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Abstract

The logarithm of n-octanol-water partition coefficient (logP) is frequently used as an indicator 

of lipophilicity in drug discovery, which has substantial impacts on the absorption, distribution, 

metabolism, excretion, and toxicity of a drug candidate. Considering that the experimental 

measurement of the property is costly and time-consuming, it is of great importance to develop 

reliable prediction models for logP. In this study, we developed a transfer free energy-based 

logP prediction model-FElogP. FElogP is based on the simple principle that logP is determined 

by the free energy change of transferring a molecule from water to n-octanol. The underline 

physical method to calculate transfer free energy is the molecular mechanics Poisson Boltzmann 

surface area (MM-PBSA), thus this method is named as Free Energy-based logP (FElogP). The 

superiority of FElogP model was validated by a large set of 707 structurally diverse molecules 

in the ZINC database for which the measurement was of high quality. Encouragingly, FElogP 

outperformed several commonly-used QSPR or machine learning-based logP models, as well 

as some continuum solvation model-based methods. The root mean square error (RMSE) and 

Pearson correlation (R) between the predicted and measured values are 0.91 log units and 0.71, 

respectively, while the runner-up, the logP model implemented in OpenBabel had an RMSE 

of 1.13 log units and R of 0.67. Given the fact that FElogP was not parameterized against 

experimental logP directly, its excellent performance is likely to be expanded to arbitrary organic 

molecules covered by the general AMBER force fields.
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Supporting information includes the following tables: the list of experimental hydration free energies and the predicted values using 
FElogP (Table S1), the list of solvation free energies in n-octanol and the predicted values using ab initio SMD and PBSA model 
developed in this work for 243 molecules (Table S2); the list of experimental logP and the predicted values using FElogP and ab 
initio SMD approaches for the 156 training set molecules (Table S3); List of experimental logP and the predicted values using seven 
approaches for the Martel dataset (Table S4). List of FElogP calculations for 21 outliers using multiple conformations with Method4 
and Method5 (Table S5); the radius parameters for PBSA calculations (Table S6), and the molecular names and the corresponding 
experimental values for the three molecular sets, i.e., the 544-molecule set for hydration free energy calculation, the 243-molecule set 
for solvation free energy in n-octanol calculations, the 164-molecule set for evaluation of FElogP model (Table S7).
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1. Introduction.

Partition coefficient is defined as the ratio of the distribution of a molecule in two 

immiscible solvents. The logarithm of partition coefficient (logP) between n-octanol and 

water is a critical property related to the physicochemical and physiological properties 

of a drug molecule, such as absorption, distribution, metabolism, excretion and toxicity 

(ADMET) and target protein binding.1–4 Thus it is frequently used in describing the 

druggability of a pharmaceutical molecule. The first logP calculation method was developed 

by Fujita et al. in 1960s5,6 Early on, the structural information of receptor is not easy 

to obtain, medicinal chemists frequently used quantitative structure-activity relationship 

(QSAR) to correlate the binding energy of a ligand with its physicochemical characteristics, 

and logP was regarded as a key descriptor measuring a drug’s hydrophobicity. Nowadays, 

Lipinski’s rule of five,7,8 published in the 1990s, has been widely used as simple rules to 

determine the druglikeness of a pharmaceutical molecule. logP smaller than 5 is one of the 

four rules in Lipinski’s rule of 5.

Several methods have been developed to experimentally measure logP,5,9,10 such as the 

shake flask method and reversed phase high performance liquid chromatography.11,12 

However, the experimental determination of logP for some molecules is not easy, especially 
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when the tested molecules are unstable in solvents. In addition, some compounds that need 

to be tested maybe difficult to synthesize or not purchasable. Such scenario is frequently 

encountered at the early stages of drug discovery when the physicochemical properties for 

a large number of structures need to be determined13. Hence, there is an increasing demand 

on the development of high-quality computational methods to predict logP accurately and 

efficiently.

Currently, a variety of free logP calculation tools are available in public domain. 

Furthermore, popular commercial molecular simulation platforms such as Discovery 

Studio, Molecular Operating Environment (MOE), and Schrödinger also support logP 

calculation, with either open-source models (Discovery Studio supports AlogP14) or their 

own unpublished models (MOE uses both unpublished model “Labute”15 and hybrid 

SlogP16).

Existing calculation methods for logP can be roughly classified into four families: (1) 

atom-based methods, (2) fragment-based methods, (3) topology or graph-based method, 

and (4) structural property-based methods. Atom-based or atom-additive methods for 

logP prediction, such as AlogP14, simply sum up the additive contributions of all atoms. 

