
Low-complexity, Low-memory EMS algorithm for
non-binary LDPC codes

Adrian Voicila∗‡,David Declercq‡, François Verdier‡
‡ETIS

ENSEA/UCP/CNRS UMR-8051
95014 Cergy-Pontoise, (France)

Marc Fossorier†
†Dept. Electrical Engineering

Univ. Hawaii at Manoa
Honolulu, HI 96822, (USA),

Pascal Urard∗
∗STMicroelectronics

Crolles, (France)

Abstract— In this paper, we propose a new implementation
of the EMS decoder for non binary LDPC codes presented
in [7]. A particularity of the new algorithm is that it takes
into accounts the memory problem of the non binary LDPC
decoders, together with a significant complexity reduction per
decoding iteration. The key feature of our decoder is to truncate
the vector messages of the decoder to a limited number nm

of values in order to reduce the memory requirements. Using
the truncated messages, we propose an efficient implementation
of the EMS decoder which reduces the order of complexity to
O(nm log2 nm), which starts to be reasonable enough to compete
with binary decoders. The performance of the low complexity
algorithm with proper compensation are quite good with respect
to the important complexity reduction, which is shown both
with a simulated density evolution approach and actual FER
simulations.

I. INTRODUCTION

It is now well known that binary low density parity check
(LDPC) codes achieve rates close to the channel capacity
for very long codeword lengths, and more and more LDPC
solutions are proposed in standards (DVB, WIMAX, etc).
In terms of performance, binary LDPC codes start to show
their weaknesses when the code size is small or moderate,
and higher order modulation is used for transmission. For
these cases, non binary LDPC (NB-LDPC) codes designed
in high order Galois fields GF(q) have shown great interest
[1], [2], [3], [4]. However, the performance gain brought
by using LDPC codes over GF(q) comes together with a
significant increase of the decoding complexity. NB-LDPC
codes are decoded with message passing algorithms as the
belief propagation (BP) decoder, but the size of the messages
varies in the order q of the field. Therefore, a straightforward
implementation of the BP decoder has complexity in O(q2).
A Fourier domain implementation of the BP is possible like
in the binary case, reducing the complexity to O(q log q), but
this implementation is only convenient for messages expressed
in the probability domain.
In [7], the authors have proposed a decoding algorithm, called
extended min-sum (EMS) algorithm, which uses only a limited
number nm of reliabilities in the messages at the input of the
check node in order to reduce the computational burden of the
check node update. With nm � q, the complexity of a check
node varies in O(nm.q), using LDR representations of the
messages, without sacrificing too much in performance, even
for high order field codes, up to GF(256). This complexity
is still very high and one should try to reduce it even more

in order for NB-LDPC codes to compete with binary codes
in terms of performance/complexity trade off. Moreover, the
larger amount of memory required to store the messages of
size q is an issue that has not been addressed in [7].
In this paper, we propose several improvements of the EMS
algorithm that allows us to reduce both the memory and the
complexity of the decoder. We keep the basic idea of using
only nm � q values for the computation of messages, but
we extend the principle to all the messages in the Tanner
graph, that is both at the check nodes and the data nodes input.
Moreover, we propose to store only nm reliabilities instead of
q in each message. The truncation of messages from q to nm

values has to be done in an efficient way in order to reduce its
impact on the performance of the code. The technique that we
propose is described in details in section III, together with an
efficient offset correction to compensate for the performance
loss. Using the truncated messages representation, and a re-
cursive implementation of the check node update, we propose
a new implementation of the EMS decoder whose complexity
is dominated by O(nm log nm), with nm � q, which is
an important complexity reduction compared to all existing
methods [5], [6], [7]. Our new algorithm is depicted in section
IV and a study of its complexity/performance trade off is made
in section V. We conclude the paper by simulation results that
demonstrate that our low complexity decoder still performs
very close to the BP decoder that we use as benchmark.

