
The corrections below have been made in the amended version that follows.

(1) In Page 3, line above equation (3), “Ω” should be “ω.”

(2) In the right-hand side of equation (3), replace “δ” and “δT ” by “∆” and “∆T ”, respectively.

(3) In the right-hand side of equation (6), replace “Σ
1
2 δ” and “δTΣ

1
2 ” each by “O”.

(4) In the right-hand side of equation (7), replace “∆” and “∆T ” each by “O”.

(5) In the right-hand side of equation (8), replace “δT ” by “∆T ”.

(6) In the line below equation (8), replace “∆∆T ” by “∆2” in “Σ + ∆∆T ” and replace “∆T ” by “∆′′ in

“∆TΩ−1∆′′.

(7) In the right-hand side of equation (10), replace “δ” by “O” (twice).

(8) In the right-hand side of equation (12), replace “Σ
1
2 δ” and “δTΣ

1
2 ” each by “O”.

(9) In the right-hand side of equation (14), replace “∆” by “O” (twice).

(10) In Page 6 in the last paragraph of Section 3, replace “Azzalini and Dalla (1996)” with “Azzalini and Capitanio

(2003).”

(11) In the right-hand side of equation (27), in the denominator of the first line, replace “(k)” by “ν
(k)
h ” and “T

2,ν
(k)
h

”

by “T
1,ν

(k)
h

”.

(12) In the right-hand side of equation (29), in the second term, replace λ
(k)2

h by λ
(k)
h

√
ν
(k)
h +p

ν
(k)
h +d

(k)
h (yj)

.

Alternatively, e
(k)
4,hj can be reduced to λ

(k)2

h + q
(k)
hj e

(k)
3,hj .



Finite mixtures of multivariate skew t-distributions: some
recent and new results
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Abstract Finite mixtures of multivariate skew t (MST)

distributions have proven to be useful in modelling het-

erogeneous data with asymmetric and heavy tail be-

haviour. Recently, they have been exploited as an ef-

fective tool for modelling flow cytometric data. A num-

ber of algorithms for the computation of the maximum

likelihood (ML) estimates for the model parameters of

mixtures of MST distributions have been put forward in

recent years. These implementations use various char-

acterizations of the MST distribution, which are sim-

ilar but not identical. While exact implementation of

the expectation-maximization (EM) algorithm can be

achieved for ‘restricted’ characterizations of the com-

ponent skew t-distributions, Monte Carlo (MC) meth-

ods have been used to fit the ‘unrestricted’ models. In

this paper, we review several recent fitting algorithms

for finite mixtures of multivariate skew t-distributions,

at the same time clarifying some of the connections

between the various existing proposals. In particular,

recent results have shown that the EM algorithm can

be implemented exactly for faster computation of ML

estimates for mixtures with unrestricted MST compo-

nents. The gain in computational time is effected by

noting that the semi-infinite integrals on the E-step of

the EM algorithm can be put in the form of moments

of the truncated multivariate non-central t-distribution,

similar to the restricted case, which subsequently can

be expressed in terms of the non-truncated form of the

central t-distribution function for which fast algorithms

are available. We present comparisons to illustrate the

relative performance of the restricted and unrestricted

models, and demonstrate the usefulness of the recently

G. J. McLachlan
Department of Mathematics, University of Queensland,
St Lucia, 4072, Australia
E-mail: g.mclachlan@uq.edu.au

proposed methodology for the unrestricted MST mix-

ture, by some applications to three real datasets.

Keywords Mixture models · EM algorithm · Skew

normal distributions · Skew t component distributions

1 Introduction

Finite mixture distributions have become increasingly

popular in the modelling and analysis of data due to

their flexibility. This use of finite mixture distributions

to model heterogeneous data has undergone intensive

development in the past decades, as witnessed by the

numerous applications in various scientific fields such as

bioinformatics, cluster analysis, genetics, information

processing, medicine, and pattern recognition. Compre-

hensive surveys on mixture models and their applica-

tions can be found, for example, in the monographs

by Everitt and Hand (1981), Titterington et al. (1985),

McLachlan and Basford (1988), Lindsay (1995), Böhning

(1999), and Frühwirth-Schnatter (2006); see also the

papers by Banfield and Raftery (1993) and Fraley and

Raftery (1999).

Mixtures of multivariate t-distributions, as proposed

by McLachlan and Peel (1998, 2000), provide extra flex-

ibility over normal mixtures; see also Peel and McLach-

lan (2000). The thickness of tails can be regulated by

an additional parameter – the degrees of freedom, thus

enabling it to accommodate outliers better than normal

distributions. However, in many practical problems, the

data often involve observations whose distributions are

highly asymmetric as well as having longer tails than

the normal; for example, datasets from flow cytometry

Pyne et al. (2009).

Azzalini (1985) introduced the so-called skew-normal

(SN) distribution for modelling assymmetry in datasets.

This sparked a renewed interest in the study of “skewed”
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distributions. Following the development of the (uni-

variate) SN and skew t-mixture models by Lin et al.

(2007b), and Lin et al. (2007a), respectively, Basso et al.

(2010) studied a class of mixture models where the com-

ponent densities are scale mixtures of the (univariate)

skew-normal distribution introduced by Branco and Dey

(2001), known as the skew-normal independent (SNI)

family, which include the classical skew-normal and skew

t-distributions as special cases. Recently, Cabral, La-

chos, and Prates (2012) have extended the work of Basso

et al. (2010) to the multivariate case. Finite mixtures of

multivariate skew-normal and skew t-distributions were

also studied in Frühwirth-Schnatter and Pyne (2010),

from a Bayesian viewpoint, where the characterization

of Azzalini and Dalla Valle (1996) and Azzalini and

Capitanio (2003) are adopted for the component distri-

butions, respectively.

In a study of automated flow cytometry analysis,

Pyne et al. (2009) proposed another finite mixture of

multivariate skew normal and skew t-distributions based

on a ‘restricted’ variant of the skew-elliptical distri-

butions introduced by Sahu, Dey, and Branco (2003),

hereafter referred to as the restricted multivariate skew

normal (rMSN) and restricted skew t (rMST) distribu-

tion, respectively. Wang et al. (2009) obtained a closed-

form EM algorithm (Dempster, Laird, and Rubin, 1977)

for this model. Very recently, Virbik and McNicholas

(2012) presented an alternative implementation for the

rMST mixture model which involves hypergeometric

functions.

It is important to note that the SNI skew-normal

(SNI-SN) and skew-t (SNI-ST) distributions discussed

in Cabral et al. (2012), and also the skewed distribu-

tions used in Frühwirth-Schnatter and Pyne (2010),

are equivalent in reparameterization to the rMSN and

rMST formulation, and hence can be considered as re-

stricted characterizations of the MSN and MST dis-

tributions. A closed form implementation of the EM

algorithm for mixtures of the SNI-SN and SNI-ST dis-

tributions is presented in Cabral et al. (2012).

An alternative to the skew t-mixture model was in-

troduced by Karlis and Santourian (2009), known as

the normal inverse Gaussian (NIG) mixture distribu-

tion. Like the skew t-model, the NIG mixture distribu-

tion can take flexible shapes, including heavy tail and

skewness, and allows for a closed form EM-type algo-

rithm for ML estimation.

Another promising alternative to the skew t-mixture

model is the skew t-normal (STN) mixture model re-

cently studied in Cabral et al. (2008) and Ho et al.

(2012b), the former using a Bayesian approach. The

(univariate) STN distribution, introduced by Gómez

et al. (2007), was shown to have a larger range of skew-

ness and kurtosis than the traditional skew distribu-

tions. The STN and ST distributions share the same

set of parameters, but the former have a lower com-

putational burden in estimation. Extension of existing

results on the STN mixture to the multivariate case can

potentially provide a favourable alternative to the MST

mixture model.

In Lin (2010), a mixture model with unrestricted

component skew t-distributions was considered, adopt-

ing the characterization by Sahu et al. (2003). However,

with this more general formulation, maximum likeli-

hood (ML) estimation via the EM algorithm can no

longer be implemented in closed form due to the in-

tractability of some of the conditional expectations in-

volved on the E-step. To work around this, Lin (2010)

proposed a Monte Carlo (MC) version of the E-step.

One drawback of this approach is that the model fit-

ting procedure relies on MC estimates which can be

computationally expensive. Another issue is that there

is no guarantee of an increase in the log likelihood at

each iteration.

More recently, Lee and McLachlan (2011) and Ho

et al. (2012a) independently developed exact expres-

sions for two of the intractable conditional expectations

involved in the EM algorithm for fitting mixtures of

uMST distributions. They showed that the EM algo-

rithm can be implemented exactly to calculate the ML

estimates of the parameters for the (unrestricted) mul-

tivariate skew t-mixture model. This is achieved by us-

ing analytically reduced expressions for the conditional

expectations, suitable for numerical evaluation using

readily available software. A key factor in being able

to compute the integrals quickly by numerical means is

the recognition that they can be expressed as moments

of a truncated multivariate non-central t-distribution,

which in turn can be expressed in terms of the distribu-

tion function of a (non-truncated) multivariate central

t-random vector, for which fast programs already exist.

We note that, however, there are a few incorrectly spec-

ified results in the two papers. The corrections will be

discussed in Section 5. In addition, Lee and McLach-

lan (2011) proposed a one-step late (OSL) approach

to the EM implementation for mixtures of unrestricted

MST which provides a simple closed-form expression for

another intractable conditional expectation involved in

the E-step.

In this paper, we provide an overview of recent de-

velopments concerned with fitting mixtures of multi-

variate skew t-distributions, with special reference to

implementations based on the EM algorithm or ex-

tensions of it. The performance of restricted and un-

restricted models in clustering real datasets are stud-

ied. In some cases, the clustering capacity of restricted
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MST mixtures can be improved by adopting the un-

restricted model. We also show that the closed-form

EM implementation for mixtures of unrestricted MST

distributions is more efficient compared to the version

with a MC E-step. It produces more accurate results

for which, if MC were to achieve comparable accuracy,

a large number of draws would be necessary. Also, this

implementation maintains stable and monotonic con-

vergence to a local maximizer. Moreover, if the exact

ECME implementation is adopted, efficient and stable

monotonic convergence is guaranteed.

The remainder of the paper is organized as follows.

In Section 2, we begin with a discussion of several vari-

ants of the multivariate skew normal distributions men-

tioned earlier, clarifying their relationships. Section 3

provides a description of various characterizations of

multivariate skew t-distributions used for defining the

multivariate skew t-mixture models in existing propos-

als. In Section 4, we study some existing implementa-

tions of the EM algorithm for obtaining ML estimates

for the restricted MST distribution. In Section 5, we

examine the EM algorithm for fitting the unrestricted

MST distribution, and outline corrections to the two

recent papers on this topic. We also present a fast im-

plementation of the EM algorithm for the fitting of the

unrestricted FM-MST model. In Section 6, we present

some applications of the proposed methodology and

comparisons with other alternative implementations. Fi-

nally, in section 7, we conclude with a discussion on the

computational aspects of the algorithms for mixtures of

the uMST distributions.