Atom-based methods are suitable for small molecules, but they may fail for a very 

complex structure or a specific molecule for which the logP prediction is greatly affected 

by its electronic structure. To overcome these shortcomings, enhanced atom-based or 

hybrid methods such as XlogP17 and SlogP16 have been proposed by applying additional 

corrections (such as the influence from neighboring atoms) to achieve better prediction 

accuracy for large molecular systems. Fragment-based methods (e.g., Clogp18 and KlogP19) 

for logP calculations are also based on the additive hypothesis, assuming logP can be 

calculated by the summation of the hydrophobic contributions of each constitutive fragment 

in a molecule. The fragment constant, i.e., the hydrophobic contribution of a fragment is 

determined by experimental logP of a compound without “surprise interactions”20. Other 

interactions such as hydrogen bonding, proximity interactions, hydrophobic shielding effect, 

bond and branching influence etc. are taken into account as the additional correction 

factors.21 This class of models overall have better prediction performance than the atom-

based methods for large molecules. The third family is topology or graph-based models, 

such as MlogP,22 which apply topological descriptors to construct models. Topological 

descriptors are usually generated using 2D-structures. Recently, Ulrich et al. applied 

deep neural networks (DNN) to train molecular graphs for logP prediction.23 The DNN 

model achieved an RMSE of 0.47 log units in the test dataset. The last family of 

methods is structural property-based methods which calculate logP from a more rigorous 

physical-chemical perspective.24 This type of methods typically require 3D structures 

for performing quantum mechanics (QM) or molecular mechanics (MM) calculations. 

Molecular simulations are sometimes performed to obtain reliable prediction of some 

properties, such as free energy. For example, Procacci et al. conducted logP prediction 

using a non-equilibrium alchemical technique called non-equilibrium switching (NES) for 

the druglike molecules in the SAMPL6 challenge and was able to achieve mean unsigned 

error of 1.06 and correlation coefficient R of 0.79 for training set molecules which is among 

the top ranked submissions25. Ogata et al. conducted alchemical free energies to calculate 
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logP using 27 different charge models for 58 compounds, and the best correlation coefficient 

R of 0.92 was achieved.26

The logP models from different families have their own advantages and disadvantages. 

Although simple methods such as AlogP14 from the first family and ClogP18 from the 

second family have been widely used, they are not very accurate especially for large and 

flexible molecules. The past decades have seen a trend of increase in molecular weight for 

approved small-molecule drugs27. According to the review by Shultz28, in general, ClogP 

overestimates logP for molecules that have been approved by FDA after the publication of 

the famous “Lipinski rule of five”. One explanation is that large and flexible molecules have 

their polar atoms buried leading to the hydrophobic groups collapsed, an effect not being 

taken into account in ClogP model development.29

On the other hand, for structural property-based logP model, accurate prediction relies 

on theoretically rigorous interpretation of solvation process. For example, high level QM 

calculations with implicit solvation models can achieve relatively good accuracy, and those 

methods are the best ranking physical methods in the SAMPL6 challenge30. Nevertheless, 

such methods require high computational cost, making them less feasible and less attractive 

in practical applications.

Recently, Martel et al.31 determined the logP values of 707 molecules from ZINC database32 

using ultra-high performance liquid chromatography (UHPLC) followed by ultraviolet 

(UV) or mass spectrometry (MS) detection. The molecules were selected out of 4.5 

million compounds to guarantee the structural diversity in chemical space. Moreover, the 

experimental data was determined by one research lab to minimize the error stemming from 

different experiment protocols. The prediction performance of a set of widely used models 

for this dataset is much poorer compared to the reported performance for individual models. 

For example, ACD/GALAS has an RMDE of 1.44 log units, the DNN model by Ulrich et. 

al. has an RMSE of 1.23 log units.23 Thus, the performance of logP models from the first 

three families is strongly influenced by the training set molecules.

In this work, we set forth to developing a high-quality logP model which can overcome 

the limitations of the models belonging to the first three families, i.e., their performance is 

training-set-dependent, and the models belong to the fourth families, i.e., the computational 

efficiency is very poor. To achieve this goal, we will first develop a high-quality Poisson 

Boltzmann surface area (MM-PBSA) model to accurately predict solvation free energy of an 

arbitrary molecule in n-octanol solvent. We then predict logP of a molecule using its transfer 

free energy from water phase to n-octanol phase. This is the second publication of the paper 

series “development and test of highly accurate endpoint free energy methods”. To the best 

of our knowledge, this is the first attempt to apply MM-PBSA method to calculate logP.