II. PRELIMINARIES

A non binary LDPC code is defined by a very sparse random
parity check matrix H whose components belong to a finite
field GF(q). Decoding algorithms of LDPC codes are iterative
message passing decoders based on a factor (or Tanner) graph
representation of the matrix H . In general, an LDPC code has
a factor graph consisting of N variable nodes with various
connexion degrees and M parity check nodes with also various
degrees. To simplify our notations, we will only present the
decoder equations for isolated nodes with given degrees, and
we denote dv the degree of the symbol node and dc the degree
of the check node. In order to apply the decoder to irregular
LDPC codes, simply let dv (resp. dc) vary with the symbol
(resp. check) index. A single parity check equation involving
dc variable nodes (codeword symbols) ct is of the form:

dc∑
t=1

htct = 0 in GF(q) (1)



where ht is a nonzero value of the parity matrix H .
An important difference between non binary and binary LDPC
decoders is that the former’s messages that circulate on the
factor graph are multidimensional vectors, rather than scalar
values. Like the binary decoders, however, there are two
possible representations for the messages : probability weights
vectors or log-density-ratio (LDR) vectors. The use of the LDR
form for messages has been advised by many authors who
proposed practical LDPC decoders. Indeed, LDR values which
represent real reliability measures on the bits or the symbols
are less sensitive to quantization errors due to finite precision
coding of the messages [8]. Moreover, LDR measures operate
in the logarithm domain, which avoids complicated operations
(in terms of hardware implementation) like multiplications or
divisions. The following notation will be used for a LDR
vector of a random variable z ∈ GF (q):

L(z) = [L[0] . . . L[q − 1]]T

where

L[i] = log
P (z = αi)
P (z = α0)

(2)

with P (z = αi) the probability that the random variable z
takes on the values αi ∈ GF (q) and L[0] = 0, L[i] ∈ R.
For example, the log-likelihood-ratio (LLR) vector message
at the channel output is denoted Lch = {Lch[k]k={0,...,q−1}}
defined by q-1 terms of the type (2), the values of the
probability weights P (z = αi) depending on the transmission
channel statistics. The decoding algorithm that we propose
is independent of the channel, and we just assume that a
demodulator provides a LLR vector Lch that initializes the
decoder (the BI-AWGN channel is used in our simulations,
see section VI).
The GF(q)-LDPC iterative decoding algorithms are character-

n
m

n
m

n
m

n
m

1 2 3

3 32 21 1

v v v 

h v h v h v 

V U U

U
U

v p

p c

p c

Vc p

p v

1 3

3    3v p2   2 1  1

 2

Fig. 1. Factor graph structure of a parity check node for a non-binary LDPC
code

ized by three main steps corresponding to the different nodes
depicted in figure Fig. 1: (i) the variable node update, (ii)
the permutation of the messages due to nonzeros values in
the matrix H and (iii) the check node update which is the
bottleneck of the decoder complexity since the BP operation
at the check node is a convolution of the input messages, which
makes the computational complexity grow in O(q2).
We use the following notations for the messages in the graph
(see Fig. 1). Let {Vpiv}i={0,...,dv−1} be the set of messages
entering a variable node of degree dv , and {Uvpi

}i={0,...,dv−1}
be the output messages for this variable node. The index
‘pv‘ indicates that the message comes from a permutation

node to a variable node, and ‘vp‘ is for the other direc-
tion. We define similarly the messages {Upic}i={0,...,dc−1}
({Vcpi

}i={0,...,dc−1}) at the input (output) of a check node.
In [7], the EMS algorithm reduces the complexity of the check
node update by considering only the nm largest values of the
messages at the input of the check node. However, the output
messages of the check node are still composed of q values. As
a consequence, the EMS complexity of a single parity check
node varies in O(nm.q) and all messages in the graph are
stored with their full representation of q real values, which
implies a high memory storage complexity.
In this paper, we present a new implementation of the EMS
algorithm whose main originality is to store exactly nm � q
values in all vector messages Uvp, Vcp. This has the advantage
of reducing the memory requirements, but also to further
reduce the computational complexity with a proper algorithm
which is described in details in section IV. Let us first present
the way we truncate the messages from q to nm values and
discuss its impact on the error correction performance of the
decoder.

