloning as follows. The walker i is proposed for cloning which 

has the highest V i and a weight greater than 2pmin. A walker j, with the lowest value of V j

and a weight less than pmax (here, set to 0.1) is chosen for merging. The walker k that is 

closest to j with a weight such that wj + wk < pmax is identified as its merging partner. In order 

to proceed, their distance djk must be less than or equal to a predetermined value referred 

to as the “merge distance”. Once these three walkers have been selected for resampling, 

V  is recalculated as though the merging and cloning operations have been performed. If V
increased, the proposed resampling operations are carried out and the process of proposing 

merging and cloning steps repeats until V  no longer increases, or suitable walkers cannot 

be found. At that point we terminate the resampling process and run the next cycle of 

dynamics.

2.4 ∣ The cutoff-REVO algorithm

Here we examine a modified version of the REVO resampler, referred to as cutoff-REVO. 

Overall, this algorithm works the same as the standard REVO algorithm described above, 

but with an additional criterion used to determine if a trajectory in the ensemble should be 

eligible for cloning. In this work, the eligibility function was a dCOM distance between the 

host and guest (with the value specifically-determined for each system). If a trajectory had a 

dCOM distance equal to or greater than the cutoff value, it was not eligible for cloning in that 

cycle. This cutoff value was determined from dCOM plots of unbinding events from standard 

REVO simulations (described further in Section 2).

Although the eligibility function was based on COM in this work, in general, it is highly 

flexible and can be customized on a system by system basis. For instance, this criterion 

can be based on physical features such as RMSD, number of interactions or contacts, 

solvation of binding pockets, or other non-structural features such as energies or work. 

We implemented this eligibility function in the wepy software package.42 Similar to other 
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wepy objects, such as distance metrics or boundary conditions, the eligibility function is 

implemented in a modular fashion: users can implement and use their own customized 

eligibility function without changing the source code for the REVO resampler.

2.5 ∣ Simulation details

All of the simulations here were run with wepy42 and OpenMM.43 The following parameters 

were used for all simulations: 3000 cycles, 10,000 dynamics steps per cycle with a 2 

fs timestep with standard OpenMM implemented hydrogen bond constraints via SHAKE, 

and a temperature of 300 K. Langevin integration was used for all simulations with a 

friction coefficient of 10−1 picoseconds. The β-CD-PMZ system was built with CHARMM-

GUI,44-46 and the SAMPL6 systems were built with the Gromacs input files provided by the 

challenge organizers.15 The β-CD-PMZ system was run at constant pressure of 1 bar, and 

OA-G6, OA-G3, and CB8-G3 were run at constant volume. Box sizes (in nanometers) for 

the systems are as follows: β-CD-PMZ – 4.88 × 4.88 × 4.88, OA-G6 – 4.27 × 4.32 × 4.33, 

OA-G3 −4.30 × 4.32 × 4.33, and CB8-G3 – 4.072 × 4.05 × 4.04.

For each SAMPL6 system, five potential binding poses were provided by the challenge 

organizers. In previous work we found that the choice of initial binding pose is 

inconsequential as all poses quickly interconvert with one another.17 Here we chose pose 

0 as the initial positions for all walkers in the REVO simulations for the OA-G6, OA-G3 and 

CB8-G3 systems. For β-CD-PMZ, we generated our own starting poses for the unbinding 

simulations. Three copies of the β-CD-PMZ system were built with the multicomponent 

assembler in CHARMM-GUI.44-46 Following the 10 ns initial OpenMM simulation, a bound 

conformation was produced (Figure 2). The final frame of the bound run of the three initial 

simulations was used to initialize unbinding simulations.