2 Multivariate Skew-normal distributions

We begin by defining the restricted multivariate skew-

normal (rMSN) distribution and briefly describing some

related properties. Some alternative parameterizations

of the distribution are also discussed. Next, we give the

definition of the unrestricted multivariate skew-normal

(uMSN) distribution.

2.1 The restricted multivariate skew-normal

distribution

Both the restricted and unrestricted skew-normal dis-

tribution belong to the class of fundamental skew-normal

(FUSN) distributions (Arellano-Valle and Genton, 2005).

The restricted case is one of the simplest special cases

of FUSN. In particular, the density of the rMSN dis-

tribution can be expressed as a product of a multivari-

ate normal density and a univariate normal distribu-

tion function; that is, the skewing function is of di-

mension one. Accordingly, the skew-normal distribution

used by Pyne et al. (2009), Frühwirth-Schnatter and

Pyne (2010), and Cabral et al. (2012) in constructing

their finite mixture models is the rMSN distribution, or

a reparameterization of it.

2.1.1 The classic skew-normal distribution

The classic multivariate skew-normal distribution refers

to one of the early multivariate generalizations of the

univariate skew-normal density introduced by Azzalini

(1985). Following Azzalini and Dalla Valle (1996), a

p-dimensional random vector Y has a (classic) skew-

normal distribution, denoted by Y ∼ SNp(µ,Σ, δ)

with p × 1 location vector µ, p × p scale matrix Σ,

and p× 1 skewness vector δ if its density is given by

f(y;µ,Σ, δ) = 2φp(y;µ,Σ)

Φ1

(
λ−1δTR−1ω−1(y − µ)

)
, (1)

where λ2 = 1 − δTR−1δ, R = ω−1Σω−1 is the cor-

relation matrix, and ω is the diagonal matrix created

by extracting the main diagonal elements of Σ, that is,

ω = DIAG(
√
Σ11, . . . ,

√
Σpp), where Σij denotes the

ijth entry of Σ. Here, the operator DIAG(δ) denotes a

diagonal matrix with diagonal elements specified by the

vector δ. Also, we let φp(.;µ,Σ) be the p-dimensional

normal distribution with mean µ and covariance matrix

Σ, and Φ1(.) is the (cumulative) distribution function of

a standard (univariate) normal random variable. Note

that when δ = 0, (1) reduces to the normal density

φp(y;µ,Σ).

The SN distribution (1) can be obtained by several

stochastic mechanisms (Azzalini, 2005); for example,

via the conditioning approach as follows. Let U1 and

U0 be random variables with dimensions p and 1, re-

spectively. Then Y = µ + ω(U1 | U0 > 0) has the

density (1), where[
U0

U1

]
∼ N1+p

([
0

0

]
,

[
1 δT

δ R

])
, (2)

and where 0 denotes the zero vector of appropriate di-

mension. In the above, the notation U = (U1 | u0 > 0)

is taken to imply that U = U1 if the constraint u0 > 0

is satisfied, otherwise U = −U1. The skew compo-

nent in the skew-normal mixture model of Frühwirth-

Schnatter and Pyne (2010) uses this characterization

for its component densities.

2.1.2 The restricted skew-normal distribution

In Pyne et al. (2009), the authors proposed a simpli-

fied version of the skew-normal density given by Sahu
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et al. (2003). This characterization arises from a simple

convolution-type stochastic mechanism. Specifically, the

random vector Y = µ+δ|U0|+U1 has a restricted skew

normal density, where

[
U0

U1

]
∼ N1+p

([
0

0

]
,

[
1 0

0 Σ

])
. (3)

In this characterization, the scale matrix Σ is not fac-

tored into ωRω, leading to a slightly simpler expression

for the density, given by

f (y;µ,Σ, δ) = 2φp (y;µ,Ω)Φ1

(
λ−1δTΩ−1 (y − µ)

)
,

(4)

where Ω = Σ + δδT and λ2 = 1 − δTΩ−1δ. We

shall adopt the notation Y ∼ rSNp(µ,Σ, δ). It can be

shown that after some suitable reparameteization, the

classic SN and the rMSN are equivalent. This character-

ization of the skew-normal distribution was adopted in

the work of Pyne et al. (2009) when formulating finite

mixtures of skew-normal distributions.

2.1.3 The skew-normal/independent skew-normal

distribution

The skew-normal/independent (SNI) family are scale

mixtures of skew-normal distribution (Cabral et al.,

2012), much similar to the skew-elliptical class of Branco

and Dey (2001). In their definition, the skew-normal

density, hereafter SNI-SN, is given by

f(y;µ,Σ, δ) = 2φp(y;µ,Σ)Φ1

(
λ−1δTΣ−

1
2 (y − µ)

)
,

(5)

where λ2 = 1 − δT δ. This definition of the SN distri-

bution has a corresponding convolution-type stochas-

tic representation given by Y = µ +Σ
1
2 δ|U0| + (Ip −

δδT )1/2U1, where

[
U0

U1

]
∼ N1+p

([
0

0

]
,

[
1 0

0 Σ

])
. (6)

It can be observed from (5) and (6) that the SNI-SN dis-

tribution is equivalent to the rMSN distribution (4) by

replacing δ and Ω with Σ
1
2 δ and Σ, respectively. ML

estimation for the SNI-SN distribution and a mixture

case of these distributions is studied in Cabral et al.

(2012).

2.2 The unrestricted multivariate skew-normal

distribution

The unrestricted multivariate skew-normal (uMSN) dis-

tribution can be viewed as a simple extension of the

rMSN distribution in which the univariate latent vari-

able U0 is replaced by a multivariate analogue, that is,

U0. This type of MSN distribution was studied in Sahu

et al. (2003), and in the mixture case by Lin (2009).

Suppose U0 and U1 are jointly normally distributed as[
U0

U1

]
∼ N2p

([
0

0

]
,

[
Ip 0

0 Σ

])
, (7)

where ∆ = DIAG(δ). Then Y = µ + ∆|U0| + U1

defines the unrestricted multivariate skew-normal dis-

tribution, and its density is given by

f(y;µ,Σ, δ) = 2pφp (y;µ,Σ)

Φp
(
∆Ω−1(y − µ); 0,Λ

)
, (8)

whereΩ = Σ+∆2, Λ = Ip−∆Ω−1∆, and Φp(.;µ, Σ)

denotes the distribution function of a Np(µ,Σ) random

variable. We shall adopt the notation Y ∼ uSNp(µ,Σ, δ)

if Y has the uMSN density. Observe that with this char-

acterization of the MSN distribution, each element of δ,

δi (i = 1, . . . , p), is allowed to have a different random

coefficient, namely |U0i|, whereas with the restricted

case they share the same (scalar) coefficient |U0|. Note

that when δ = 0, the second part of (8) evaluates to

2−p, and we again recover the multivariate normal den-

sity φp(y;µ,Σ).

2.3 Other multivariate skew-normal distributions

Many other variants and extensions of multivariate skew-

normal distributions have appeared in recent years. For

a comprehensive survey on this topic, see, for exam-

ple, the review papers by Azzalini (2005) and Arellano-

Valle and Azzalini (2006). One important extension is

the incorporation of an extension parameter, leading to

the ‘extended’ skew-normal (eMSN) distributions; see,

for example, the formulations by Arnold and Beaver

(2002), González-Farás et al. (2004), Liseo and Lop-

erfido (2003), and Arellano-Valle and Azzalini (2006).

This type of formulation features the property of clo-

sure under conditioning, which does not hold for the

restricted and unrestricted subfamilies. Another more

general extension includes a relaxation of the require-

ments on the distribution of U1 and U0, which can be

crudely termed as a ‘generalized’ skew-normal (gMSN)

distribution. The skewing function in a gMSN distribu-

tion need not be a normal distribution function.
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3 Multivariate skew t-distributions

The connections between the various multivariate skew

t-distributions are analogues to those between the skew-

normal distributions discussed in the previous section.

In this section, we give the formal definition of the re-

stricted and unrestricted MST distribution, and briefly

outline their properties and relationships.

3.1 The restricted multivariate skew t-distribution

As formulated in Pyne et al. (2009), a p-dimensional

random vector has a restricted multivariate skew t

(rMST) distribution with p× 1 location vector µ, p× p
scale matrix Σ, p× 1 skewness vector δ, and scalar de-

grees of freedom ν, denoted by Y ∼ rMST (µ,Σ, δ, ν),

if its density is given by

f(y) = 2tp,ν (y;µ,Ω)T1,ν+p

(y1
λ

; 0, 1
)
, (9)

where

Ω = Σ + δδT ,

d(y) = (y − µ)TΩ−1(y − µ),

q = δTΩ−1(y − µ),

y1 = q

√
ν + p

ν + d(y)
,

λ2 = 1− δTΩ−1δ,

Here, we let tp,ν(.;µ,Σ) be the p-dimensional t-

distribution with location vector µ, scale matrixΣ, and

degrees of freedom ν, and T1,ν(.;µ,Σ) is the distribu-

tion function of a standard (univariate) t-random vector

with ν degrees of freedom. This formulation of the MST

distribution was adopted by Pyne et al. (2009), Wang

et al. (2009), and Virbik and McNicholas (2012) in

their construction of the MST mixture model. Note that

when δ = 0, (9) reduces to the t-density tp,ν(y;µ,Σ).

Also, when ν →∞, we obtain the restricted skew nor-

mal distribution.

The rMST distribution (9) corresponds to the den-

sity of Y = µ + δ|U0| + U1, where conditional on a

gamma random variable W , the joint distribution of

U0 and U1 is given by[
U0

U1

]
|W ∼ N1+p

([
0

0

]
,

1

w

[
1 0

0 Σ

])
. (10)

It follows that the rMST distribution (9) admits a con-

venient hierarchical characterization, given by

Y | u, w ∼ Np
(
µ+∆u, 1

wΣ
)
,

U | w ∼ HN
(
0, 1

w

)
,

W ∼ gamma
(
ν
2 ,

ν
2

)
, (11)

where HN(0, σ2) represents the univariate half-normal

distribution with mean 0 and scale parameter σ2, and

gamma(α, β) is the gamma distribution with mean α/β.

The SNI-ST distribution (Cabral et al., 2012) is

given by Y = µ+Σ
1
2 δ|U0|+ (Ip − δδT )

1
2U1, where[

U0

U1

]
|W ∼ N1+p

([
0

0

]
,

1

w

[
1 0

0 Σ

])
. (12)

Then the density of Y is given by

f(y) = 2tp,ν(y;µ,Σ, ν) T1,ν+p

(
y∗1
λ∗

; 0, 1

)
, (13)

where

y∗1 = q∗
√

ν + p

ν + d∗(y)
,

q∗ = δTΣ−
1
2 (y − µ),

d∗(y) = (y − µ)TΣ−1(y − µ),

λ∗
2

= 1− δT δ.

Again, it can be observed from (12) and (13) that by

replacing δ andΩ in (9) withΣ
1
2 δ andΣ, respectively,

we obtain the SNI-ST density (13). The aforementioned

rMST and the SNI-ST formulation are, in turn, equiv-

alent (after suitable reparameterization) to the multi-

variate skew t-distributions of Azzalini and Capitanio

(2003) and Gupta (2003).