2. Methods

2.1 logP calculation using transfer free energy

In this study, a transfer free energy-based logP prediction method FElogP was developed 

and evaluated. From the thermodynamic point of view, logP is proportional to the Gibbs free 
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energy of transferring a molecule from water to octanol according to the equation shown 

below:33

−RTln10 * logP =   ΔGtransfer (1)

where R represents the gas constant (8.314 J·mol−1·K−1), and T is the thermodynamic 

temperature (K). Consequently, logP can be calculated by the solvation free energies (SFE) 

of molecule in water and n-octanol phases:

logP =   ΔGwater HFE − ΔGoctanol SFE

RTln10 (2)

There are various computational methods to estimate the SFE of molecules in different 

solvents, ranging from rigorous alchemical free energy methods to simple quantitative 

structure-property relationship (QSPR) methods. The molecular mechanics Poisson 

Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface 

area (MM-GBSA) methods are becoming increasingly popular among the existing free 

energy calculation methods due to their good balance between accuracy and efficiency. In 

MM-PBSA/GBSA calculations, the free energy of solvation can be decomposed into two 

different terms34. The polar part of SFE (ΔGPB/GB) which corresponds with the polarization 

free energy in the solvation process, is usually calculated by solving the Poisson-Boltzmann 

(PB) equation or the Generalized Born (GB) equation. The nonpolar part is associate with 

the free energy cost of the creating a cavity in solvent to accommodate the solute molecule, 

and the dispersion and repulsive interactions between the solute and solvent. The nonpolar 

solvation free energy is typically estimated by scaling the solvent accessible surface area 

(SASA) of the solute molecule35 as shown in Equations 3 and 4, where γ is the surface 

tension parameter related to the solvent, and b is the constant term.

ΔGsolv =   ΔGPB/GB + ΔGnonpolar (3)

ΔGnonpolar = γSASA + b (4)

In the first article of this series, we have optimized radius parameters for PB calculation 

to reproduce the polar solvation free energies calculated by thermodynamic integration (TI) 

with the ABCG2 charge model.36 The newly developed MM-PBSA model achieved an 

outstanding performance with RMSE of 1.05 kcal/mol and Pearson correlation coefficient 

of 0.95 for 544 molecules. The PB radius parameters as well as the γ and b parameters 

for ΔGnonpolar calculations were listed in Table S6 and Equation S1. The hydration free 

energy (HFE) of a molecule ΔGwater HFE will be calculated using the above model in our 

FElogP method. For the solvation free energy of a molecule in n-octanol, we will evaluate 

the performance of the developed PB radius parameters and make adjustment whenever it 

is necessary. A new nonpolar model reflecting the n-octanol solvent environment will be 

developed. To make FElogP an efficient method, the calculations of SFE in water (HFE) and 

SFE in n-octanol will be performed using the same single conformation.
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2.2 Data preparation

All the experiment SFE data in water and in n-octanol were collected from the FreeSolv 

v0.52 database37 and Minnesota Solvation Database version 201238, respectively. All the 

structures of the molecules were downloaded from the FreeSolv database. 663 small 

molecules have the experimental SFE data in water, out of which 243 molecules have the 

experimental SFE data in octanol in the Minnesota Solvation Database. We excluded some 

molecules whose HFE by thermodynamic integration (TI) differed more than 1.5 kcal/mol 

from the experimental values, resulting in 544 molecules in the training set for HFE, and 

243 molecules for n-octanol SFE. 156 molecules have both experimental values of HFE and 

SFE in n-octanol solvent. The molecular names and the corresponding experimental values 

were listed in Table S7.

All the small molecules in the training set were optimized by Gaussian 1639 using the 

Hartree-Fock theory of model and the 6–31G* basis set. The minimized structures were then 

used to generate the topology files and GAFF2 force field parameter files with the ABCG2 

charge model36 using Antechamber.40 Each molecule was solvated into a cubic water box 

using the explicit TIP3P water model41, and the minimum distance of the solute molecule to 

the edges of the box was set to 12 Å.

The experimental logP data came from Martel’s study as detailed above.31 To prepare the 

data for MM-PBSA calculation, we obtained the structure information of the 707 molecules 

in the simplified molecular-input line-entry system (SMILES) format. The SMILES 

strings were then converted to the Mol2 format files using Open Babel42. Following the 

aforementioned protocol, we generated the topology files for the 707 molecules using the 

GAFF2 force field parameters and ABCG2 charge model36. This high-quality experimental 

logP data serves as the test set to evaluate the accuracy of our logP prediction model.