III. STRUCTURE AND COMPENSATION OF THE TRUNCATED

MESSAGES

The vector messages Vcp and Uvp are now limited to only
nm entries which are assumed to be the largest reliability
values of the corresponding random variable. Moreover, the
values in a message are sorted in decreasing order. That way,
Vcp[0] is the maximum value and Vcp[nm−1] is the minimum
value in Vcp. We need to associate to the vectors Vcp, Uvp

of size nm the additional vectors βVcp and βUvp (of size
nm) which store the elements αk ∈ GF (q), associated to
the largest LDR values of vectors Vcp and Uvp. For example,
Uvp[k] is the LDR value that corresponds to the symbol value
βUvp

[k] ∈ GF (q).
Although interesting in terms of memory and computation
reduction, the truncation of messages obviously looses po-
tentially valuable information which leads to performance
degradation on the error rate curves. This loss of performance
could be mitigated by using a proper compensation of the
information that has been truncated. Because our main concern
is the development of low complexity decoders, we have
chosen to compensate the q−nm truncated values with a single
scalar value γ, which is the simplest model one can use. The
following definition is used for a compensated message:

Definition

Let A be any message in the graph which represents a LDR
vector of size q. A truncated version B of A is composed of
the nm largest values of A sorted in decreasing order, plus
an additional (nm + 1)-th value γA ∈ , whose goal is to
compensate for the information loss due to the truncation of
q − nm values.

The compensated-truncated message B has then (nm + 1)
components, and the value γA is seen as a constant real
value that replaces the q − nm missing reliabilities. A full
representation of the truncated message B would then be:

B = [B[0], . . . , B[nm − 1], γA, . . . , γA]T



This means in particular that γA ≤ B[nm − 1].
Let us first analyze a possible solution to compute the value of
γA using normalization of probability messages. We consider
PA the probability domain representation of the LDR vector
A

PA[k] = P (z = αk) = PA[0]eA[k] k = {0, . . . , q − 1}
and let PB be the vector of size nm with values

PB [k] = P (z = βB [k]) = PA[0]eB[k] k = {0 . . . , nm−1}
Remember that A is unsorted while B is sorted, which explains
the difference in these two definitions.
Because PA is a probability weight vector, we have:

q−1∑
k=0

PA[k] = 1
nm−1∑
k=0

PB [k] < 1 (3)

A clever way to fix a good value on the scalar compensation
γA is to assume that the truncated message should represent
a probability weight vector with a sum equal to one, so that∑nm−1

j=0 PB[j] + (q − nm)PγA
= 1 is satisfied. With PγA

the
probability weight associated, with LDR value γA, that is
PγA

= PA[0]eγA . The normalization of vector PB is then:

(q − nm)PγA
= 1 − PA[0]

nm−1∑
j=0

eB[j]

PγA

PA[0]
=

1
PA[0] −

∑nm−1
j=0 eB[j]

q − nm

log
PγA

PA[0]
= log


q−1∑

i=0

eA[i] −
nm−1∑
j=0

eB[j]


 − log(q − nm)

and finally

γA = log


 q−1∑

i=0,A[i]/∈B

eA[i]


 − log(q − nm) (4)

As a first remark we note that the computation of the additional
term requires the q − nm ignored values of vector A, and the
computation of a non linear function. The non linear function
can be expressed in terms of the max ∗(x1, x2) operator, used
in many papers [6], and in order to simplify the equation (4),
we approximate this operator by:

max ∗(x1, x2) = log (ex1 + ex2) ≈ max(x1, x2) (5)

Equation (4) becomes:

γA = max
i=0,A[i]/∈B

∗(A[i]) − log(q − nm)

≈ max
i=0,A[i]/∈B

(A[i]) − log(q − nm)

≈ B[nm] − log(q − nm) (6)

where B[nm] is the largest value among the (q−nm) ignored
values of vector A.
Using the approximation (6) we obtain a simple computational
formula for the supplementary term γA, since we just need to
truncate the LDR vector A with its (nm + 1) largest values

instead of its nm largest values. On the other hand, this ap-
proximation introduces a degradation of the error performance
of the decoder. The approximation (5) is well known to over-
estimate the values of the LDR messages [9].
In principle, the compensation of the over-estimation should be
different for each message since the accuracy of approximation
(5) depends on the values it is applied to. An adaptive com-
pensation would be obviously too complicated with regards to
our goal of proposing a low complexity algorithm. We have
then chosen to compensate globally the over-estimation of the
additional term γA with a single scalar offset, constant for
all messages in the graph and also constant for all decoding
iterations:

γA = B[nm]− ln(q−nm)−offset = B[nm]−Offset (7)

There are several ways of optimizing the value of a global
offset correction in message passing decoders. We have chosen
to follow the technique proposed in [7], which consists of min-
imizing the decoding threshold of the LDPC code, computed
with simulated density evolution. Because of the lack of space,
we do not discuss in this paper the optimization of the global
offset, and we recall that estimated density evolution is just
used as a criterion to choose the correction factor and not to
compute accurate thresholds.

