Przejdź do zawartości

Metoda WKB

Z Wikipedii, wolnej encyklopedii

Metoda WKB (Wentzla-Kramersa-Brillouina) lub przybliżenie WKB – w mechanice kwantowej przybliżona metoda rozwiązywania równania Schrödingera polegająca na założeniu, że funkcja falowa jest lokalnie falą płaską zniekształconą przez obecność potencjału.

Niech stacjonarne równanie Schrödingera w jednym wymiarze będzie dane przez

Dla rozwiązaniami są fale płaskie dane przez

Dla dowolnego potencjału można założyć podobną postać funkcji falowej, tzn.

czyli tak, jakby pęd k był lokalny i był funkcją położenia

Zakładając ponadto

i zbierając wyrazy w najniższym rzędzie otrzymujemy układ równań

Z rozwiązaniami

Do wyznaczenia pozostają teraz energie, które muszą być dyskretne dla stanów związanych. Niech będą tzw. punktami powrotu, tzn. punktami których nie mogłaby przekroczyć cząstka klasyczna o znikającej podczas oscylacji energii kinetycznej:

Na wzór najprostszej kwantyzacji atomu Bohra energie stanów związanych znajdujemy z warunku wartości całki lokalnego pędu po wymiarze liniowym oscylatora harmonicznego, zakładając że wszystkie potencjały są w sensie wartości tej całki harmoniczne, tzn.

a

są dokładnymi energiami oscylatora harmonicznego.

Całka ta dla oscylatora daje się łatwo policzyć ponieważ wyraża pole półkola o promieniu proporcjonalnym do energii i otrzymujemy dla dowolnego potencjału:

Aby otrzymać energie stanów związanych w metodzie WKB należy:

  1. Wyznaczyć punkty powrotu jako funkcje energii
  2. Obliczyć całkę pędu lokalnego w funkcji energii.
  3. Rozwiązać otrzymane równanie na energie z warunku kwantyzacji.

Literatura

[edytuj | edytuj kod]
  • I. Białynicki-Birula, M. Cieplak, J. Kamiński, Teoria kwantów – mechanika falowa, PWN, 2001.