2.3 Ab-initio logP calculation

We performed ab initio calculations using Gaussian 1639 for all the training set and test 

set molecules to calculate SFEs using SMD method.43 To calculate SFE of a molecule, 

we first carried out geometric optimization using the B3LYP/6–31G* and/or HF/6–31G* 

model chemistry with the SCRF and SMD keywords; we then performed a single point 

calculation at the same level of model chemistry without considering solvent effect. The 

energy difference was calculated as the solvation free energy of the molecule. logP was 

calculated in two modes. In the first mode (single point), both HFE and n-octanol SFE were 

calculated using a single input geometry; in the second mode (geometry optimization), both 

HFE and n-octanol SFE were calculated normally as described above.

2.4 Minimization and molecular dynamics simulation

The molecular mechanics (MM) minimization and molecular dynamics (MD) simulation 

were conducted using the pmemd.mpi module in AMBER1844 package for the molecules 

in training sets. For each system, energy minimization was conducted before the MD 

simulation. Both the steepest descent and conjugate gradient methods were applied in this 

step. The number of the cycles of steepest descent was set to 1000, and then switched to 

conjugate gradient method and ran another 1000 cycles.
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The MD simulation can be divided into three phases: heating, equilibration and production 

phases. At the heating phase, the system was heated from 0 K to 298.15 K in 100 ps using 

a time step of 0.001 ps. For the equilibration and production phases, the temperature was set 

to 298.15 K using Langevin dynamics45 with the collision frequency of 2.0 ps−1. After 0.1 

ns equilibration phase, 5.0 ns MD production was conducted, and the trajectories were saved 

every 10 ps for the following post-MD analysis. For all the MD phases, periodic boundary 

condition was applied and the pressure was set to 1.0 bar with 1.0 ps pressure relaxation 

time. The SHAKE algorithm was applied to constrain the hydrogen atoms.

We also performed implicit MD simulations for some ZINC molecules in the Martel dataset, 

to study the conformation-dependence of logP calculation using FElogP. The exterior 

dielectric constant was set to 80 and 9.8629 to mimic aqueous and n-octanol solvent 

environment. The nonpolar contribution was turned off (gbsa = 0). The nonbonded cutoff 

was set to 999 Å to explicitly calculated all pairs of the nonbonded interactions. 190 

snapshots were evenly selected from 1–10 ns for FElogP calculations.

2.5 MM-PBSA calculation.

MM-PBSA calculations were based on 3D structures of solute molecules, which were either 

multiple conformations extracted from the MD snapshots (for model development), or a 

single conformation automatically generated by OpenBabel (for standard protocol of FElogP 

calculation). The trajectories acquired in the MD production phase were used to generate 

the snapshots for each solute (with water stripped) using the cpptraj46 module in Amber 

Tools. All the PB calculations were performed using Delphi 95 software47,48. The HFE of 

the 544 molecules (Table S1) and the SFE in n-octanol of 243 molecules (Table S2) were 

calculated using the optimized PB radius parameters in the first article of this series (Table 

S6). For SFE in different solvent environment, different experimentally determined external 

dielectric constants were applied (80 for water and 9.8629 for n-octanol). The nonpolar 

contribution was estimated based on SASA calculated by an internal program, and the probe 

radius was set to 1.4 Å. The detailed procedure to generate the model for the nonpolar 

SFE in different solvents will be introduced in the next section. The accuracy of the final 

SFE prediction was assessed by using a set of statistical metrics: root-mean-square-error 

(RMSE), mean unsigned error (MUE), mean signed error (MSE), prediction index (PI) and 

Pearson’s correlation coefficient R.

2.6 Solvation free energy in n-octanol modeling

In our previous study, the importance of the PB radius parameters in free energy calculation 

was revealed and a set of radius parameters compatible with the newly developed ABCG2 

charge model was developed.36 We found that ABCG2, although developed using hydration 

free energies, also had excellent performance in SFE calculations using TI for a variety 

of solvents. Thus, this set of radius parameters for PB calculations were adopted directly 

in the n-octanol SFE calculations. We would adjust some radius parameters whenever 

it was necessary. However, the nonpolar solvation free energy model for n-octanol must 

be redeveloped due to the different dielectric constants of n-octanol and water. The 

nonpolar model was trained by conducting the regression between the surface area and 
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the values from the experimental SFE data subtracted by the polar SFE (PB) contribution 

(ΔGsolv
expt − ΔGsolv

PB ).