IV. DESCRIPTION OF THE ALGORITHM

A. Decoding steps with messages of size nm ≤ q

We now present the steps of the EMS decoder that uses
compensated-truncated messages of size nm. We assume that
the LLR vectors of the received symbols are known at the
variable nodes, either stored in an external memory or com-
puted on the fly from the channel measurements.
Using the notations of Fig. 1, the basic steps of the algorithm
are:

1) Initialization: the nm largest values of the LLR vectors
are copied in the graph on the {Uvpi

}i∈{0,...,dv−1}
messages.

2) Variable-node update: the output vector message
{Uvpi

}i∈{0,...,dv−1} associated to a variable node v
passed to a check node c is computed given all the
information propagated from all adjacent check nodes
and the channel, except this check node itself.

3) Permutation step: this step permutes the messages ac-
cording to the nonzero values of H (see (1)). In our
algorithm, it just modifies the indices vectors and not
the message values:

βUpic
[k] = hi.βUvpi

[k] k ∈ {0, . . . , nm − 1} (8)

where the multiplication is performed in GF (q).
4) Check-node update: for each check node, the values

{Vcpi
[k]}i∈{0,...,dc−1},k∈{0,...,nm−1} sent from check a

node to a permutation node are defined as the proba-
bilities (expressed in LDR format) that the parity-check
equation is satisfied if the variable node v is assumed to
be equal to βVpiv

[k].
5) Inverse permutation step: this is the permutation step

from check nodes to symbol nodes, so it is identical to
step 3), but in the reverse order.



For steps (2) and (4) a recursive implementation (Fig.2(a))
minimizes the number of elementary updates needed for both
check node and variable node updates. Lets put first some
notations on the recursive implementation, whose principle is
to decompose the parity check and variable node into several
elementary steps (Fig.2(b)). One elementary step assumes only
two input messages and one output message. The decomposi-
tion of the check nodes (variable nodes) with degree dc ≥ 4
(dv ≥ 3) implies therefore the computation of intermediate
messages denoted I (Fig.2(a)), which are assumed to be stored
also with nm values. The output Vcpi

(Uvpi
) of a check node

(variable node) is then - in most cases - computed from the
combination of an input message U (respectively V) and an
intermediate message I.

 p   c1
U

 p   c1
U

 size nm

 size nm

 size nm

 size nm size nm

 size nm  size nm

 size nm

 size nm

 size nm

   c  V
5 p  
 size nm

 size nm

 size nm

 size nm

 size nm

 size nm

 size nm

 size nm

 size nm p   cU
2

 size nm   U  size nm    I

 size nm  V

         Backward

         Forward

   c  V
2

1
   c  V

   c  V
4 p  

 p  

 p  

BI 1 2

FI 1 2FI 1 1

3
   c  V p  

U p   c5

U p   c5 p   cU
4

 p   cU
4

U p   c3

U p   c3

1BI 1

2 3 4 5h v h v h v h v

 p   cU
2

1h v1 2 3 4 5

(a)  (b)

Fig. 2. The recursive structure of a degree dc = 5 check-node (a); The
elementary step (b)

B. Variable node: elementary step

Let assume that an elementary step describing the variable
node update has V and I as input messages and U as output
message. The vectors V, I and U of size nm are sorted
in decreasing order. We note also by βV, βI and βU their
associated index vectors. Using the BP equations in the
log-domain for the variable node update [6], the goal of an
elementary step is to compute the output vector containing the
nm largest values among the 2nm candidates (9) (stored in an
internal vector message T). The processing of the elementary
step in the case of a variable node update is described by:

T [k] = V [k]+Y T [nm+k] = γV +I[k] k ∈ {0, . . . , nm−1}
(9)

with

Y =
{

I[l] if βI [l] = βV [k] k, l ∈ {0, . . . , nm − 1}
γI if βI [l] /∈ βV

The compensation value γ is used when the required symbol
index is not present in an input message. Whenever the V
input corresponds to the LLR channel vector, the γV term (9)
is substituted by Lch[βI [k]].