3.2 The unrestricted multivariate skew t-distribution

Analogous to the skew-normal case, the unrestricted

multivariate skew t (uMST) distribution has a similar

stochastic representation to the rMST distribution, ex-

cept that the latent variable U0 is replaced by a mul-

tivariate variable. Specifically, Y = µ + ∆|U0| + U1

has the uMST distribution, where conditional on the

gamma variable W ,[
U0

U1

]
∼ N2p

([
0

0

]
,

1

w

[
Ip 0

0 Σ

])
, (14)

and where Ip denotes the p × p identity matrix, and

U0 and U1 are p-dimensional random vectors. In the

above, |U | denotes the vector whose ith element is the

magnitude of the ith element of the vector U .

It follows that the density of Y is given by

fp(y;µ,Σ, δ, ν) = 2ptp,ν (y;µ,Ω)Tp,ν+p (y1; 0,Λ) ,

(15)
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where

∆ = DIAG(δ),

Ω = Σ +∆2,

y1 = q

√
ν + p

ν + d (y)
,

q = ∆Ω−1(y − µ),

d (y) = (y − µ)TΩ−1(y − µ),

Λ = Ip −∆Ω−1∆.

Here, we let Tp,ν(.;µ,Σ) be the (cumulative) distribu-

tion function of tp,ν(.;µ,Σ). The notation

Y ∼ STp,ν(µ,Σ, δ) will be used. Note that the MST

density (15) is expressed as the product of a multivari-

ate t-density function (the symmetric part) and a multi-

variate t-distribution function (the skewing part). The

symmetric part of the uMST distribution is identical

to the rMST distribution, but the skewing part of the

rMST distribution is univariate.

Similar to the restricted version, the uMST distri-

bution admits a convenient hierarchical representation,

Y | u, w ∼ Np
(
µ+∆u, 1

wΣ
)
,

U | w ∼ HNp
(
0, 1

wIp
)
,

W ∼ gamma
(
ν
2 ,

ν
2

)
, (16)

where HNp(0,Σ) represents the p-dimensional half-

normal distribution with mean 0 and scale matrix Σ.

It is worth stressing again that, although also known

as the multivariate skew t-distribution, the versions con-

sidered by Azzalini and Capitanio (2003), Gupta (2003),

and Lachos et al. (2010), among others, are different

from (15). These versions are simpler in that the skew

t-density is defined in terms involving only the univari-

ate t-distribution function instead of the multivariate

form of the latter as used in (15).

One major advantage of having simplified forms like

(9) is that calculations on the E-step can be expressed

in closed form and can be evaluated faster than the

uMST analogue. However, the form of skewness is lim-

ited in these characterizations. In Section 5, we study

an extension of their approach to the more general form

of the skew t-density as proposed by Sahu et al. (2003).

4 ML estimation for the restricted MST

mixture model

The first multivariate rMST mixture model appeared in

Pyne et al. (2009), and a closed-form EM implementa-

tion was obtained. An alternative exact implementation

of the same model was presented in Virbik and McNi-

cholas (2012).

4.1 The FM-rMST distribution

With reference to (9), the probability density function

(pdf) of a finite mixture of g multivariate (restricted)

skew t-components is given by

f(Y ;Ψ) =

g∑
h=1

πh f(y;µh,Σh, δh, νh), (17)

where f(y;µh,Σh, δh, νh) denotes the hth rMST com-

ponent of the mixture model as specified by (9), with lo-

cation parameter µh, scale matrix Σh, skew parameter

δh, and degrees of freedom νh. The mixing proportions

πh satisfy πh ≥ 0 h = 1, . . . , g and
∑g
h=1 πh = 1. The

vector of unknown parameters Ψ contains (π1, . . . , πg−1,

θT1 , . . . ,θ
T
g ), where θh consists of the unknown param-

eters of the hth component, namely, the elements of µh
and δh, the distinct elements of Σh, and νh. We shall

denote this model by FM-rMST.

4.2 ML estimation via the EM algorithm

Under the EM framework, the observed data vector y =

(yT1 , . . . ,y
T
n ) is viewed as incomplete, and the associ-

ated vector of latent component labels zj = (z1j , . . . , zgj)
T

is introduced, where each element zhj is a binary vari-

able defined as

zhj =

{
1, if yj belongs to component i,

0, otherwise,
(18)

and
∑g
h=1 zhj = 1 (j = 1, . . . , n). Hence, the ran-

dom vector Zj corresponding to zj follows a multi-

nomial distribution with one trial and cell probabilities
π1, . . . , πg; that is, Zj ∼ Multg(1;π1, . . . , πg).

It follows that the FM-rMST model can be repre-

sented in the hierarchical form given by

Y j | uj , wj , zhj = 1 ∼ Np

(
µh + δhuj ,

1

wj
Σh

)
,

Uj | wj , zhj = 1 ∼ HN

(
0,

1

wj

)
,

Wj | zhj = 1 ∼ gamma
(νh

2
,
νh
2

)
,

Zj ∼ Multg (1,π) , (19)

where π = (π1, . . . , πg)
T

. This leads to the complete-

data log likelihood function given in Pyne et al. (2009),

Wang et al. (2009), and Virbik and McNicholas (2012).

The implementation of the EM algorithm requires

alternating repeatedly the E- and M-steps until conver-

gence in the case where the sequence of the log like-

lihood values L(θ(k)) is bounded above. Here θ(k) de-

notes the value of θ after the kth iteration.
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At the E-step for the (k + 1)th EM iteration, the

following conditional expectations are required:

τ
(k)
hj = EΨ(k)

{
Zhj | yj

}
, (20)

e
(k)
1,hj = EΨ(k)

{
log(Wj) | yj , zhj = 1

}
, (21)

e
(k)
2,hj = EΨ(k)

{
Wj |,yj , zhj = 1

}
, (22)

e
(k)
3,hj = EΨ(k)

{
WjUj | yj , zhj = 1

}
, (23)

e
(k)
4,hj = EΨ(k)

{
WjU

2
j | yj , zhj = 1

}
, (24)

where EΨ (k) denotes the expectation operator using

Ψ (k) for Ψ .

The posterior probability of membership of the hth

component by yj , using the current estimate Ψ (k) for

Ψ , is given using Bayes’ Theorem by

τ
(k)
hj =

π
(k)
h f

(
yj ;µ

(k)
h ,Σ

(k)
h , δ

(k)
h , ν

(k)
h

)
∑g
h=1 π

(k)
h f

(
yj ;µ

(k)
h ,Σ

(k)
h , δ

(k)
h , ν

(k)
h

) . (25)

The expressions for (21)-(23) first appeared in Pyne

et al. (2009), given by (with some reparameterization):

e
(k)
1,hj = e

(k)
2,hj − log

(
ν
(k)
h + d

(k)
h (yj)

2

)

−ψ

(
ν
(k)
h + p

2

)
− 1,

(26)

e
(k)
2,hj =

(
ν
(k)
h + p

ν
(k)
h + d

(k)
h (yj)

) T
1,ν

(k)
h +p+2

(
y
(k)
2hj

λ
(k)
h

)
T
1,ν

(k)
h +p

(
y
(k)
1hj

λ
(k)
h

) , (27)

e
(k)
3,hj = λ

(k)
h

√√√√ ν
(k)
h + p

ν
(k)
h + d

(k)
h (yj)

t
1,ν

(k)
h +p

(
y
(k)
1hj

λ
(k)
h

)
T
1,ν

(k)
h +p

(
y
(k)
1hj

λ
(k)
h

)
+e

(k)
1,hjq

(k)
hj , (28)

e
(k)
4,hj = λ

(k)2

h + q
(k)
hj e

(k)
3,hj , (29)

where

q
(k)
hj = δ

(k)T

h Ω
(k)−1

h (yj − µ
(k)
h ),

λ
(k)2

h = 1− δ(k)
T

h Ω
(k)−1

h δ
(k)
h ,

y
(k)
1hj = q

(k)
hj

√√√√ ν
(k)
h + p

ν
(k)
h + d

(k)
h (yj)

,

y
(k)
2,hj = q

(k)
hj

√√√√ ν
(k)
h + p+ 2

ν
(k)
h + d

(k)
h (yj)

, (30)

and where ψ(.) denotes the digamma function.

Virbik and McNicholas (2012) subsequently presented

alternative expressions for the conditional expectations

(21)-(24) in terms of hypergeometric functions,

e
(k)
1,hj = ψ

(
ν
(k)
h + p+ 1

2

)
− log

(
ν
(k)
h

2

)

−
I3

(
ν
(k)
h +p+1

2 ,
q
hj(k)

λ
(k)
h

√
ν
(k)
h +d

(k)
h (yj)

)

I1

(
ν
(k)
h +p+1

2 ,
q
hj(k)

λ
(k)
h

√
ν
(k)
h +d

(k)
h (yj)

) (31)

e
(k)
2,hj =

(
ν
(k)
h + p+ 1

ν
(k)
h + d

(k)
h (yj)

)

I1

ν(k)h + p+ 1

2
+ 1,

−q(k)hj

λ
(k)
h

√
ν
(k)
h + d

(k)
h (uj)

 ,

(32)

e
(k)
3,hj =

λ
(k)
h (ν

(k)
h + p+ 1)√

ν
(k)
h + d

(k)
h (yj)

+ q
(k)
hj e

(k)
2,hj

I2

(
ν
(k)
h +p+1

2 + 1,
−q(k)hj

λ
(k)
h

√
ν
(k)
h +d

(k)
h (uj)

)

I1

(
ν
(k)
h +p+1

2 ,
−q(k)hj

λ
(k)
h

√
ν
(k)
h +d

(k)
h (uj)

) , (33)

e
(k)
4,hj = λ

(k)2

h

(
ν
(k)
h + p+ 1

)
−
q
(k)
hj

2
e
(k)
3,hj

−λ(k)
2

h

ν(k)h + d
(k)
h (yj) +

(
q
(k)
hj

λ
(k)
h

)2
 e

(k)
2,hj ,(34)

where

I1(α, β) =
πΓ (2α− 1)

Γ (α)222α−1
− β 2F1

(
1

2
, α;

3

2
;−β2

)
,(35)

I2(α, β) = − (1 + β2)1−α

2(1− α)
, (36)

I3(α, β) = − log(1 + β2)

[
(1 + β2)

1
2−α

1− 2α
H(α, β, 1)

− (1 + β2)
1
2−α

(2α+ 1)2
H(α, β, 3)

]

+
2(1 + β2)

1
2−α

(1− 2α)2
H(α, β, 1), (37)

H(α, β, γ) = 3F2

(γ
2
, α+

γ

2
− 1, α+

γ

2
− 1;

α+
γ

2
, α+

γ

2
;

1

1 + β2

)
,

and where Γ (.) denotes the gamma function, and pFq
denotes the generalized hypergeometric function.
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It can be shown that, after some algebraic manipu-

lations, (32)-(34) is identical to (27)-(29). For example,

by rewriting (35) as

I1(α, β) =

√
πΓ (α− 1

2 )

Γ (α)

[
1− T1,2α−1(β

√
2α− 1)

]
,

we obtain (27) from (32). One reason for the preference

of (26)-(29) is, perhaps, this forms appears more natu-

ral in the MST mixture context, and can be extended

to the unrestricted case (see Section 5). Also, current

routines for the calculation of T1(.) tends to be (com-

putationally) more efficient than those for calculation

of the hypergeometric functions. For the illustrations in

Section 6, the expressions (26)-(29) are adopted when

fitting FM-rMST models.