2.7 logP calculations

Last we performed logP using FElogP methods for two molecular sets: the 156-molecule 

set which have measured HFE and n-octanol SFE, and the 707-molecule Martel set. Note 

that after PB radii parametrization and non-polar model construction, the stand protocol of 

applying FElogP calculation for any solute molecule only utilizes a single conformation 

which is automatically generated by OpenBabel. For each molecule in the second molecular 

set, logP was also calculated using several widely-used logP models in the public domain 

implemented in either freeware or commercial software.

3. Results

3.1 The performance of the optimized PB radii combined with new nonpolar model on 
octanol SFE prediction

After conducting the PB calculation using the optimized radii from the previous study, the 

differences between the experiment data and PB results (accounting for the nonpolar part 

of solvation free energy) were obtained. Then the new nonpolar model was established by 

fitting the solvent-accessible surface area (SASA) to reproduce ΔGsolv
expt − ΔGsolv

PB . We conducted 

a 10-fold cross validation for 1000 rounds to minimize the bias of the model. Specifically, 

the data was randomly divided into 10 groups and each time 9 out of 10 groups of data 

were used as the training set and the remaining group was used as the test set. The mean 

RMSE was 1.76 kcal/mol for the total of 1000 rounds. The final model for n-octanol SFE 

estimation was obtained by fitting all the 243 n-octanol SFE data:

SFEoctanol = PB − 0.012 * SASA + 2.82 (5)

The solvation free energies in octanol calculated by the MM-PBSA model and SMD models 

were summarized in Table S2. Overall, our MM-PBSA n-octanol solvation model achieved 

a similar performance (RMSE = 1.83 kcal/mol) as SMD at the HF/6–31G* and B3LYP/6–

31G* levels of theory, which had an RMSE of 1.84 and 1.68 kcal/mol, for the two ab initio 
models, respectively.

The scatter plot of the experimental versus calculated solvation free energies in n-octanol for 

the 243 training set molecules were shown in Figure 1B. The performance of ab initio SMD 

and PBSA models was summarized in Table 1.

It is pointed out that we attempted to optimize the PB radius parameters to further improve 

the n-octanol SFE model, but the improvement was incremental. For the sake of maximizing 

the error cancellation in the logP prediction, we decided to use the same PB radius 

parameters optimized for HFE in n-octanol SFE solvation model.
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3.2 logP prediction for the 156-molecule training set

As shown in Eq. 1 and Eq. 2, logP can be estimated using the transfer free energy from 

water to n-octanol phases. The hydration free energy and the solvation free energy were 

calculated using the newly developed PB models in conjunction with ABCG2 charge model. 

We first test the rigorousness of the theory of calculating logP from the transfer free energy. 

As shown in Table S3, for the 156 molecules which have measured logP, HFE and n-octanol 

SFE, the calculated logP using the measured HFE and SFE agreed very well with the 

measured logP for all molecules except for p-bromophenol, which has a prediction error of 

0.89 (the measured and calculated values are 2.59 and 3.48 respectively). The MUE and 

RMSE for all 156 molecules are only 0.07 and 0.14 log units, which demonstrate the theory 

rigorousness of Eq. 1 and Eq. 2. We also evaluated the SMD model at the B3LYP/6–31G* 

level of model chemistry in logP prediction. The performance metrics of MUE, RMSE 

and R are 0.47, 0.69, 0.86 respectively. The performance of FElogP is marginally worse, 

whose MUE, RMSE and R are 0.78, 0.92, 0.77 respectively. The comparison between the 

experimental versus predicted logP values were illustrated in Figure 2. It is pointed out that 

the two outliers in Figure 2B are chi030 and choni01, two iodine-containing molecules.

3.3 logP prediction for the 707-molecule druglike test set

To validate our newly proposed logP model, the logP prediction accuracy was further 

tested on the 707 druglike molecules reported by the Martel’s study31. All these molecules 

collected from the ZINC database have high structural diversity, and do not contain any 

permanently charged molecules. Moreover, the molecular weights for those molecules are 

distributed between 160 and 600 Da. As shown in Table 2, the RMSE of the predictions 

using FElogP is 0.91, which is the lowest among several commonly-used logP models 

including the logP models implemented in Open Babel42 (RMSE = 1.13), Schrodinger’s 

Qikprop (RMSE = 1.25), Tripos’s Sybyl (RMSE = 1.55, ClogP model) and SimulationPlus’s 

ADMET Predictor (RMSE = 2.03, MlogP model). The scatter plots of the experimental 

versus predicted logP using five different methods were shown in Figure 3. The detailed 

calculation results by using different methods were listed in Table S4.