For the SAMPL6 systems, five “standard” REVO unbinding simulations were run (without 

the eligibility criterion). The distance metric between walkers, dij, is calculated as the RMSD 

of the guest atoms after alignment of the hosts. Note that in contrast to previous work,17,38 

the distance calculations did not take into account the symmetries of the host (4-fold 

for OA and 8-fold for CB8), for simplicity. The distance metric was implemented using 

the ReceptorDistance class in wepy. We use the standard unbinding boundary condition 

UnbindingDistance where a trajectory is marked as “unbound” when the closest host-guest 

atomic distance is greater than 1 nm. In addition, five cutoff-REVO simulations were run, 

with a cutoff determined from the reactive trajectories in the standard REVO simulations 

(more information is available in Figure S2) and the same distance metric and unbinding 

boundary conditions as the standard REVO simulations. For the β-CD-PMZ system we ran 5 

standard REVO simulations and 5 cutoff-REVO simulations, using the same approach.

In the rebinding simulations, all of which were run with standard REVO, starting poses were 

taken from the unbinding events of the standard REVO simulations. For simplicity, we used 

a different distance metric in the rebinding simulations for the β-CD-PMZ system, defined 

as follows:
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dij = 1
dCOM, i

− 1
dCOM, j

. (3)

This is similar to the RebindingDistance metric used in Dixon et al,17 but is based on the 

host-to-guest dCOM instead of the RMSD to a native structure. The difference of the inverse 

is used in order to emphasize difference between smaller values of dCOM. In addition we use 

a binding boundary condition that is also based on the dCOM. For this boundary condition, 

binding events were triggered when dCOM < 0.4 nm. This value was determined from Figure 

S2, which shows a subset of the COM distances for the whole bound to unbound transitions 

for all four systems. For OA-G6, OA-G3, and CB8-G3, we use rebinding data that was 

previously generated in Ref. 17.

Figure S2 was also used to determine the cutoff value for cloning eligibility. Coincidentally, 

the determined “commitment to unbinding” points for all four systems was 0.7 nm. While 

it appears that the cutoff COM distance chosen could have been reduced for the OA-G6 

and OA-G3 systems, it was found in previous work (Ref. 39) that for these systems, 

rebinding can often occur below a 0.7 nm dCOM distance. The tutorial repository associated 

with this article40 contains everything needed to reproduce the results here, including: code 

for the custom distance metric and boundary condition, scripts to run the binding and 

unbinding simulations, scripts to plot the dCOM for reactive trajectories, and scripts to extract 

the rebinding simulation starting poses.

2.6 ∣ Calculation of rates and free energies

With the WE method, rates and subsequently free energies can be calculated through a 

method called “ensemble splitting”.17,47-50 In this method, the equilibrium ensemble is 

split into “binding” and “unbinding” ensembles. The binding ensemble is composed of the 

trajectories that have most recently been in the unbound basin, and the unbinding ensemble 

is composed of the trajectories that have most recently been in the bound basin. This 

technique can be used with any set of non-overlapping basins. Here, the unbound basin is 

defined as a set of structures where the minimum host-guest interatomic distance is greater 

than 1 nm, and the bound basin is either defined as a set of structures where the dCOM distance 

is below 0.4 nm (for β-CD-PMZ) or when the ligand RMSD to the native structure is <0.1 

nm (OA-G6, OA-G3, and CB8-G3).

Here, simulations are conducted entirely in either the binding or unbinding ensemble. When 

a walker leaves its ensemble by entering the other basin, its weight is saved, and the 

structure, which is recorded as an “exit point” then undergoes a process called warping. 

When a trajectory warps, it is set back to its starting pose but its weight remains unchanged. 

In this work, for the unbinding ensemble, the starting structure is the initial bound pose, and 

for the binding ensemble, the starting structure is one of the initial unbound poses. Rates 

are calculated via the trajectory flux that leaves one ensemble for the other: koff (4), kon(5) and 

ΔG(6)can be determined as:
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koff = ϕu =
∑i ∈ U wi

T , (4)

kon = ϕb =
∑i ∈ Rwi

CT , (5)

ΔG = kT ln koff

C0Kon
, (6)

Where, ϕb and ϕu are the binding and unbinding flux, T  is the elapsed time, the sum is the 

sum of weights for the corresponding exit points for all unbinding events (U) and rebinding 

events (R), and C is the concentration of the guest molecule. C0 is the reference concentration 

of 1 mol/L. The code for this analysis is provided in the associated tutorial.