C. Low complexity implementation of a check node elementary
step

The this section describes in details the algorithm that
we propose for an elementary component of the check node

(Fig.2(b)). This step is the bottleneck of the algorithm com-
plexity and we discuss its implementation in details in the
rest of the paper. The check node elementary step has U
and I as input messages and V as output message. All
these vectors are of size nm are sorted in decreasing order.
Similar to the variable node update, we note also by βU, βI

and βV their associated index vectors. Following the EMS
algorithm presented in [7], we define S(βV [i]) as the set of
all the possible symbol combinations which satisfy the parity
equation βV [i]⊕ βU [j]⊕ βI [p] = 0. With these notations, the
output message values are obtained with:

V [i] = max
S(βV [i])

(U [j] + I[p]) i ∈ {0, . . . , nm − 1} (10)

Just as in the variable node update (step (2) in the previous
section), when a required index is not present in the truncated
vector U or I, its compensated value γ is used in equation (10).
Without a particular strategy, the computation complexity of
an elementary step is dominated by O(n2

m).
We propose a low computational strategy to skim the two
sorted vectors U and I, that provide a minimum number of
operations to process the nm sorted values of the output vector
V. The main component of our algorithm is a sorter of size
nm, which is used to fill the output message. For the clarity of
presentation, we use a virtual matrix M built from the vectors
U and I (cf. Fig.3), each element of M being of the form
M [i, p] = U [j]+I[p]. This matrix contains the n2

m candidates
to update the output vector V. The goal of our algorithm is to
explore in a efficient way M in order to compute iteratively its
nm largest values, using the fact that M is build from sorted
messages. For instance, we remark that the nm largest values
of M are located in the upper part of the anti diagonal of the
matrix. The basic steps of the algorithm are:

S[0]

 i

V

SORTER

p

0
1
2

I

 j

1 20U

M

Fig. 3. Diagram of the low complexity algorithm

1) Initialization: the values of the first column are intro-
duced in the sorter.

2) Output: the largest value is computed.
3) Test: does the associated GF(q) index of the output value

already exists in the output vector.

• Yes: no action
• No: the value is moved in the vector V

4) Evolution: The right neighbor - with regard to the M
matrix - of the filled value is introduced in the sorter.

5) Go to step 2
In order to insure that all values of the output vector V
correspond to different symbols αV ∈ GF (q), we can not stop
the algorithm after only nm steps, because it is possible that



among the computed values after nm steps, two or more can
correspond to the same αV . Let us define K as the number
of necessary steps so that all the nm values of the output
vector are computed. The parameter K is used to indicate the
computational complexity of our new EMS implementation.
We note that K∈ [nm,

n2
m

2 ]. Of course, the value of K depends
on the LDR that compose the input vectors U and I, and a
strictly valid implementation of the elementary step should
take into account the possibility of the worst case. However,
we have found that K is most of the time quite small. As
an example, Fig. 4 shows the discrete empirical probability
density function of K for a regular GF(256)-LDPC code,
nm = 32 and a signal to noise ratio in the waterfall region of
the code.
As a matter of fact, the distribution of K has an exponential

30 35 40 45 50 55 60 65
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

x

p(
x)

30 35 40 45
0   

0.005

0.01

0.015

0.02

Fig. 4. Discrete probability density function of K

shape and decreases very rapidly, e.g. prob(K ≤ nm + 4) =
0.9816. Based on this observation, it seems natural to consider
that the bad situations with large K are sufficiently rare so that
they do not really impact on the decoder performance. We
have verified this claim by simulations of density evolution
and found that using Kmax = 2nm does not change the
value of the decoding threshold for various LDPC code
parameters. Note that with Kmax = 2nm, sometimes the
output vector V could be filled with less than nm values
and in those cases, we fill the rest of the vector with a
constant value equal to the additional term γV . The worst case
scenario for the complexity of an elementary step is then to
O(Kmax log2 nm) = O(2nm log2 nm), which corresponds to
the number of max operations needed to insert Kmax elements
into a sorted list of size nm. In the next section, we study in
details the complexity of our new implementation of the EMS.