For the SNI-ST mixture model, very similar expres-

sions for the conditional expectations (20) and (22)

-(24) can be obtained, as presented in Cabral et al.

(2012).

As pointed out in Cabral et al. (2012), the compu-

tation of e
(k)
1,hj can be avoided if we consider the ECME

extension of the EM-algorithm. In which case, the pa-

rameter representing the degrees of freedom is updated

by maximizing the actual marginal log likelihood func-

tion on the M-step.

5 ML estimation for the unrestricted MST

mixture model

Although it may appear that the extension of the re-

stricted model to the unrestricted case is quite straight-

forward, the resulting estimation problem becomes quite

complex. The first implementation of the EM algorithm

for the ML estimation of finite mixture of the unre-

stricted MST distributions, as presented in Lin (2010),

utilized Monte Carlo (MC) integration on the E-step

to calculate the intractable conditional expectations.

Later, Lee and McLachlan (2011) and Ho et al. (2012a)

recognized that two of the these expectations can be

expressed in terms of moments of a truncated multi-

variate t-random variate, for which closed-form expres-

sions can be derived. Also, Lee and McLachlan (2011)

applied a OSL approach to achieve a fast and simple

closed-form implementation. This greatly reduced the

computational burden associated with the alternative

MC implementation.

We begin with a discussion of the estimation for a

single uMST distribution in Section 5.1. The extension

to the mixture case is presented in the next subsection.

5.1 ML estimation for the unrestricted MST

distribution

To apply the EM algorithm, the observed data vector

yT =
(
yT1 , . . . , y

T
n

)T
is regarded as incomplete, and

we introduce two latent variables denoted by uT =(
uT1 , . . . , u

T
n

)T
and wT = (w1, . . . , wn)

T
, as defined

by (16). We let θ be the parameter containing the el-

ements of the location parameter µ, the distinct ele-

ments of the scale matrix Σ, the elements of the skew

parameter δ, and the degrees of freedom ν. It follows

that the complete-data log likelihood function for θ is

given by

logLc(θ;y,u, w)

= K − 1
2n log |Σ| − n logΓ

(
1
2ν
)

+ 1
2nν log

(
1
2ν
)

−
n∑
j=1

1
2wj

[
d
(
yj
)

+
(
uj − qj

)T
Λ−1

(
uj − qj

)]
+
(
1
2ν + p− 1

) n∑
j=1

log(wj), (38)

where qj = ∆Ω−1(yj − µ), and K is a constant that

does not depend on θ.

5.1.1 E-step

On the (k + 1)th iteration, the E-step requires the cal-

culation of the conditional expectation of the complete-

data log likelihood given the observed data yT , using

the current estimate θ(k) for θ. That is, we have to

calculate the so-called Q-function defined by

Q(θ;θ(k)) = Eθ(k) {logLc(θ;y,u, w) | yT } , (39)

where Eθ(k) denotes the expectation operator, using

θ(k) for θ. This, in effect, requires the calculation of

the conditional expectations

e
(k)
1,j = Eθ(k)

{
log(Wj) | yj

}
, (40)

e
(k)
2,j = Eθ(k)

{
Wj | yj

}
, (41)

e
(k)
3,j = Eθ(k)

{
WjU j | yj

}
, (42)

e
(k)
4,j = Eθ(k)

{
WjU jU

T
j | yj

}
. (43)

Note that the Q-function (39) does not admit a

closed form expression for this problem, due to the con-

ditional expectations e
(k)
1,j , e

(k)
3,j , and e

(k)
4,j not being able

to be evaluated in closed form. However, as recognized

by Lee and McLachlan (2011) and Ho et al. (2012a),

e
(k)
3,j and e

(k)
4,j can be expressed in terms of the first and

second moment of a truncated t-variate, respectively.

They in turn can be evaluated precisely and swiftly us-

ing the closed-form expressions presented in Lee and
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McLachlan (2011) and Ho et al. (2012a), the former

based on work of O’Hagan (1976); see Appendix A for

further details on the calculation of the moments of the

truncated multivariate t-distributions. Specifically, the

two conditional expectations are given by

e
(k)
3j = e

(k)
2,jE

{
Xj | yj

}
, (44)

e
(k)
4j = e

(k)
2,jE

{
XjX

T
j | yj

}
, (45)

where Xj is a p-dimensional t-variate truncated to the

positive hyperplane R+, which (conditional on yj) is

distributed as

Xj | yj ∼ ttp,ν(k)+p+2

(
q
(k)
j ,

(
ν(k)+d(k)(yj)

ν(k)+p+2

)
Λ(k);R+

)
;

(46)

see Appendix B for further details on the derivation. We

note that Ho et al. (2012a) obtained very similar expres-

sions for e
(k)
3,j and e

(k)
4,j , but their result corresponding

to (44) and (45) is incorrect. Specifically, the random

truncated t-variable involved in these two conditional

expectations should have distribution (46) rather than

the conditional distribution of uj given yj as reported

in Ho et al. (2012a).

The integral e
(k)
3,j can be written as

e
(k)
3,j = E

{
WjU j | yj

}
,

= E
{
E
{
WjU j | wj ,yj

}
| yj

}
, (47)

= E
{
WjE

{
U j | wj ,yj

}
| yj

}
, (48)

= E
{
Wj | yj

}
E
{
Xj | yj

}
, (49)

where (49) follows from (48) after some calculations; see

equation (80) in Appendix B.2. The error in Ho et al.

(2012a) occurs in going from (47) to (49). Using their

results, e
(k)
3,j would be expressed as

e
(k)
3,j = E

{
Wj | yj

}
E
{
U j | yj

}
,

where

U j | yj ∼ ttp,ν(k)+p

q(k)j ,

√
ν(k) + d(k)(yj)

ν(k) + p
Λ(k);Rp

 .

(50)

Thus on comparing (46) and (50), it can be seen that

the difference relates to the degrees of freedom ν + p in

(50) being replaced by ν+p+2 in (46). To demonstrate

the effect this apparently small difference can have in

practice, we have plotted the log likelihood function for

a real data set to be analyzed in more detail in the

Section 6. It can be seen that the result is in Ho et al.

(2012a) for e3j and e4j would result in the EM failing

to maintain monotonic convergence (Figure 1).

Also, there is a misprint in equation (20) of Lee and

McLachlan (2011), where the square root term in the

location parameter should appear as a coefficient of the

scale parameter, as in their expression for the mixture

case on page 12.

It can be easily shown that e
(k)
2,j can be written in

closed form as

e
(k)
2,j =

(
ν(k) + p

ν(k) + d(k)(yj)

)
Tp,ν(k)+p+2

(
y
(k)
2j ; 0,Λ(k)

)
Tp,ν(k)+p

(
y
(k)
1j ; 0,Λ(k)

) .

(51)

The integral e
(k)
1,j can be evaluated numerically in a

straightforward manner, for example, using the

cubature package in R. Also, if we were to use a one-

step late (OSL) approach (Green, 1990) for the imple-

mentation of the EM algorithm here (see

Lee and McLachlan (2011)), e
(k)
1,j can be evaluated by a

closed form expression given by

e
(k)
1,j = e

(k)
2,j − log

(
ν(k) + d(k)(yj)

2

)

−

(
ν(k) + p

ν(k) + d(k)(yj)

)
+ ψ

(
ν(k) + p

2

)
. (52)

It is worth noting that the OSL expression for e
(k)
1,j is

equivalent to the exact expression, except for the term

S
(k)
1,j (see Appendix B), which is practically zero. We

note that the observed difference between the two ap-

proaches is negligible in practice. In the examples to be

presented, we used the OSL approach for the calcula-

tion of e
(k)
1,j .

5.1.2 M-step

On the (k + 1)th iteration, the M-step consists of the

maximization of the Q-function (39) with respect to

θ. For easier computation, we employ the ECM ex-

tension of the EM algorithm, where the M-step is re-

placed by four conditional–maximization (CM)-steps,

corresponding to the decomposition of θ into four sub-

vectors, θ = (θT1 ,θ
T
2 ,θ

T
3 , θ4)T , where θ1 = µ, θ2 =

δ, θ3 is the vector containing the distinct elements

of Σ, and θ4 = ν. To compute µ(k+1), we maximize

Q(µ,θ
(k)
2 ,θ

(k)
3 , θ

(k)
4 ;θ(k)) with respect to µ, and to com-

pute δ(k+1), we first update µ to µ(k+1) and then maxi-

mize Q(µ(k+1), δ,θ
(k)
3 , θ

(k)
4 ;θ(k)) with respect to δ, and

so on.

We let diag(A) denote the operator that produces a

vector by extracting the diagonal elements of the matrix

A. Straightforward algebraic manipulations lead to the
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Fig. 1 Log likelihood function for fitting a two-component unrestricted skew t-mixture (FM-uMST) model to the AIS data.
(a) Log likelihood curve for fitting FM-uMST on BMI and Bfat. Black line: using (50); blue line: using (46). (b) Results on
the bivariate subset of LBM and Bfat. The result using (50) does not maintains monotonic convergence.

following closed form expressions for µ(k+1), Σ(k+1),

and δ(k+1),

µ(k+1) =

∑n
j=1

[
e
(k)
2,jyj −∆

(k)e
(k)
3,j

]
∑n
j=1 e

(k)
2,j

, (53)

δ(k+1) =

Σ(k)−1

◦
n∑
j=1

e
(k)
4,j

−1

diag

Σ(k)−1
n∑
j=1

(
yj − µ(k+1)

)
e
(k)T

3,j

 , (54)

Σ(k+1) =
1

n

n∑
j=1

[
∆(k+1)e

(k)T

4,j ∆
(k+1)T

−
(
yj − µ(k+1)

)
e
(k)T

3,j ∆
(k+1)

+
(
yj − µ(k+1)

)(
yj − µ(k+1)

)T
e
(k)
2,j

−∆(k+1)e
(k)
3,j

(
yj − µ(k+1)

)T]
, (55)

where ∆(k+1) = diag
(
δ(k+1)

)
, and ◦ denotes the

Hadamard or elementwise product. We note that the

expression for δ(k+1) is incorrectly written in Lee and

McLachlan (2011).

An updated estimate of the degrees of freedom

ν(k+1) is obtained by solving the equation

log

(
ν(k+1)

2

)
−ψ

(
ν(k+1)

2

)
+ 1 =

1

n

n∑
j=1

(
e
(k)
2,j − e

(k)
1,j

)
,

(56)

where ψ(·) is the Digamma function.

Note that the computation of e
(k)
1,j can be avoided

if we adopt the ECME extension of the EM algorithm.

The expectation-conditional maximization either

(ECME) algorithm (Liu and Rubin, 1994) proceeds by

replacing some of the CM-steps with CML-steps that

conditionally maximize the actual log likelihood func-

tion. An exact EM-type algorithm for the fitting of mix-

tures of rMST distributions can be implemented by re-

placing (56) with the following CML-step:

ν(k+1) = argmax
ν

n∑
j=1

log f(yj | µ(k+1),Σ(k+1), δ(k+1), ν).