4. Discussion

4.1 Advantage of applying the principle of transfer free energy in logP prediction

The accurate prediction of logP is an important topic in molecular modeling and computer 

aided drug design (CADD) due to its significant role in drug delivery. A full spectrum 

of calculation methods has been adopted in logP prediction, ranging from the fast QSPR 

methods to time-consuming alchemical free energy methods. Although many logP models 

have been developed and deployed in public domain, scientists are still seeking more ideal 

models which are accurate, efficient, and more importantly, robust for arbitrary molecules 

no mater they are similar to the training set molecules or not. FElogP, a transfer free 

energy-based physical model entails those features. First, FElogP was developed without 

using the measured logP data, thus, its performance is more irrelevant with the training set 

molecules for logP model construction. The number of parameters optimized for solvation 

free energy calculations using MM-PBSA is limited (13 for PB raii and 4 for two nonpolar 

solvation free energy models), so the two solvation models are quite robust. Second, the 
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current computational protocol using only one single conformation, so the computational 

efficiency is satisfactory, albeit is slower than those simple atom or fragment-based methods.

The performance of FElogP model was critically evaluated using a set of 707 druglike 

molecules measured by Martel et al.31 The logP values of those molecules were 

experimentally determined by UHPLC followed by UV or MS detection. According to 

Martel, previous logP experiment datasets suffer from a poor coverage of chemical space, 

inadequate and heterogenous experimental condition for obtaining these logP data31, thus 

led to unsatisfying predictive power of the logP prediction tools. For the ideal test set, 

FElogP outperformed several popular logP models implemented in freeware and commercial 

software packages. Thus, implicit solvent model-based approaches have a great advantage 

over those QSPR and even machine learning-based approaches in term of model robustness.

4.2 Comparison of FElogP with other transfer free energy-based methods

We developed a nonpolar model for SFE in n-octanol calculations, while for the polar 

solvation free energy, the PB radius parameter set was the same as for HFE calculations. 

The RMSE of SFE calculations was 1.83 kcal/mol for 243 molecules (Table 1), worse 

than RMSE of HFE calculations, which was 1.05 kcal/mol for 544 molecules. We were 

curious if the performance drop-off indicated our n-octanol SFE model was very poor. We 

conducted SFE calculations for all the molecules in the training set using ab initio methods. 

As shown in Table 1, the performance of our PBSA model is between that of two model 

chemistry, HF/6–31G* + SMD and B3LYP/6–31G* + SMD. We expected the n-octanol SFE 

by using MM-PBSA can be improved with more experimental values being determined for 

more structurally diverse molecules. We further explored how well B3LYP/6–31G* + SMD 

perform in logP prediction applying the same principle of transfer free energy. As shown 

in Table S3, the ab initio method achieved a slightly better performance than FElogP (0.69 

versus 0.92 log units).

We also calculated logP for the Martel molecular set using B3LYP/6–31G* + SMD 

model chemistry. Two computational protocols were applied, one used the same single 

conformations generated by OpenBabel to conduct single point calculations; and the other 

performed geometry optimizations using polarizable continuum model (PCM) with the 

aqueous and n-octanol solvents (Figure 4). The logP calculation results for the Martel 

dataset are quite astonishing. The RMSE between experimental and calculated logP are 2.16 

and 2.67 log units for the first and second protocols, respectively. Compared to our FElogP 

method, logP predicted with SMD not only have larger prediction deviation, but also have 

worse correlation (Table 2). Note that this performance is dramatically different from that 

for the 156-molecular set, for which the RMSE are 0.92 and 0.69 log units for FElogP and 

the ab initio model, respectively.

Ab initio calculation is theoretically more rigorous than MM-PBSA method and has long 

been regard as an accurate calculation method. One possible explanation of our finding is 

that the universal parameters for calculating the nonpolar term of any solvents in SMD 

maybe overfitted. In our FElogP model, we used the same PB radius parameter set for the 

polar solvation free energy calculations in both aqueous and n-octanol solvents, and the 

same radius parameter set for solvent accessible surface area calculation. This strategy can 
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maximize the error cancellation in solvation free energy calculations. We hypothesized that 

applying SASA to estimate the nonpolar part of solvation free energy, although quite simple, 

is more suitable for logP prediction using the principle of transfer free energy.

4.3 Conformation-dependence of logP prediction with FElogP

To make FElogP method efficient, we performed logP calculation of a molecule using a 

single 3D structure generated by OpenBabel. It is very important to investigate if FElogP 

predicted values are conformation-dependent. As shown in Table S4, there are 21 out of 707 

molecules have been identified as outliers. Note that we recognize a molecule is an outlier 

if the prediction error is equal to or larger than 2 log units. The molecular structures of 

those outliers were illustrated in Figure 5. Unfortunately, there are little common structural 

features of those outliers.