3 ∣ RESULTS

3.1 ∣ Resampling trees show differences in merging and cloning behavior

For each host-guest system used, five unbinding simulations were run for both the standard 

REVO resampler and the cutoff-REVO resampler. In this Section, we focus on resampling 

differences in the β-CD-PMZ system, as these are representative of the other systems as 

well. We find that these resamplers have significant differences in their cloning and merging 

behavior, which we visualize using “resampling trees” (Figure 3). These are directed acyclic 

graphs where each cycle of each walker is represented by a node. The nodes for each cycle 

are evenly spaced along the vertical direction, with the earliest timepoints at the bottom of 

the resampling tree. Connections between nodes show the continuation of walkers over time: 

multiple connections between cycles show cloning events, and the absence of connections 

to the next cycle indicates that the walker was merged into one of the other walkers. The 

sizes of each node represent the weights of the walkers at a given timepoint, and in Figure 3 

the nodes are colored according to their dCOM value. The code used to generate these trees is 

available as a tutorial.51

We find that standard REVO produces fewer cloning events per cycle (〈nwc〉 < 1), with 

slightly fewer replicates (〈R〉) produced at each of these events, whereas cutoff-REVO has 

more cloning events per cycle (〈nwc〉 = 1.9) with slightly more replicates produced at each 

event, on average (Table 1). As the simulation progresses the number of cloning events 

for standard REVO significantly decreases. This is in contrast to cutoff-REVO, where 

〈nwc〉 stays consistant over the entire simulation (Figure 4). After the first walker leaves 

the binding site in standard REVO, we find that the majority of cloning events focus on 

high dCOM walkers. This is consistent with REVO's goal of maximizing the variation in the 

ensemble, but this limits our ability to clone walkers that are closer to the binding site 

and generate new, independent unbinding events. In contrast, for cutoff-REVO we see more 

consistent cloning of trajectories that are earlier in the unbinding process. This is due to the 

lack of mass cloning events that fragment the more unbound trajectories. Preventing this 
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fragmentation results in more slots being available for early-unbinding cloning events, as the 

trajectories of interest that are beyond the cutoff are not taking up these spaces. Preventing 

the fragmentation of unbound walkers results in the generation of fewer, but higher-weighted 

unbinding events.

The average dCOM distance for a cloning event for standard REVO across the five β-CD-PMZ 

runs was found to be 1.1 nm ± 0.008, whereas it was 0.35 ± 0.0008 nm for cutoff-REVO. 

As expected, the maximum dCOM of a cloning event was also much larger for REVO (2.3 ± 

0.013 nm) than for cutoff-REVO (0.76 ± 0.004 nm). By shifting the emphasis of the cloning 

events to lower dCOM walkers, cutoff-REVO also shifts emphasis toward higher weighted 

walkers. The relationship between the dCOM and walker weights are shown in Figure S3. 

Figure S3A shows that walkers with a weight < 10−7 are mostly in the unbound state, with 

an average dCOM >1.0 nm. As cutoff-REVO avoids the cloning of these walkers, the emphasis 

is dramatically shifted from low- to high-weight walkers (Figures S3C and S3D).