(57)

The EM-type algorithm proceeds as follows on the

(k + 1)th iteration:

E-step: Given θ = θ(k), compute the four conditional

expectations e
(k)
1,j , e

(k)
2,j , e

(k)
3,j and e

(k)
4,j by using (52), (51),

(44), and (45), respectively, for j = 1, . . . , n.

M-step: Update µ(k+1), δ(k+1) , and Σ(k+1) by using

(53), (54), and (55). Calculate ν(k+1) by solving (56) or

(57).

5.1.3 Starting values

Initial parameter values can be specified based on the

sample mean, sample covariance matrix, and sample

skewness of the given data. A simple strategy is de-

scribed in Lin (2010), and is reported here for com-

pleteness. Let ȳ, S, and γ denotes the sample mean,
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sample covariance matrix, and sample skewness, respec-

tively. Here, the ith element of the sample skewness γ

is given by

γi =
n−1

∑n
j=1(yij − µi)3(

n−1
∑n
j=1(yij − µi)2

) 3
2

(i = 1, . . . , p),

where yji denotes the ith element of the jth observa-

tion, and µi is the ith element of µ. Then the parame-

ters can be initialized using

Σ(0) = S + (a− 1) DIAG (diag(S)) ,

δ(0) = sign(γ)

√
π(1− a)

π − 2
s∗,

µ(0) = ȳ −
√

2

π
δ(0),

ν(0) = 40,

where s∗ is the vector created by taking the square root

of the diagonal elements of S, and a is a scalar constant

between 0 and 1. As the EM algorithm is sensitive to

the starting value, a poor choice of initial values may

lead to convergence to a local maxima. It is thus highly

recommended to apply a wide range of different ini-

tializations to avoid being trapped at a local maxima

of the likelihood function; see, for example, Karlis and

Xekalaki (2003) and O’Hagan et al. (2012) for discus-

sions on these issues. In practice, a number of start-

ing values for the above algorithm can be generated by

varying a systematically across (0, 1). Then the set of

parameters yielding the highest value of the likelihood

is selected to start the EM algorithm.

5.2 The FM-uMST distribution

The probability density function (pdf) of a finite mix-

ture of g multivariate skew t-components, using the no-

tation above, is given by

f (y;Ψ) =

g∑
h=1

πhfp (y;µh,Σh, δh, νh) , (58)

where fp (y;µh,Σh, δh, νh) denotes the hth MST com-

ponent of the mixture model as defined by (15), with lo-

cation parameter µh, scale matrix Σh, skew parameter

δh, and degrees of freedom νh. The mixing proportions

πh satisfy πh ≥ 0 (h = 1, . . . , g) and
∑g
h=1 πh = 1. We

shall denote the model defined by (58) by FM-uMST

(finite mixture of uMST) distributions. Let Ψ contain

all the unknown parameters of the FM-uMST model;

that is, Ψ =
(
π1, . . . , πg−1, θ

T
1 , . . . , θ

T
g

)T
where now

θh consists of the unknown parameters of the hth com-

ponent density function.

To formulate the estimation of the unknown param-

eters in the FM-uMST model as an incomplete-data

problem in the EM framework, a set of latent com-

ponent labels zj = (z1j , . . . , zgj)
T

(j = 1, . . . , n) is

introduced, where again each element zhj is a binary

variable defined by (18). Hence, the random vector Zj
corresponding to zj follows a multinomial distribution

Zj ∼ Multg(1;π1, . . . , πg). It follows that the FM-

uMST model can be represented in the hierarchical

form given by

Y j | uj , wj , zhj = 1 ∼ Np

(
µh +∆huj ,

1

wj
Σh

)
,

U j | wj , zhj = 1 ∼ HNp

(
0,

1

wj
Ip

)
,

Wj | zhj = 1 ∼ gamma
(νh

2
,
νh
2

)
,

Zj ∼ Multg (1,π) , (59)

where ∆h = DIAG (δh) and π = (π1, . . . , πg)
T

.

5.3 ML estimation for FM-uMST distributions

From the hierarchical characterization (59) of the FM-

uMST distributions, the complete-data log likelihood

function is given by

logLc (Ψ) = logL1c (Ψ) + logL2c (Ψ) + logL3c (Ψ) ,

(60)

where

logL1c (Ψ) =

g∑
h=1

n∑
j=1

zhj log (πh) ,

logL2c (Ψ) =

g∑
h=1

n∑
j=1

zhj

[(νh
2

)
log
(νh

2

)
− logΓ

(νh
2

)
+
(νh

2
+ p− 1

)
log (wj)−

(wj
2

)
νh

]
,

logL3c (Ψ) =

g∑
h=1

n∑
j=1

zhj
{
−p log (2π)− 1

2 log |Σh|

− wj
2

[(
uj − qhj

)T
Λ−1h

(
uj − qhj

)
+dh

(
yj
)]}

, (61)

and where

dh
(
yj
)

=
(
yj − µh

)T
Ω−1h

(
yj − µh

)
,

qhj = ∆T
hΩ
−1
h

(
yj − µh

)
,

Λh = Ip −∆T
hΩ
−1
h ∆h,

Ωh = Σh +∆h∆
T
h .
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The Q-function corresponding to the complete-data

log likelihood (60) is given by

Q(Ψ ;Ψ (k)) = EΨ (k) {logLc (Ψ) | yT } ,

=

3∑
l=1

Ql(Ψ ;Ψ (k)), (62)

where

Ql(Ψ ;Ψ (k)) = EΨ (k) {logLlc(Ψ) | yT } (l = 1, 2, 3).

It is clear from (62) that maximization of the Q-

function on each M-step only involves the maximization

of each function Ql(Ψ ;Ψ (k)) considered separately, (l =

1, 2, 3).

The necessary conditional expectations required in

computing the functions Ql(Ψ ;Ψ (k)) are, namely,

τ
(k)
hj = EΨ (k){Zhj | yj},

e
(k)
1,hj = EΨ (k){log(Wj) | yj , zhj = 1},

e
(k)
2,hj = EΨ (k){Wj | yj , zhj = 1},

e
(k)
3,hj = EΨ (k){WjU j | yj , zhj = 1},

e
(k)
4,hj = EΨ (k){WjU jU

T
j | yj , zhj = 1}. (63)

Again, the posterior probability of membership of

the hth component by yj , using the current estimate

Ψ (k) for Ψ , is given by (25), except that the density

f
(
yj ;µ

(k)
h ,Σ

(k)
h , δ

(k)
h , ν

(k)
h

)
now refers to the

unrestricted MST density.

The other four expectations have analogous expres-

sions to their one-component counterpart given in Sec-

tion 5.1; see Appendix Appendix B for further details.

The ECM algorithm is implemented as follows on

the (k + 1)th iteration:

E-step: Compute τ
(k)
hj using (25), and e

(k)
1,hj , e

(k)
2,hj ,

e
(k)
3,hj , and e

(k)
4,hj as given by (83), (84), (85), and (86)

respectively, for h = 1, . . . , g and j = 1, . . . , n.

M-step: Update the estimate of Ψ by calculating

the following for h = 1, . . . , g,

µ
(k)
h =

∑n
j=1 τ

(k)
hj

[
e
(k)
2,hjyj −∆

(k)
h e

(k)
3,hj

]
∑n
j=1 τ

(k)
hj e

(k)
2,hj

,

δ
(k+1)
h =

Σ(k)−1

h ◦
n∑
j=1

τ
(k)
hj e

(k)
4hj

−1

DIAG

Σ(k)−1

h

n∑
j=1

τ
(k)
hj

(
yj − µ

(k+1)
h

)
e
(k)T

3,hj

 ,

and

Σ
(k+1)
h =

1∑n
j=1 τ

(k)
hj

n∑
j=1

τ
(k)
hj

[
∆

(k+1)
h e

(k)T

4,hj∆
(k+1)T

h

−
(
yj − µ

(k+1)
h

)
e
(k)T

3,hj∆
(k+1)
h

−∆(k+1)
h e

(k)
3,hj

(
yj − µ

(k+1)
h

)T
+
(
yj − µ

(k+1)
h

)(
yj − µ

(k+1)
h

)T
e
(k)
2,hj

]
.

It should be pointed out that the approach can be

extended in a straightforward manner for other struc-

tures on the component-covariance matrices than the

general structure considered above. For example, when

homoscedasticity is assumed, that is, Σ = Σ1 = . . . =

Σg, the following expression is used to update Σ(k+1):

Σ(k+1) =
1

n

n∑
j=1

g∑
h=1

τ
(k)
hj

[
∆

(k+1)
h e

(k)T

4hj ∆
(k+1)
h

−
(
yj − µ

(k+1)
h

)
e
(k)T

3hj ∆
(k+1)
h

−∆(k+1)
h e

(k)
3hj

(
yj − µ

(k+1)
h

)T
+e

(k)
2hj

(
yj − µ

(k+1)
h

)(
yj − µ

(k+1)
h

)T]
. (64)

In the case where Σh is restricted to be diagonal,

that is, Σh = diag (σh), an update estimate of Σh is

given by

σ
(k+1)
h =

1∑n
j=1 τ

(k)
hj

n∑
j=1

τ
(k)
hj

[
DIAG

(
∆

(k+1)
h e

(k)
4hj∆

(k+1)
h

)
−2

(
yj − µ

(k+1)
h

)
◦
(
∆

(k)
h e

(k)
3hj

)
+ e

(k)
2hj

(
yj − µ

(k+1)
h

)
◦
(
yj − µ

(k+1)
h

)]
. (65)

For Σh restricted to the form Σh = σ2
hIp, (55) is

replaced by the following expression:

σ2
h =

1∑n
j=1 τ

(k)
hj

n∑
j=1

τ
(k)
hj

[
tr
(
∆

(k+1)
h e

(k)
4hj∆

(k+1)
h

)
−2 e

(k)T

3hj ∆
(k)
h

(
yj − µ

(k+1)
h

)
+ e

(k)
2hj

(
yj − µ

(k+1)
h

)T (
yj − µ

(k+1)
h

)]
. (66)

Finally, an update ν
(k+1)
h of the degrees of freedom

is obtained by solving iteratively the equation

log

(
ν
(k+1)
h

2

)
− ψ

(
ν
(k+1)
h

2

)
+ 1

=

∑n
j=1 τ

(k)
hj

(
e
(k)
2,hj − e

(k)
1,hj

)
∑n
j=1 τ

(k)
hj

.
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When the degrees of freedom are assumed to be the

same, that is, ν = ν1 = . . . = νg, the updated estimate

of ν is obtained by maximizing the actual marginal log

likelihood function, as given by (67), namely

ν(k+1) = argmax
ν

n∑
j=1

log

[
g∑

h=1

π
(k+1)
h

f
(
yj ;µ

(k+1)
h ,Σ

(k+1)
h , δ

(k+1)
h , ν

)]
. (67)

As mentioned previously, this alternative provides an

exact ECME implementation, and monotone conver-

gence is guaranteed.

5.4 Initial values and stopping criteria

For starting values, the following procedure can be used.