We then investigated if we could improve the prediction using multiple conformations. First 

of all, we conducted two implicit MD simulations on the 21 outlier molecules using a 

GB model of Hawkins et al.49 to sample multiple conformations, mimicking aqueous and 

n-octanol solvent environment. The resulted MD snapshots were labeled as the aqueous and 

n-octanol conformational sets, correspondingly. We then designed five different methods to 

calculate logP, which are (1) HFE and SFE respectively used the aqueous and n-octanol 

conformational sets; (2) both HFE and SFE used the aqueous conformational set; (3) both 

HFE and SFE used the n-octanol conformational set; (4) FElogP calculations were carried 

out for every conformation in the aqueous conformation set and then take an average; 

and (5) FElogP calculations were performed for every conformation in the n-octanol 

conformation set and then take an average. For the last two methods, the mean values and 

the standard deviations were calculated.

It turned out that the logP prediction errors using multiple conformations were decreased 

slightly compared to the standard protocol for which only one conformation was applied 

to calculate logP. As shown in Table 3, the RMSE was dropped reduced from 2.57 for the 

standard protocol, to 2.42 for Method 1, 2.16 for Method 2, and 2.15 for Method 3. As 

shown in Table S5, the RMSE were 2.16 for Method 4 and 2.15 for Method 5, respectively. 

The average standard deviation of FElogP calculations for 190 snapshots are 0.26 and 0.27 

for Method 4 and Method 5, respectively. The low standard deviation values of Methods 

4 and 5 suggested that our FElogP method is basically conformation-independent. When 

multiple conformations are used in FElogP calculations, the prediction performance can be 

improved using either of the last four methods. It is reasonable for Method 1 being inferior 

to the other methods, as the error cancellation became less effective when two different 

conformational sets were applied in solvation free energy calculations.

5. Conclusion:

Due to its important role in drug discovery and development, accurate prediction of logP of 

an arbitrary pharmaceutical molecule is highly important. An ideal logP model is accurate, 

efficient and robust for any druglike molecules. A transfer free energy-based approach has 

a potential to satisfy the above requirement. We developed the FElogP model in the spirit 

of applying the transfer free energy principal to predict logP. Our method avoided using 
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the measured logP values to construct models, thus achieved high mode robustness. Indeed, 

the RMSE values for the 156-molecule training set and the 707-molecule test set are very 

similar, which are 0.92 and 0.91 log units, respectively. Note that our FElogP calculation 

on a molecule only utilize one 3D conformation which is automatically generated by 

free software OpenBabel. We further explored the influence of considering multiple solute 

conformations to the logP prediction results. It turned out that calculate logP from multiple 

conformations could reduce the prediction to some degree. Meanwhile, a solvation model 

for n-octanol using MM-PBSA was developed and its performance was comparable with 

the SMD model using B3LYP/6–31G* level of theory. We believe our FElogP will have 

great applications in logP prediction, especially for molecules which are distinct from those 

molecules in the training sets for constructing logP models.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Comparison of the experimental and calculated solvation free energies for the training 

set molecules. A: hydration free energies of 544 training set molecules. B: solvation free 

energies of 243 training set molecules in n-octanol solvent. Eye-guided lines are shown for 

ideal matching of calculation vs. experiment (solid line), with error of ±1 kcal/mol (dashed 

line), and with error of ±2 kcal/mol (dotted line), respectively.
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Figure 2. 
Comparison of the experimental and calculated logP for the 156 molecules which have 

measured log P and solvation free energies in water and in n-octonal. A: logP was calculated 

using FElogP; B: logP was calculated using the SMD at the B3LYP/6–31G* level of model 

chemistry. Eye-guided lines are shown for ideal matching of calculation vs. experiment 

(solid line), with error of ±1 kcal/mol (dashed line), and with error of ±2 kcal/mol (dotted 

line), respectively.
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Figure 3. 
Comparison of the experimental and calculated logP for the 707 ZINC molecules in 

the Martel dataset. logP was calculated using five different models, which are FElogP 

(A), QikProp module in Schrodinger Maestro (B), OpenBabel (C), ClogP in Sybyl (D), 

and MlogP in ADMET Predictor (E). Eye-guided lines are shown for ideal matching of 

calculation vs. experiment (solid line), with error of ±1 kcal/mol (dashed line), and with 

error of ±2 kcal/mol (dotted line), respectively.
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Figure 4. 
Comparison of the experimental and calculated logP for the 707 ZINC molecules in the 

Martel dataset. logP was calculated using two QM methods. A: SMD calculation with the 

input geometries (single point). B: SMD calculations using optimized geometries.
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Figure 5. 
2D-Structures of outliers who had the predicted logP different from the measured one at 

least 2 log units. A: molecules 1–14; B: molecules 15–21.
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Table 1.

