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Abstract—We provide a correction to a subtle error in our
paper “Topology design for optimal network coherence”, which
appeared in the Proceedings of the European Control Conference

[3].

Our paper “Topology design for optimal network coherence”
published in the Proceedings of the European Control Confer-
ence [3] contains an incorrect proof for part of Theorem 3. We
give a counterexample' that invalidates the result.

Consider a network with underlying weighted undirected
graph G = (V, E,w) where V = {1,...,n} is a set of nodes,
E C V xV is a set of edges, and w € RIEl is a set
of nonnegative weights associated with each edge. Suppose
a scalar state variable is associated with each node and the
network has consensus dynamics modeled by the stochastic
differential equation

dz(t) = —La(t)dt + dW (1)

where L is the weighted Laplacian matrix and dW is a vector
of independent Gaussian white noise stochastic processes.
Network coherence quantifies the steady-state variance of state
fluctuations with respect to the expected average state value.
and can be considered as a measure of robustness of the
consensus process to the additive noise. It is proportional to the
trace of the pseudo-inverse of the Laplacian matrix, tr(L],;).

The paper [3] contained the following statement regarding
submodularity of network coherence with respect to edge
subsets:

Theorem 1. Let G = (V,E,wg) be a given connected
weighted graph, let £ CV x V' \ E with weights wg, and let
Lg be the weighted graph Laplacian matrix associated with
the edge set E\UE. Then the set function f: V xV\E — R
defined by f(€) = —tr(Lz) is submodular.

Unfortunately, further investigation revealed that the proof
of this claim contains a subtle error. It effectively relies on
a statement that for two positive definite matrices P and
Q, Pt = Q! implies that P~2 = Q2. However, this
is incorrect in general, since the partial ordering of positive

T. Summers is with the Department of Mechanical Engineering at the
University of Texas at Dallas, email: tyler.summers @utdallas.edu. I. Shames is
with the Department of Electrical and Electronic Engineering at the University
of Melbourne. J. Lygeros and F. Dorfler are with the Automatic Control
Laboratory, ETH Ziirich.

IStrictly speaking, we provide strong numerical evidence supporting incor-
rectness of the result that relies on accuracy of numerical computations and
correctness of the source code of either MATLAB or NumPy. It is not too
difficult to generate other numerical counterexamples, so that the evidence
becomes overwhelming

semidefinite matrices is not necessarily preserved by squaring
(or by any matrix power greater than one).

The following counterexample demonstrates that, unfortu-
nately, the result is also incorrect, not just the proof. Consider
an underlying path graph on 5 nodes with V' = {1,2,3,4,5}
and E = {(1,2),(2,3),(3,4),(4,5)}, so that the associated
(unweighted) Laplacian matrix is

1 -1 0 0 0
-1 2 -1 0 0
L= o -1 2 -1 0
0 o -1 2 -1
0 0 0o -1 1
Consider the additional edge subsets S; = {(1,3),(2,4)} and
Sy = {(2a4)a (37 5)}’ so that S1 U S = {(1,3)7 (234)7 (37 5)}
and S1 NSy = {(2,4)}. We have
tr(Ly ) =205, tr(L})=2.05
tr(Ll s,) = 1.3905, tr(L} g )= 2.667,
so that

tr(LL )+ tr(LL ) — [tr(L g,) +tr(L] g,)] = 0.0429.

(©))

This violates the definition of submodularity (stated in Defini-
tion 1 of [3]), so the set function defined in Theorem 1 is not
submodular.

Even though the worst-case theoretical performance guaran-
tee of the greedy algorithm associated with submodularity is
lost due to this error, all of the methodological developments
and numerical experiments for designing network to optimize
coherence remains valid. There may be some alternative ex-
planation for the effectiveness of the greedy algorithm in this
setting.

The error originated from a similar argument made in [2] in
the context of network controllability, and also affects a result
in [1] in the context of network rigidity.
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