The component labels z
(0)
j (j = 1, . . . , n) can be ini-

tialized randomly, or according to some clustering al-

gorithms such as k-means. Initial values for the other

parameters can be set as follows:

π
(0)
h =

1

n

n∑
j=1

z
(0)
hj ,

µ
(0)
h =

∑
j=1n z

(0)
hj yj∑n

j=1 z
(0)
hj

,

Σ
(0)
h =

∑n
j=1 z

(0)
hj

(
yj − µ

(0)
h

)(
yj − µ

(0)
h

)T
∑n
j=1 z

(0)
hj

,

ν
(0)
h = 4, (68)

and each element of δ
(0)
h is initialized with ±5 if |γh| >

0.1, and zero otherwise, where the sign of each element

depends on the sign of the associated element of γh.

Here, γh denotes the sample skewness for the hth com-

ponent.

As the log likelihood function may exhibit multiple

local maxima, it is useful to try several different start-

ing values using various methods, and compare their

relative log likelihood values. A convenient way to gen-

erate different initial values has been described in Sec-

tion 5.1.3. In the examples to follow, we first select an

initial clustering corresponding to the highest log like-

lihood value based on (68). Then the method described

in Section 5.1.3 is employed to obtain a set of initial

values for the model parameters.

Our stopping criterion terminates the algorithm

when the relative difference in the log likelihood val-

ues between two successive iterations is less than the

desired tolerance. For the examples in Section 6, the

tolerance ε = 10−6 is used.

Table 1 BIC values of the fitted models with one, two, and
three components for the reduced Lymphoma data.

Model g = 1 g = 2 g = 3
FM-SNI-ST 2638.424 2616.4 2632.031
FM-rMST 2610.419 2478.487 2485.693
FM-uMST 2548.217 2449.221 2493.077

6 Illustrations

In this section, we fit three of the multivariate skew t-

mixture models (namely FM-SNI-ST, FM-rMST, and

FM-uMST) to real datasets to demonstrate their use-

fulness in analyzing and clustering multivariate skewed

data. In the first example, we focus on the flexibility

of the FM-uMST model in capturing the asymmetric

shape of flow cytometric data. The next example il-

lustrates the clustering capability of the unrestricted

model in comparison with the restricted model. In the

final example, we demonstrate the computational effi-

ciency of the closed-form implementation of EM algo-

rithm for the FM-uMST model.

6.1 Lymphoma data

We consider a subset of the T-cell phosphorylation data

collected by Maier et al. (2007). In the original data,

blood samples from 30 subjects were stained with four

fluorophore-labeled antibodies against CD4, CD45RA,

SLP76(pY128), and ZAP70(pY292) before and after an

anti-CD3 stimulation. In this example, we focus on a

reduced subset of the data in two variables – CD4 and

ZAP70. This bivariate sample (Figure 2) appears to

be bimodal and exhibits asymmetric pattern. We fit
a two-component FM-uMST model to the data. More

specifically, the fitted model can be written as

f2
(
yj ;Ψ

)
= π1f2

(
yj ;µ1,Σ1, δ1, ν1

)
+ (1− π1) f2

(
yj ;µ2,Σ2, δ2, ν2

)
,

where

µi = (µi,1, µi,2)
T
,

Σi =

(
σi,11 σi,12
σi,12 σi,22

)
,

δi = (δi,1, δi,2)
T

(i = 1, 2).

For comparison, we include the fitting of mixtures

of skew t-distributions from the Skew-normal Indepen-

dent (SNI) family (Lachos, Ghosh, and Arellano-Valle,

2010), hereafter named the FM-SNI-ST model, and mix-

tures of restricted skew t-distribution FM-rMST as de-

scribed in Section 5.1. The estimated FM-SNI-ST den-

sity can be computed from the R package mixsmsn

(Cabral, Lachos, and Prates, 2012), and the FM-rMST
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model is implemented in the R package emmix (Wang,

2009). Note again that the FM-SNI-ST and FM-rMST

models are different to the FM-uMST distribution, since

the skewing function of the latter is not of dimension

one. Moreover, under the FM-SNI-ST and FM-rMST

settings, the correlation structure of Y will also be de-

pendent on the skewness parameters, whereas for the

FM-uMST distributions the covariance structure is not

affected by δ.

The BIC values corresponding to the fitted mod-

els with one, two and three components are given in

Table 1. For each of the three models, the solution

with the smallest BIC value is chosen, that is, the two-

component model. Initial values for the FM-uMST

model are obtained from the procedure described in

Section 5.4. Initialization for the FM-SNI-ST and FM-

rMST models are according to the built-in procedure

from the mixsmsn and emmix packages, respectively.

The contours of the fitted FM-SNI-ST, FM-rMST

and FM-uMST component densities are depicted in

Fig 2(b) to (d). To better visualize the shape of the fit-

ted models, we display the estimated densities of each

component instead of the mixture contours, and super-

imposed on the intensity plot of the dataset. It can be

seen that the FM-uMST model provides a noticeably

better fit than the other candidates. From a clustering

point of view, the FM-uMST model also shows better

performance as it is able to separate the two clusters

correctly, whereas the restricted models tends to find it

challenging. Moreover, the unrestricted model adapts to

the asymmetric shape of each cluster more adequately.

Although the fitted FM-rMST model shows an improve-

ment from the FM-SNI-ST result, it did not capture

the shape of each cluster as well as the FM-uMST solu-

tion. Most noticeably, the triangular shape of the sec-

ond cluster (blue contours) from the FM-uMST model

provides a close fit to the lower group of cells in the

data. Thus the superiority of FM-uMST model is evi-

dent in dealing with asymmetric and heavily tailed data

in this dataset.

6.2 GvHD data

Our second example concerns a dataset collected by

Brinkman et al. (2007), where peripheral blood sam-

ples were collected weekly from patients following blood

and bone marrow transplant. The original goal was to

identify cellular signatures that can predict or assist in

early detection of Graft versus Host Disease (GvHD),

a common post-transplantation complication in which

the recipient’s bone marrow was attacked by the new

donor material. Samples were stained with four fluores-

cence reagents: CD4 FITC, CD8β PE, CD3 PerCP, and

CD8 APC. Hence we fit a 4-variate FM-uMST model

to a case sample with a population of 13773 cells. The

dataset is shown in the left panel of Figure 3, where

cells are displayed in five different colours according to

a manual expert clustering into five clusters. In addi-

tion, we include the results for the FM-SNI-ST model

and the FM-rMST model.

We compare the performance of the three models

FM-uMST, FM-SNI-ST, and FM-rMST in assigning

cells to the expert clusters. Manual gating suggests there

are five clusters in this case sample. Hence we applied

the algorithm for the fitting of each model with g prede-

fined as 5. For a fair comparison, we started the three al-

gorithms using the same initial values. The initial clus-

tering is based on k-means. The degrees of freedom are

set to be identical for all components for the first iter-

ation and assigned a relatively large value.

To assess the performance of these three algorithms,

we take the manual expert clustering as being the ‘true’

class membership and we calculated the error rate of

classification against this benchmark result with dead

cells removed, measured by choosing among the possi-

ble permutations of class labels the one that gives the

best value.

A summary of the results are listed in Table 2. Also

reported there are the values of the log likelihood, the

Akaike information criterion (AIC) (Akaike, 1974) and

the Bayesian information criterion (BIC) (Schwarz,

1978) defined by

AIC = 2m− 2 logL and BIC = m log n− 2 logL,

respectively, where logL is the value of log likelihood

value, m is the number of free parameters, and n is the

sample size. Models with smaller AIC and BIC values

are preferred when comparing different fitted results.

The right panel of Figure 3 shows the classification

results of FM-uMST against expert clustering, where

incorrect allocations of cluster is indicated by the red

dots.

As anticipated, a better clustering result was given

by the FM-uMST model. It achieved the lowest mis-

classification rate and AIC and BIC values. The FM-

rMST model has a disappointing performance in terms

of clustering for this dataset, having the highest num-

ber of misallocations. Although the AIC and BIC val-

ues favour the FM-rMST model than the FM-SNI-ST in

the restricted case, the latter gave a lower misallocation

rate. It is evident that these two restricted models have

inferior performance. This reveals some evidence of the

extra flexibility offered by the more general FM-uMST

model.
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Fig. 2 Mixture modelling of a reduced subset of prephosphorylation T cell population. Bivariate skew t-mixtures were fitted to
a subset of the data and restricted in two dimensions CD45 and ZAP70. (a) Hue intensity plot of the Lymphoma dataset; (b)
the contours of the component densities in the fitted two-component skew t-mixture model FM-SNI-ST using the R package
mixsmsn; (c) the component density contours of the fitted two-component restricted skew t-mixture model FM-rMST using the
R package emmix; (d) the fitted component contours of the two-component FM-uMST model.

Fig. 3 GvHD dataset: Clustering of a population of 13773 cells stained with four fluorescence reagents – CD4 FITC (FL1-H),
CD8β PE (FL2.H), CD3 PerCP (FL3.H), and CD8 APC (FL4.H). Left panel: manual expert clustering of the GvHD data
into five groups; Right panel: clustering result of FM-uMST, where black dots represents correct assignment of cluster labels
and red dots indicates incorrect classification.

Table 2 Misclassification rates for various multivariate skew t mixture models on the GvHD dataset.

Model Misclassification rate logL AIC BIC
FM-uMST 0.0875 -335561.7 671321.4 672006.9
FM-SNI-ST 0.1308 -339823.7 679837.5 680552.9
FM-rMST 0.2070 -336595.1 673388.2 674133.8
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6.3 AIS data

We now illustrate the computational efficiency of the

closed-form implementation of the EM algorithm as de-

scribed in Section 5. We denote this version of the EM

algorithm with an exact E-step as EM-exact. In ad-

dition, we consider the EM alternative with a Monte

Carlo (MC) E-step as given by Lin (2010), which is

denoted by EM-MC. Since both models are based on

the same characterization of the multivariate skew t-

distribution defined by Sahu et al. (2003), it is appro-

priate to compare their computation time directly. We

assess their time performance on the well-analyzed Aus-

tralian Institute of Sport (AIS) data, which consists

of p = 13 measurements made on n = 202 athletes.

We limit this illustration to a bivariate subset of two

variables – Height (Ht) and the percentage of body fat

(Bfat). These data are apparently bimodal with asym-

metric pattern (Figure 4(a)); hence a two-component

mixture model is fitted to the dataset.

A summary of the results is listed in Table 3. The

contours of the fitted mixture density is depicted in

Figure 4(b), where misallocations are indicted by black

crosses. For this illustration, the EM-MC E-step is un-

dertaken with 50 random draws for iterations 1 − 19,

100 draws for iterations 20−39, and 5000 draws for sub-

sequent iterations, as recommended by Lin (2010). The

same starting values and stopping rule were applied to

both EM-exact and EM-MC.

The gender of each individual in this dataset is

recorded, thus enabling us to evaluate the misclassifica-

tion rate of the binary classification for the two meth-

ods. Not surprisingly, EM-exact obtained a lower mis-

classification rate. Not only did it achieve a higher log

likelihood value, the computation time is remarkably

lower than its competitor.

Figure 4(c) shows a plot of the likelihood values for

the first 85 iterations, where the dashed curve repre-

sents the EM-MC result and the solid line indicates the

EM-exact result. It can observed that the EM-exact

curve is smooth and maintains stable monotonic con-

vergence. On the other hand, the EM-MC curve tends

to be slightly jagged, although it roughly resembles the

likelihood curve given by EM-exact. This is a typical

phenomenon for EM-MC in our experiments, as there

is no guarantee that the log likelihood increases at each

iteration.