The comparison of solvation free energy calculations in n-octanol for 243 molecules

Method MSE MUE RMSE PI R

PBSA (new model in this work) −0.10 1.37 1.83 0.92 0.92

HF/6–31G* + SMD −0.71 1.29 1.84 0.93 0.92

B3LYP/6–31G* + SMD 0.53 1.21 1.68 0.93 0.92
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Table 2.

The comparison of logP prediction using seven different approaches/models for Martel dataset (N = 707).

Method MSE MUE RMSE PI R

FElogP (this work) 0.28 0.70 0.91 0.70 0.71

Maestro (QikProp)* −0.70 0.99 1.25 0.71 0.71

OpenBabel −0.43 0.86 1.13 0.69 0.67

Sybyl (ClogP) −0.93 1.12 1.55 0.70 0.65

ADMET Predictor (MlogP) −1.72 1.77 2.03 0.55 0.55

B3LYP/6–31G + SMD (single point) −1.68 1.77 2.16 0.57 0.56

B3LYP/6–31G + SMD (geometry optimization) −2.24 2.27 2.67 0.54 0.53

*
For QikProp, four molecules did not yield results in logP prediction.
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Table 3.

The influence of conformational sampling on FElogP calculations. Implicit MD simulations were sampled to 

model both aqueous and n-octanol solvent environments. The compared methods including “Single” (single 

conformations generated by OpenBabel), “Method1” (HFE and SFE were calculated using conformational 

sets sampled in aqueous solution and n-octanol, respectively), “Method2” (both HFE and SFE were calculated 

using the conformational set sampled in aqueous solution), and “Method3” (both HFE and SFE were 

calculated using the conformational set sampled in n-octanol solution).

Molecule ID Expt. FElogP Method1 Method2 Method3

Calc. Diff. Calc. Diff. Calc. Diff Calc. Diff.

ZINC00149819 0.51 2.54 2.03 2.51 2.00 2.54 2.03 2.52 2.01

ZINC00701894 2.89 5.77 2.88 5.45 2.56 5.39 2.50 5.38 2.49

ZINC00709808 2.50 5.71 3.21 4.63 2.13 4.55 2.05 4.56 2.06

ZINC01102279 2.78 5.26 2.48 4.84 2.06 5.05 2.27 5.10 2.32

ZINC01107975 3.08 6.02 2.94 5.40 2.32 5.52 2.44 5.54 2.46

ZINC01163656 2.52 5.17 2.65 5.29 2.77 5.29 2.77 5.29 2.77

ZINC01181998 6.66 4.50 −2.16 4.64 −2.02 4.53 −2.13 4.51 −2.15

ZINC01425882 3.30 5.46 2.16 4.30 1.00 4.38 1.08 4.40 1.10

ZINC01515530 4.17 6.78 2.61 6.46 2.29 5.89 1.72 6.43 2.26

ZINC02038455 5.69 3.64 −2.05 3.68 −2.01 3.68 −2.01 3.67 −2.02

ZINC02811943 1.04 3.47 2.43 3.47 2.43 3.46 2.42 3.45 2.41

ZINC02842393 2.95 5.15 2.20 5.11 2.16 5.17 2.22 5.22 2.27

ZINC03007724 2.05 4.57 2.52 4.55 2.50 4.34 2.29 4.35 2.30

ZINC03307144 1.14 4.35 3.21 4.30 3.16 3.94 2.80 3.84 2.70

ZINC03439551 0.82 4.24 3.42 6.50 5.68 4.04 3.22 3.69 2.87

ZINC03467496 2.18 4.31 2.13 3.21 1.03 3.48 1.30 3.17 0.99

ZINC03534461 2.09 4.78 2.69 4.91 2.82 4.65 2.56 4.62 2.53

ZINC03621394 3.66 6.25 2.59 5.78 2.12 5.79 2.13 5.81 2.15

ZINC03639569 4.45 6.45 2.00 5.13 0.68 5.44 0.99 5.37 0.92

ZINC12376491 6.00 3.52 −2.48 4.33 −1.67 4.31 −1.69 4.26 −1.74

ZINC18227453 5.76 3.34 −2.42 4.94 −0.82 4.93 −0.83 4.93 −0.83

RMSE - 2.57 2.42 2.16 2.15
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