3.2 ∣ Unbinding events, free energy, and rate analysis

All of these simulations generate numerous unbinding events, but with stark differences 

in both the probabilities of the unbinding events and their number as seen in Figure 

5 (results for OA-G3 and CB8-G3 shown in Figure S4). For all four systems, standard 

REVO unbinding simulations produce numerous unbinding events, although most of these 

had extremely low probabilities. The highest weighted unbinding events are particularly 

important as they dominate the calculation of unbinding rates in Equation 4. For β-CD-

PMZ, the highest weight event obtained was 10−2 for both standard REVO and cutoff-

REVO. We observe differences in the highest weights for other systems: such as 10−7 and 

10−3 (OA-G6), 10−6 and 10−3 (OA-G3), and 10−8 and 10−7 (CB8-G3), where the higher 

weights are always obtained by the cutoff-REVO algorithm. Interestingly, the number of 

unbinding events for cutoff-REVO did not increase as the exit point weight decreased; 

instead the unbinding event weights were roughly normally distributed. The number of 

unbinding events for all systems also significantly decreased for all four systems as 

summarized in Table 2.

The binding and unbinding rates for all systems were determined through the use of the 

“ensemble splitting” method as described in Section 2. The binding rate is found by dividing 

the rebinding trajectory flux by the guest concentration, where C = 1
NaV  and V  is the box 

volume (Equation 5). Rolling estimates of the koff, kon, and ΔG are shown for all systems 

in Figure S5 for standard REVO results and Figure S6 for cutoff-REVO. We observe 

differences between the standard REVO and cutoff-REVO results in both the accuracy of the 

final ΔG obtained and the consistency between runs as seen for koff values in Figure 6 and 

Table 3. For the SAMPL6 systems, these values are compared to computational reference 

values determined through OpenMM-Hamiltonian Replica Exchange15,16 simulations that 

were run by the SAMPL organizers as a means to compare the effeciency of methods. 

No computational reference value is available for the β-CD-PMZ system. Experimental 

reference values are also available for all four systems. For the SAMPL6 systems, this 

value was determined with isothermal titration calorimetry.16,52 The same method was used 
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to determine the free energy of unbinding for β-CD-PMZ, with more information on the 

method used at the SAMPL9 GitHub page.53

For cutoff-REVO, all systems have a final value of ΔG that is very close to either the 

computational (OA-G3 and CB8-G3) or experimental (β-CD-PMZ and OA-G6) reference 

value. Standard REVO obtained a very similar final ΔG to cutoff-REVO for the β-CD-PMZ 

system, however standard REVO has a large uncertainty, with koff estimates varying between 

runs by up to six orders of magnitude. The final ΔGs obtained for CB8-G3 for both methods 

were very similar; however, cutoff-REVO produced highly consistent runs for this system 

with minimal error in ΔG (Figure 7), whereas standard REVO had an uncertainty of 1.01 

kcal/mol. The final free energies for REVO and cutoff-REVO as well as all available 

reference values are shown in Table 4, with plots available in Figures S5 and S6. The errors 

shown in Table 4 are the standard error for the final values determined for ΔG across all five 

runs for each data set. Coincidentally, both OA-G6 and β-CD-PMZ have exactly the same 

experimental binding free energy. With this in mind, both REVO and cutoff-REVO provide 

the best rank ordering possible for these systems.

The root mean squared error for REVO and cutoff-REVO are also shown in Table 4 as 

compared to both the computational reference and experimental benchmarks. On average, 

the REVO calculations agree with the computational reference to within 0.74 kcal/mol, 

which is slightly lower than the cutoff-REVO RMSE of 1.2 kcal/mol. The difference 

between these RMSE values is comparable to the uncertainties of the free energy estimates. 

The lower computational reference RMSE for REVO is primarily due to better performance 

on the OA-G6 system, which is higher for cutoff-REVO (−5.21 kcal/mol). Conversely, the 

RMSE measured to experimental benchmarks is slightly lower for cutoff-REVO (2.5 kcal/

mol) compared to standard REVO (2.9 kcal/mol). However, both of these values are driven 

higher by large over-estimates of the free energy for CB8-G3. As this is consistent with the 

computational reference, this suggests that force-field inaccuracies or some other feature of 

the computational model (e.g., protonation states, oligomerization states) is inconsistent with 

the experimental conditions. If this system is removed the RMSE drops to 1.7 kcal/mol for 

standard REVO and 0.77 kcal/mol for cutoff-REVO.