7 Computational time and accuracy for the

FM-uMST model

We now proceed to two informative experiments for

evaluating the computational cost and accuracy of us-

ing the EM-exact and EM-MC algorithms on higher

dimensional data. As pointed out previously, the main

computational cost for EM-exact is evaluating the mul-

tivariate t-distribution function. Calculation of the first

two moments of a p-variate truncated t-distribution re-

quires the evaluation of two Tp,ν(·) functions, p evalua-

tions of Tp−1,ν(·), and 1
2p(p−1) evaluations of Tp−2,ν(·).

Hence, the computation time will increase substantially

with the number of dimensions. However, with the EM-

exact algorithm, accuracy can be compromised for time.

We sampled 100 data points randomly from a Brain

Tumour dataset supplied by Geoff Osborne from the

Queensland Brain Institute at the University of Queens-

land. In both experiments we varied the dimension p of

the sample. The graph in Figure 5(a) shows the typical

CPU time per each E-step iteration for various dimen-

sions p of the data; EM-MC(m) represents the EM-

MC algorithm with m random draws using the Gibbs

sampling approach described in Lin (2010). It is worth

noting that in both experiments EM-exact is evaluated

with a default tolerance of at least 10−6. As seen in

Figure 5(a), EM-exact is the fastest among the four

versions of the E-step for low dimensions. For exam-

ple, at p = 2, EM-exact is at least 25 times faster than

EM-MC(50). It is important to note that although EM-

MC(50) is slightly faster than EM-exact at higher di-

mensions, EM-exact produces results to a significantly

higher accuracy (see Figure 5(b)), while EM-MC re-

quires a large number of draws to achieve comparable

results. We note that in our simulations, for example,

at p = 7, 50 draws are insufficient to achieve acceptable

estimates. Preliminary results suggests that at least 500

draws is required to generate reasonable approxima-

tions when p is greater than 6. In this case, EM-exact is

at least 10 times quicker. Furthermore, EM-exact also

has an additional advantage over the EM-MC alterna-

tive in that its results are deterministic.

To compare the accuracy of the EM-exact and EM-

MC algorithms, we compute the total absolute error

against a baseline result with minimum tolerance of

10−18. Here, the total absolute error refers to the sum of

absolute difference between the estimates and baseline

result for all the conditional expectations involved in

the E-step. Specifically, this is calculated by∑4
r=1 |er,hj − ẽr,hj |, where er,hj denotes the baseline

result and ẽr,hj represents the corresponding estimated

value. For each of the EM-MC(m) algorithms, the av-

erage total absolute error of 100 trials is used. For EM-

exact, the default tolerance is set to 10−6. The results

are shown in Figure 5(b). Not surprisingly, the absolute

error of the EM-MC algorithm is significantly higher

than that of the EM-exact algorithm. It can be ob-

served that the absolute error is very high even for EM-
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Fig. 4 AIS dataset: Contour plots of fitted two-component FM-uMST model on Bfat and Ht. (a) Scatter plot of Bfat and
Ht in two colours, red dots for female and blue triangles for male; (b) the fitted mixture contour of FM-uMST, where black
crosses indicate misclassified observation. (c) Log likelihood curve for the AIS dataset given by EM-MC (dashed line) and
EM-exact (solid line).

Table 3 Computation time and misclassification rates for two different implementations of the EM algorithm for the multi-
variate skew t mixture models on the AIS dataset. For EM-exact, the E-step is implemented exactly as described in Section 6.
As an alternative, the EM algorithm was implemented with a Monte Carlo E-step, EM-MC, as in (Lin, 2010). Time refers to
the average CPU time per iteration, measured in seconds.

Model EM-exact EM-MC
Component 1 2 1 2

π 0.53 0.47 0.54 0.45
µi1 179.11 182.04 178.04 182.94.
µi2 19.10 5.94 17.22 6.04
Σi,11 59.46 59.79 68.57 58.83
Σi,12 12.97 2.09 13.51 2.56
Σi,22 25.04 0.12 27.25 0.24
δi1 -3.90 3.42 -2.58 2.74
δi2 -0.23 3.28 0.49 2.97
ν 15.40 21.14 30.41 20.89

L (Ψ) -1340.95 -1342.22
misclassification rate 0.0743 0.0842

average time per iteration 0.71 476.46
total time 46.15 30970

MC(500). At p = 10, for example, EM-exact is at least

30000 times more accurate and takes less than half the

time required for EM-MC(500).

It is important to emphasize that as the dimension

p of the data increases, EM-MC requires considerably

more draws to provide a comparable (and acceptable)

level of accuracy as EM-exact, which can be computa-

tionally intensive. Hence we advocate the use of EM-

exact for fitting FM-uMST, which greatly improves the

speed and accuracy of parameter estimation, especially

for applications involving high dimensional data.

Finally, although a comparison of the computation

time between the FM-uMST and FM-rMST model is

not of primary interest here, we remark that the FM-

rMST model requires significantly less computation time,

primarily due to the simpler expressions that need to

be calculated. ML estimation for the unrestricted model

requires multiple evaluations of the multivariate t-

distribution function, while the restricted model requires

only evaluations of the univariate t-distribution func-

tion, regardless of the dimension of the observed data.

8 Concluding Remarks

The multivariate skew t-mixture model has emerged

as a flexible and robust alternative to the skew-normal

mixture model. This paper provides an up-to-date

overview of recent developments in mixtures of mul-

tivariate skew t-distributions. We provide descriptions

on various characterizations of the MST distribution

used in different proposals of MST mixture models, and

examine several existing EM algorithms for evaluating

the parameters of the restricted and unrestricted multi-

variate skew t-mixture models. The uMST model has a
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Fig. 5 Comparison of performance of the EM-MC and EM-exact methods on a subset of 100 samples from the Brain Tumour
data. Green line: EM-MC with 500 draws, red line: EM-MC with 100 draws, blue line: EM-MC with 50 draws, black line:
EM-exact. (a) Typical computation time for E-step on a sample of 100 data in various dimensions. (b) Typical total absolute
error of E-step per data point.

more general characterization than various alternative

‘restricted’ versions of the skew t-distribution available

in the literature and hence offers greater flexibility in

capturing the asymmetric shape of skewed data, which

can benefit applications in various scientific fields.

Examples on several real datasets shows that the

unrestricted model is capable of achieving better clus-

tering than the restricted models. Furthermore, the re-

cently proposed closed-form fitting algorithms for the

unrestricted model have been demonstrated in several

real datasets to have a marked advantage over the EM

algorithm with a Monte Carlo E-step. To achieve com-

parable accuracy to that of the EM algorithm with the

E-step implemented using the above approach, the ver-

sion of the algorithm with a Monte Carlo E-step would

require a large number of draws, which would be com-

putationally expensive. While significant advancement

on the ML parameter estimation for the unrestricted

model have been made in two recent papers, further

development aimed at reducing the computational cost

would be necessary to make it a fully viable tool in

analyzing high dimensional data.

Appendix A The truncated multivariate

t-distribution

In this appendix, we briefly describe the truncated multivari-
ate t-distribution and provide some formulas for computing

its moments (Lee and McLachlan, 2011). These expressions
are crucial for the swift evaluation of the conditional expecta-
tions on the E-step of the FM-uMST model discussed in Sec-
tion 5. We follow the approach of Lee and McLachlan (2011).
A alternative description is given by Ho et al. (2012a), which
provides equivalent expressions for the doubly truncated case.

Let X be a p-dimensional random variable having a mul-
tivariate t-distribution with location vector µ, scale matrix
Σ, and ν degrees of freedom. Truncating x to the hyperplane
region A = {x ≥ a, a ∈ Rp}, where x ≥ a means each el-
ement xi = (x)i is greater than or equal to ai = (a)i for
i = 1, . . . , p, results in a left-truncated t-distribution whose
density is given by

fA(x;µ,Σ, ν) = T−1
p,ν (a;µ,Σ) tp,ν (x;µ,Σ) , x ∈ A. (69)

For a random vector X with density (69), we write X ∼
ttp,ν (µ,Σ;A). For our purposes, we will be concerned with
the first two moments of X, specifically E(X) and E(XXT ).
Explicit formulas for the truncated central t-distribution in
the univariate case tt1,ν (0, σ2;A) were provided by O’Hagan
(1973), who expressed the moments in terms of the non-
truncated t-distribution. The multivariate case was studied in
O’Hagan (1976), but still considering the central case only.
Here we describe a generalization of the results in O’Hagan
(1976) to the multivariate non-central case and express them
in a form suitable for undertaking the E-step in the direct
application of the EM algorithm to the fitting of mixtures of
MST distributions.

Before presenting the expressions, it will be convenient to
introduce some notation. Let x be a vector, then

xi denotes the ith element,
xij is a two-dimensional vector with elements xi and xj ,
x−i represents the (p − 1)-dimensional vector with the
ith element removed, and
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x−ij represents the (p − 2)-dimensional vector with the
ith and jth elements removed.

For a matrix X, let

xij denote the ijth element,
Xij defines the 2 × 2 matrix consisting of the elements
xii, xij , xji and xjj ,
X−i be created by removing the ith row and column from
X,
X−ij be the (p − 2) square matrix resulting from the
removal of the ith and jth row and column from X, and
X(ij) be the ith and jth column of X with the elements
of Xij removed, yielding a (p− 2)× 2 matrix.

We now proceed to the expressions for the first two moments
of X.

One can show that the first moment of (69) is

E (X) = µ+ ε, (70)

where ε = c−1Σξ and c = Tp,ν (µ− a;0,Σ), and ξ is a p×1
vector with elements

ξi = (2πσii)
− 1

2

(
ν

ν + σ−1
ii (µi − ai)2

)( ν−1

2
)√

ν

2

Γ
(
ν−1
2

)
Γ
(
ν
2

) Tp,ν−1 (a∗;0,Σ∗) ,

for i = 1, . . . , p, and where

a∗ =
(
µ−i − a−i

)
−
(
µ−i − a−i

)
σ−1
ii ,Σ(i)

Σ∗ =

(
ν + σ−1

ii (µi − ai)2

ν − 1

)(
Σ−i −

1

σii
Σ(i)Σ

T
(i)

)
.

The second moment is given by

E
(
XXT

)
= µµT + µεT + εµT − c−1ΣHΣ

+c−1
(

ν
ν−2

)
Tp,ν−2

(
µ− a;0,

(
ν
ν−2

)
Σ
)
Σ, (71)

where H is a p× p matrix with off-diagonal elements

hij =
1

2π
√
σiiσjj − σ2

ij

(
ν

ν − 2

)(
ν

ν∗

) ν

2
−1

Tp−2,ν−2 (a∗∗;0,Σ∗∗) , i 6= j,

and diagonal elements,

hii = σ−1
ii (µi − ai)ξi − σ−1

ii

∑
j 6=i

σijhij ,

ν∗ = ν +
(
µij − aij

)T
Σ−1
ij

(
µij − aij

)
,

a∗∗ =
(
µ−ij − a−ij

)
−Σ(ij)Σ

−1
ij

(
µij − aij

)
,

Σ∗∗ =
ν∗

ν − 2

(
Σ−ij −Σ(ij)Σ

−1
ij Σ

T
(ij)

)
.