V. COMPLEXITY AND MEMORY EVALUATION OF THE

ALGORITHM

The computational complexity of a single parity node and
a single variable node are indicated in table I in terms of
their connexion degree dc (resp. dv). This complexity applies
both for regular and irregular non binary LDPC codes, the
local value of the connexion degree following the connectivity
profile of the code.
This complexity assumes the use of truncated messages of

TABLE I

COMPUTATIONAL COMPLEXITY OF THE MESSAGE UPDATES WITH THE

EMS ALGORITHM AND MESSAGES OF SIZE nm

Complexity check node
No. max 3(dc − 2)Kmax log2 nm

No. real add 3(dc − 2)(Kmax + nm)
No. add over GF(q) 3(dc − 2)(Kmax + nm)

Complexity variable node
No. max (dv + 3(dv − 2))nm log2(2nm)

No. real add (dv + 3(dv − 2))2nm

size nm, even for the channel LLR vector Lch and the
implementation of the check node update presented in this
paper. Note that we indicated the worst case complexity for the
check node with K = Kmax and that the average complexity
is often less than that.

The complexity associated with the update of vectors U
at the variable node output is obtained with a recursive
implementation of the variable node, which is used only for
connexion degrees dv ≥ 3. As a results, the complexity of
our decoding algorithm is dominated by O(nm log2(nm)) in
the case Kmax = 2nm for both parity and variable nodes
computation. Interestingly, the complexity of a check node
respectively of a variable node are somewhat balanced, which
is a nice property that should help an efficient hardware imple-
mentation based on a generic processor model. Moreover, one
can remark that the complexity of the decoder does not depend
on q, the order of the field in which the code is considered.
Let us again stress the fact that the complexity of our decoder
varies in the order of O(nm log2(nm)) and with nm � q,
which is a great computational reduction compared to existing
solutions [5], [6], [7].
The memory space requirements of the decoder is composed
by two independent memory components, that correspond to
the channel messages Lch and to the extrinsic messages U,
V with their associated index vectors β. Storing each LDR
value on Nbits bits in finite precision would therefore require
a total number of nm ∗ N ∗ dv ∗ (Nbits + log2 q) bits. So,
the memory storage depends linearly on nm, which was the
initial constraint that we put on the messages.
Since nm is the key parameter of our algorithm that tune the
complexity and the memory of the decoder, we now need to
study for which values of nm the performance loss is small
or negligible. In order to give a first answer to this question,
we have made an asymptotic threshold analysis of the impact
of nm on the threshold value. For a rate R = 0.5 LDPC code
with parameters (dv = 2, dc = 4), Fig.5 plot the estimated
threshold in (Eb/N0)dB of our algorithm for different values
of nm and two different field orders GF(64) and GF(256).
As expected, the thresholds become better as nm increases,

and can approach closely the threshold of BP with much less
complexity. The BP thresholds are equal to δ = 0.58dB
for the GF(64) code and δ = 0.5dB for the GF(256) code
[7]. We can use the plots on Fig.5 as first indication for
choosing the field order of the LDPC code that corresponds
to a given complexity/performance trade off. Note however



0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0

200

400

600

800

1000

1200

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05
0

200

400

600

800

1000

1200

Threshold Value (dB)

C
om

pl
ex

ity
 / 

E
le

m
nt

ar
y 

st
ep

 

 
GF(64)
GF(256)

n  =48

m

n  =64
m

n  =32
mn  =32

m

n  =24mn  =24

m

m

m

m

n  =16

n  =8

n  =16
n  =12

m

Fig. 5. Estimated decoding threshold vs. Complexity

that this asymptotic study has to be balanced with the girth
properties of finite length codes, since it has been identified
in [2], [3] that ultra-sparse LDPC codes in high order fields
and with high girth have excellent performance.