4 ∣ DISCUSSION

The predicted free energies of unbinding from the cutoff-REVO algorithm improved upon 

those predicted by REVO in both their consistency across runs and their agreement with 

benchmark values. For OA-G3 and CB8-G3 the agreement with the computational reference 

values was improved, significantly in the case of OA-G3. For CB8-G3, both REVO and 

cutoff-REVO showed good agreement with computational reference values, although the 

consistency across runs was significantly improved for cutoff-REVO. For the OA-G6 

system, although agreement with the computational reference decreased for cutoff-REVO, 

the ΔG moved closer to the experimental value. We are only cautiously optimistic about the 

agreement with experiment in this case, as we also observe the largest uncertainties in ΔG
for this system. In general, we view agreement with computational reference values as more 

meaningful, as they separate out inaccuracies of the forcefield.
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We also prospectively predicted the binding free energy for the β-CD-PMZ system and 

observe excellent agreement with the experimental quantity. This was achieved in a 

“blinded” fashion, where we did not have knowledge of the quantity at the time of 

prediction. Remarkably, the results in Figure 7A show that 4 of the 5 runs converged 

closely to the experimental quantity by the second half of the simulation, and the ensemble 

estimates of both REVO and cutoff-REVO agreed with the experimental value to within 0.1 

kcal/mol. While we are encouraged by this agreement, we are again cautiously optimistic, 

as it is possible this resulted from fortuitous cancelation of error. However, a more complete 

assessment of REVO and cutoff-REVO requires prediction across a larger set of ligands, 

such as the complete ligand set in the SAMPL9 challenge, but this was not feasible in this 

work due to the computational costs involved.

Another factor to consider for the β-CD-PMZ system is the bound starting structure used 

to initialize the unbinding simulations. This was unknown beforehand and was generated 

using short, straight-forward simulations, initialized in the unbound state. While β-CD has 

a ring-like structure similar to CB8, it is not C2-symmetric around the horizontal axis, 

allowing for distinct bound poses in the top and bottom of the ring. In addition, the PMZ 

ligand has many feasible modes of interaction with β-CD in addition to that shown in 

Figure 2, with the dimethylamino group inserted into the ring. In previous work on SAMPL6 

systems, we found that five different starting poses were “kinetically indistinguishable”: 

they quickly interconverted with one another on a timescale that was much faster than the 

unbinding process.17 In contrast, our previous work on the PK-11195 ligand dissociating 

from the TSPO membrane protein showed six poses that were not all able to interconvert 

before unbinding, and thus had pose-specific unbinding rates.37 At this point, it is unclear 

which scenario applies to β-CD-PMZ, although we plan to address this in more detail in 

future work.

The cutoff-REVO approach is slightly more cumbersome to implement than standard 

REVO, due to the necessity of running a standard simulation to generate the data necessary 

to determine both a cutoff feature and its correspondingly value (if this information is 

not already known). However, we expect it to improve the prediction of free energies 

using complete transition paths in a wide variety of systems. The feature used for cloning 

eligibility is highly flexible and can be whatever physical aspect of the system is relevant 

to the process that the user wants to observe. For instance, in ligand unbinding examples 

that involve more flexible binding sites, it might be more appropriate to use the number of 

protein-ligand interactions in the eligibility function. Other examples could be the RMSD 

to a reference structure and interaction energies. We expect that this approach would be 

beneficial for any process that can be decomposed into two phases: (1) climbing a steep 

energetic barrier, where resampling is highly important, and (2) diffusion on a flatter energy 

landscape, where resampling is not important. This could generally include activities such 

as ligand (un)binding, protein-protein interactions, or large-scale protein conformational 

changes, among others.
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5 ∣ CONCLUSIONS