It is worth noting that evaluation of the expressions (70)
and (71) rely on algorithms for computing the multivariate
central t-distribution function for which highly efficient pro-
cedures are readily available in many statistical packages. For
example, an implementation of Genz’s algorithm (Genz and
Bretz, 2002, Kotz and Nadarajah, 2004) is provided by the
mvtnorm package available from the R website.

Appendix B E-step for uMST

Derivations of e
(k)
1,j , e

(k)
3,j and e

(k)
4,j are detailed as follows.

Appendix B.1 Calculation of e
(k)
1,j

Concerning the calculation of the expectation e
(k)
1,j , the con-

ditional density of Wj given yj , is given by

f(wj | yj)

=

Γ

(
wj ;

ν(k)+p
2

,
ν(k)+d(k)(yj)

2

)
Φp
(
q
(k)
j

√
wj ;0,Λ(k)

)
Tp,ν(k)+p

(
y
(k)
1j ;0,Λ(k)

) ,

(72)

where

y
(k)
1j = q

(k)
j

√
ν(k) + p

ν(k) + d(k)(yj)
,

q
(k)
j = ∆(k)TΩ(k)−1

(
yj − µ(k)

)
,

d(k)(yj) =
(
yj − µ(k)

)T
Ω(k)−1

(
yj − µ(k)

)
,

and 0 is the zero vector of appropriate dimension.
The conditional expectation Eθ(k)

{
log(Wj) | yj

}
can be

reduced to

e
(k)
1,j =

(
ν(k) + p

ν(k) + d(k)(yj)

)
Tp,ν(k)+p+2

(
y
(k)
2j ;0,Λ(k)

)
Tp,ν(k)+p

(
y
(k)
1j ;0,Λ(k)

)
− log

(
ν(k) + d(k)(yj)

2

)
−

(
ν(k) + p

ν(k) + d(k)(yj)

)

+ψ

(
ν(k) + p

2

)
+ S

(k)
j , (73)

where

y
(k)
2j = q

(k)
j

√
ν(k) + p+ 2

ν(k) + d(k)(yj)
,

and where the last term S is given by

S
(k)
j = ψ

(
ν(k)

2
+ p

)
− ψ

(
ν(k) + p

2

)
+

(
ν(k) + p
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and S
(k)
1,j is an integral given by

S
(k)
1,j =

∫ [
q

(k)
j

]
1

−∞

∫ [
q

(k)
j

]
2

−∞
. . .
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q
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log
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s
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)
[

1 +
sTΛ(k)−1

s
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2

+p
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ds1ds2 . . . dsp. (75)
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Combining (73) and (74), e
(k)
1,j can be reduced to

e
(k)
1,j = ψ

(
ν(k)

2
+ p

)
− log

(
ν(k) + d(k)(yj)

2

)
−T−1

p,ν(k)+p

(
y
(k)
1j ;0,Λ(k)

)
S

(k)
1,j . (76)

We note that the term S
(k)
1,j will be very small in practice

since it would be zero if we adopted an OSL EM algorithm. In
which case, there would be no need to calculate the multiple

integral S
(k)
1,j in (74). Hence then, e

(k)
1,j can be reduced to

e
(k)
1,j = 2

(k)
2,j − log

(
ν(k) + d(k)(yj)

2

)
−

(
ν(k) + p

ν(k) + d(k)(yj)

)

+ ψ

(
ν(k) + p

2

)
. (77)

Appendix B.2 Calculation of e
(k)
3,j and e

(k)
4,j

To obtain e
(k)
3,j and e

(k)
4,j , first note that the joint density of

yj , uj , and wj is given by

f(yj ,uj , wj) = π−pΓ

(
ν(k)

2

)−1 (
ν(k)

2

)( ν(k)
2

)
w

(
ν(k)

2
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[
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(
uj−q

(k)
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uj−q
(k)
j

)]
.

(78)

Using Bayes’ rule, the conditional density of uj and wj
given yj can be written as

f(uj , wj | yj) =

(2π)−
p

2

∣∣Λ(k)
∣∣− 1

2 w
p

2

j Γ
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)
. (79)

From (79), standard conditional expectation calculations
yield

e
(k)
3,j = E(WjUj | yj)

=
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(80)

where Xj is a p-dimensional t-variate truncated to the posi-
tive hyperplane R+, which is conditionally distributed as

Xj | yj ∼ ttp,ν(k)+p+2

(
q
(k)
j ,

(
ν(k) + d(k)(yj)

ν(k) + p+ 2

)
Λ(k);R+

)
.

(81)

Analogously, e
(k)
4,j can be reduced to

e
(k)
4,j = e

(k)
2,jE(XjX

T
j | yj). (82)

The truncated moments E(Xj | yj) and E(XjXT
j | yj) can

be swiftly evaluated using the expressions (70) and (71) in
Section 3.2.

Appendix C E-step for FM-uMST

The four conditional expectations e
(k)
1,hj , e

(k)
2,hj , e

(k)
3,hj , and

e
(k)
4,hj involved in the E-step are given by
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e
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3,hj = e
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2,hjE(Xhj | yj), (85)

e
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4,hj = e
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2,hjE(XhjX
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hj | yj), (86)

where S
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1,hj is a scalar defined by
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and Xhj is a truncated p-dimensional t-variate given by

Xhj | yj ∼ ttp,νh+p+2
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The first two moments of Xhj can be implicitly expressed

in terms of the parameters q
(k)
hj , d

(k)
h (yj), Λ

(k)
h , ν

(k)
h using

results (70) and (71). It is worth emphasizing that computa-

tion of e
(k)
3hj and e

(k)
4hj depends on algorithms for evaluating

the multivariate t-distribution function, for which fast proce-
dures are available.
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González-Farás G, Domı́nguez-Molinz JA, , Gupta AK (2004)
Additive properties of skew normal random vectors. Jour-
nal of Statistical Planning and Inference 126:521–534

Green PJ (1990) On use of the em algorithm for penalized
likelihood estimation. Journal of the Royal Statistical So-
ciety B 52:443–452

Gupta AK (2003) Multivariate skew-t distribution. Statistics
37:359–363

Ho H, Lin T, Chen H, Wang W (2012a) Some results on the
truncated multivariate t distribution. Journal of Statistical
Planning and Inference 142:25–40

Ho H, Pyne S, Lin T (2012b) Maximum likleihood infer-
ence for mixtures of skew student-t-normal distributions
through practical em-type algorithms. Statistics and Com-
puting 22:287–299

Karlis D, Santourian A (2009) Model-based clustering with
non-elliptically contoured distributions. Statistics and
Computing 19:73–83

Karlis D, Xekalaki E (2003) Choosing initial values for the
em algorithm for finite mixtures. Computational Statistics
& Data Analysis 41:577–590

Kotz S, Nadarajah S (2004) Multivariate t Distributions
and Their Applications. Cambridge University Press, Cam-
bridge

Lachos VH, Ghosh P, Arellano-Valle RB (2010) Likelihood
based inference for skew normal independent linear mixed
models. Statistica Sinica 20:303–322

Lee S, McLachlan G (2011) On the fitting of mixtures of
multivariate skew t-distributions via the em algorithm.
arXiv:11094706 [statME]

Lin TI (2009) Maximum likelihood estimation for multivari-
ate skew-normal mixture models. Journal of Multivariate
Analysis 100:257–265

Lin TI (2010) Robust mixture modeling using multivariate
skew t distribution. Statistics and Computing 20:343–356

Lin TI, Lee JC, Hsieh WJ (2007a) Robust mixture model-
ing using the skew-t distribution. Statistics and Computing
17:81–92

Lin TI, Lee JC, Yen SY (2007b) Finite mixture modelling us-
ing the skew normal distribution. Statistica Sinica 17:909–
927

Lindsay BG (1995) Mixture Models: Theory, Geometry, and
Applications. NSF-CBMS Regional Conference Series in
probability and Statistics, Volume 5, Institute of Mathe-
matical Statistics, Hayward, CA

Liseo B, Loperfido N (2003) A bayesian interpretation of the
multivariate skew-normal distribution. Statistics & Proba-
bility Letters 61:395–401

Liu C, Rubin D (1994) The ecme algorithm: a simple exten-
sion of the em and ecm with faster monotone convergence.
Biometricka 81:633–648



22 Sharon Lee, Geoffrey J. McLachlan

Maier LM, Anderson DE, De Jager PL, Wicker L, Hafler DA
(2007) Allelic variant in ctla4 alters t cell phosphorylation
patterns. Proceedings of the National Academy of Sciences
of the United States of America 104:18,607–18,612

McLachlan G, Peel D (1998) Robust cluster analysis via mix-
tures of multivariate t-distributions. In: Amin A, Dori D,
Pudil P, Freeman H (eds) Lecture Notes in Computer Sci-
ence, vol 1451, Springer-Verlag, Berlin, pp 658–666

McLachlan GJ, Basford KE (1988) Mixture Models: Inference
and Applications. Marcel Dekker, New York

McLachlan GJ, Peel D (2000) Finite Mixture Models. Wiley
Series in Probability and Statistics

O’Hagan A (1973) Bayes estimation of a convex quadratic.
Biometrika 60:565–571

O’Hagan A (1976) Moments of the truncated multivariate-
t distribution. http://www.tonyohagan.co.uk/academic
/pdf/trunc multi t.PDF

O’Hagan A, Murphy T, Gormley I (2012) Computational
aspects of fitting mixture models via the expectation-
maximization algorithm. Computational Statistics and
Data Analysis TBA:TBA

Peel D, McLachlan G (2000) Robust mixture modelling using
the t distribution. Statistics and Computing 10:339–348

Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, Baecher-
Allan C, McLachlan GJ, Tamayo P, Hafler DA, De Jager
PL, Mesirow JP (2009) Automated high-dimensional flow
cytometric data analysis. Proceedings of the National
Academy of Sciences USA 106:8519–8524

Sahu S, Dey D, Branco M (2003) A new class of multivariate
skew distributions with applications to bayesian regression
models. The Canadian Journal of Statistics 31:129–150

Schwarz G (1978) Estimating the dimension of a model. An-
nals of Statistics 6:461–464

Titterington DM, Smith AFM, Markov UE (1985) Statistical
analysis of finite mixture distributions. Wiley, New York

Virbik I, McNicholas P (2012) Analytic calculations for
the em algorithm for multivariate skew t-mixture models.
Statistics and Probability Letters 82:1169–1174

Wang K (2009) EMMIX-skew: EM Algorithm for Mixture
of Multivariate Skew Normal/t Distributioins. URL
http://www.maths.uq.edu.au/ gjm/mix soft/EMMIX-
skew, R package version 1.0-12

Wang K, Ng SK, McLachlan GJ (2009) Multivariate skew t
mixture models: applications : applications to fluorescence-
activated cell sorting data. In: Shi H, Zhang Y, Botema
M, Lovell B, Maoder A (eds) DICTA 2009 (Conference of
Digital Image Computing: Techniques and Applications,
Melbourne), IEEE Computer Society, Los Alamitos, Cali-
fornia, pp 526–531