VI. EXPERIMENTAL RESULTS

In this section, we present the simulation results of our low
complexity EMS algorithm, compared with the BP algorithm.
In order to make a fair comparison, floating point implementa-
tion have been used for both algorithms, and we will discuss in
a future paper the effect of quantization on the EMS decoder
performance. We focus on a regular GF(q)-LDPC code over
high order fields, of rate R = 1/2 (dv = 2, dc = 4). In Fig.6,
we have reported the frame error rate (FER) of short code of
length Nb = 848 equivalent bits, at convergence.
We denote by EMSnm

GF(q) the EMS decoder over the field GF(q)

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Eb/N0 (in db)

F
E

R

 

 

EMS GF(64) nm=16

BP GF(64)

BP GF(256)

EMS GF(256) nm=32

EMS GF(64) nm=32

Fig. 6. Comparison between BP and EMS decoding algorithms, floating
point implementation

with parameter nm. Let us first compare our low complexity
decoder to the BP decoder. For the code over GF(64), the
EMS16

GF(64) is the less complex algorithm presented. It performs
within 0.25dB of the BP decoder in the waterfall region.
The EMS32

GF(64) algorithm has 0.05dB performance loss in

the waterfall region and performs even better than the BP
decoder in the error floor region. This behavior is now well
known in the literature and comes from the fact that for small
code lengths, an EMS algorithm corrected by an offset is less
sensitive to pseudo-codewords than the BP.
Note that with this example, there is no advantage of using a
GF(256) code in terms of performance/complexity trade off
since EMS32

GF(64) has better performance than EMS32
GF(256) for all

considered (Eb/N0), although they share the same complexity.
Our low complexity algorithm is however quite robust since
the complexity reduction from q = 256 to nm = 32 is a lot
higher than from q = 64 to nm = 32, which was a drawback
of the solutions proposed in [5], [6]. The same kind of behavior
have been observed for other code and decoder parameters.

VII. CONCLUSION

We have presented in this paper a general low complexity
decoding algorithm for non binary LDPC codes, using
log-density-ratio as messages. The main originality of the
proposed algorithm is to truncate the vector messages to
a fixed number of values nm � q, in order to solve the
complexity problem and to reduce the memory requirements
of the non binary LDPC decoders. We have also shown that
by using a correction method for the messages, our EMS
decoding algorithm can approach the performance of the BP
decoder and even in same cases beat the BP decoder.
The complexity of the proposed algorithm is dominated by
O(nm log2(nm)). For values of nm providing near-BP error
performance, this complexity is smaller than the complexity
of the BP-FFT decoder.
The proposed low complexity, low memory EMS decoding
algorithm then becomes a good candidate for the hardware
implementation of non binary LDPC decoders. Since its
complexity and its memory space has been greatly reduced
compared to the other suboptimal decoding algorithms for
the non binary LDPC codes and the performance degradation
is small or negligible.

REFERENCES

[1] M. Davey and D.J.C. MacKay, “Low Density Parity Check Codes over
GF(q),” IEEE Commun. Lett., vol. 2, pp. 165-167, June 1998.

[2] X.-Y. Hu and E. Eleftheriou, “Binary Representation of Cycle Tanner-
Graph GF(2q) Codes,” The Proc. IEEE Intern. Conf. on Commun., Paris,
France, pp. 528-532, June 2004.

[3] C. Poulliat,M. Fossorier and D. Declercq, “Design of non binary LDPC
codes using their binary image: algebraic properties,” ISIT’06, Seattle,
USA, July 2006.

[4] A. Bennatan and David Burshtein, ”Design and Analysis of Nonbinary
LDPC Codes for Arbitrary Discrete-Memoryless Channels,” IEEE Trans.
on Inform. Theory, vol. 52, no. 2, pp. 549-583, Feb. 2006.

[5] H. Song and J.R. Cruz, “Reduced-Complexity Decoding of Q-ary LDPC
Codes for Magnetic Recording,” IEEE Trans. Magn., vol. 39, pp. 1081-
1087, Mar. 2003.

[6] H. Wymeersch, H. Steendam and M. Moeneclaey, “Log-Domain De-
coding of LDPC Codes over GF(q),” The Proc. IEEE Intern. Conf. on
Commun., Paris, France, June 2004, pp. 772-776.

[7] D. Declercq and M. Fossorier, “Decoding Algorithms for Nonbinary
LDPC Codes over GF(q)”, to appear in IEEE Trans. on Commun., 2007.

[8] L. Ping and W.K. Leung, “Decoding low density parity check codes with
finite quantization bits”, IEEE Commun. Lett., pp.62-64, February 2000.

[9] J. Chen and M. Fossorier, “Density Evolution for Two Improved BP-
Based Decoding Algorithms of LDPC Codes,” IEEE Commun. Lett., vol.
6, pp. 208-210, May 2002.