Restricting the cloning behavior in the REVO sampling method resulted in dramatic 

changes in the resampling behavior. As a result, the new “cutoff-REVO” approach heavily 

emphasized cloning of walkers at the early stages of unbinding. Although this affected the 

number of unbinding events observed by the algorithm, the total weight of the unbound 

trajectories was higher for all four systems examined here. As such, cutoff-REVO was able 

to generate unbinding events with weights up to 104 times higher than standard REVO for 

the same system, indicating that these unbinding pathways occur with higher probability. As 

cutoff-REVO consistently outperformed standard REVO, we determine that for unbinding 

events, quality matters more than overall quantity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. 
Host-guest systems. Hosts are shown on top, and guests are shown on bottom. (A) The OA 

host and its guests, G6 (left) and G3 (right). (B) The CB8 host and its ligand, G3. (C) The 

β-CD host and its ligand, PMZ. All panels use the default “atom name” coloring scheme 

from VMD54: cyan = carbon, white = hydrogen, red = oxygen, blue = nitrogen, and yellow = 

sulfur.
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FIGURE 2. 
The β-CD-PMZ starting pose. (A) and (B) Two different views of the binding pose obtained 

where the dimethylamino tail of PMZ is in the binding pocket of β-CD. Some atoms have 

been removed from β-CD in A for clarity. Both panels use the default “atom name” coloring 

scheme from VMD54 for the host molecule: cyan = carbon, white = hydrogen, and red = 

oxygen.
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FIGURE 3. 
Resampling trees for (A) REVO and (B) cutoff-REVO. Each tree shows the cloning and 

merging behavior during their respective unbinding simulation, where each node represents 

a walker at a given point in time. The trees move forward in time from bottom to top. Nodes 

and edges are colored according to dCOM distance. Data from β-CD-PMZ. For clarity, only the 

first 50 cycles are shown from a single run. Similar behavior was observed in other runs.
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FIGURE 4. 
〈nwc〉 over time for β-CD-PMZ using (A) REVO and (B) cutoff-REVO. The average number 

of cloning events per cycle (〈nwc〉) broken down by simulation time (300 cycles per bin). 

Values are averaged over 5 runs and error are the standard error of the mean.
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FIGURE 5. 
Unbinding walker weights for both methods. Walker weights at the time of unbinding for 

standard REVO (left) and cutoff-REVO (right) for the β-CD-PMZ system (A and B) and the 

OA-G6 system (C and D). The standard REVO algorithm showed a much larger quantity 

of unbinding events. The total number of unbinding events in each panel is as follows: (A) 

5303, (B) 137, (C) 16,597, and (D) 69.
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FIGURE 6. 
Comparison of unbinding rates for REVO and cutoff-REVO for all systems. Individual 

runs are shown as thin lines. Average unbinding rates are shown as thick gray lines and 

uncertainties, computed using the standard error of the mean across the 5 runs, are shown 

as the shaded gray regions. (A) β-CD-PMZ. (B) OA-G6. (C) OA-G3. (D) CB8-G3. The 

horizontal axis represents trajectory length and not aggregate simulation time.
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FIGURE 7. 
Prediction of cutoff-REVO unbinding free energy for all systems. Individual runs are 

shown as thin lines. Average free energies are shown as thick gray lines and uncertainties, 

computed using the standard error of the mean across the 5 runs, are shown as shaded gray 

regions. (A) β-CD-PMZ, (B) OA-G6, (C) OA-G3, and (D) CB8-G3 systems. The horizontal 

axis represents trajectory length and not aggregate simulation time.
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TABLE 2

The highest exit point weight obtained and the total number of unbinding events observed for all four systems 

for both standard REVO and cutoff-REVO over five simulations.

REVO Cutoff-REVO

System Max. Wt. Total Max. Wt. Total

β-CD-PMZ 10−2 5303 10−2 137

OA-G6 10−7 16,597 10−3 69

OA-G3 10−6 22,901 10−3 224

CB8-G3 10−8 1246 10−7 93
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