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Abstract. Although the hyper-plane based One-Class Support Vector
Machine (OCSVM) and the hyper-spherical based Support Vector Data
Description (SVDD) algorithms have been shown to be very effective
in detecting outliers, their performance on noisy and unlabeled train-
ing data has not been widely studied. Moreover, only a few heuristic
approaches have been proposed to set the different parameters of these
methods in an unsupervised manner. In this paper, we propose two un-
supervised methods for estimating the optimal parameter settings to
train OCSVM and SVDD models, based on analysing the structure of
the data. We show that our heuristic is substantially faster than exist-
ing parameter estimation approaches while its accuracy is comparable
with supervised parameter learning methods, such as grid-search with
cross-validation on labeled data. In addition, our proposed approaches
can be used to prepare a labeled data set for a OCSVM or a SVDD from
unlabeled data.

Keywords: One-Class Support Vector Machine, Support Vector Data
Description, Outlier detection, Parameter estimation

1 Introduction

Abnormal patterns in a data set, which are inconsistent with the majority of the
data, are commonly referred to as outliers or anomalies. In many applications,
such as fraud detection, environmental monitoring, and medical diagnosis, one
of the main tasks is to detect such instances or to remove them [10]. The two
major underlying assumptions of many existing outlier detection methods are
the rarity of outliers and the distinctive differences between them and the normal
data [1].

In general, outlier detection algorithms can be categorized as supervised,
semi-supervised or unsupervised learning methods [1, 7]. The former case as-
sumes that both negative and positive labels are available to train a binary
classifier, while the latter one does not make any assumption regarding the



availability of a labeled data set [7]. In comparison with these two approaches,
semi-supervised methods assume that only the normal examples are available
during training, which makes it possible to build a model of normality that re-
jects anomalous instances [1, 7]. For unsupervised and semi-supervised methods,
if it is assumed that the majority of the training data is normal, the methods
are also categorised as one-class classification. In this paper, we mainly focus
on one-class classification, and interested readers are referred to [1, 7] for more
comprehensive surveys.

The OCSVM [14] and SVDD [19] algorithms are two widely used one-class
classification methods for outlier detection [11, 4, 15, 6, 9]. It has been shown
that the OCSVM and SVDD algorithms handle small fractions of outliers in
the training set [19, 14], but if a considerable proportion of such examples exist,
both algorithms may end up producing models that are skewed towards outliers
[10]. Unfortunately, the availability of a (nearly) clean training data to avoid
this problem is not guaranteed in many real applications. Moreover, contribut-
ing “good” examples of outliers, i.e., ones that do not lie on normal regions
and are far from the normal data points, is sometimes necessary to boost the
performance of the OCSVM and SVDD algorithms [19], but we may have no
prior knowledge about such examples. Finally, both algorithms have some data
dependent parameters whose value can substantially affect the accuracy of the
method, and estimating these parameters in an efficient and unsupervised way is
an open research problem. Usually, the feature space is searched via grid-search
and cross-validation, which are computationally expensive and require labeled
examples from both the normal and outlier classes.

This paper addresses the aforementioned problems in the following ways: (i)
we propose two fully unsupervised methods to analyse the structure of the data
and make a near-optimal estimation of the parameter settings in an efficient way
in comparison with existing methods, (ii) we show how our methods can be used
to restrict the domain of search in grid-search and improve its efficiency, (iii) we
show the application of our proposed methods in pre-processing an unclean data
set, comprising a considerable fraction of outliers, and building a labeled data
set comprising the normal data and good examples of outliers.

2 Background and Related Work

In this section, a brief explanation of the OCSVM and SVDD algorithms is
presented, followed by a review of the related works that have been proposed to
find optimal parameter settings for OCSVM or SVDD training.

2.1 One-class Support Vector Machines

The OCSVM or ν-SVM [14] algorithm is a semi-parametric one-class classifica-
tion method that finds a boundary around dense areas comprising the normal
data [7]. In OCSVM, a training set of xi ∈ Rd(i = 1, 2, ..., l) feature vectors are
projected to a potentially higher dimensional space using a feature map ϕ. Then,



the algorithm finds a hyper-plane that separates the projected examples from
the origin with the maximum possible margin. The primal quadratic problem
that the OCSVM classifier solves is as follows:

min
ω,ξ,ρ

1

2
‖ω‖2 +

1

νl

l∑
i=1

ξi, s.t. (ω.ϕ(xi)) ≥ ρ− ξi; ξi ≥ 0 ∀i, (1)

where ω ∈ Rd and 0 < ν ≤ 1. In addition, ξi ≥ 0 are slack variables that
relax the problem constraints and allow some examples to fall outside the model
boundary. Any given solution for this optimization problem has three separate
sets of examples: examples that fall inside the boundary (non-support vectors),
examples that lie on the boundary (border support vectors), and examples that
fall outside the boundary (outliers or bounded support vectors). One of the
important properties of OCSVM is that the user-defined parameter ν is an upper
bound on the fraction of outliers and a lower bound on the fraction of support
vectors. Using a kernel function as ϕ, like a Gaussian kernel (k(x, y) = e−γ‖x−y‖

2

)
with the kernel parameter γ, it is possible to apply the kernel trick and separate
normal data points and outliers that are not linearly separable in the input space.
After the training phase, the label of any unseen data x is simply predicted using
the decision function f(x) = sign((ω.ϕ(x))− ρ).

SVDD [19] has a similar optimization function (Equation 2), but instead of
a hyper-plane, it minimizes the radius R of a hyper-sphere that encompasses
almost all normal samples:

min
R,a

R2 + C

l∑
i=1

ξi, s.t. ‖xi − a‖2 ≤ R2 + ξi; ξi ≥ 0 ∀i, (2)

where a is the center of the hyper-sphere and C is a user-defined regularization
parameter that has a similar effect as the ν parameter in a OCSVM.

Assuming two training examples x and y, if an applied kernel only depends
on x− y, i.e., the kernel is stationary, the SVDD and OCSVM algorithms result
in equal solutions [14]. As we use the RBF kernel throughout this paper, which is
stationary based on the proposed definition, and the ν and C parameters can be
defined based on each other using the ν = 1

Cl formula [18], hereafter, we assume
that the discussions made for a OCSVM are also valid for a SVDD.

2.2 Estimating Parameter Settings for the OCSVM Algorithm

The choice of the values for γ (the kernel width parameter) and ν (the regular-
isation parameter) has a major influence on the accuracy of a model generated
by the OCSVM or SVDD algorithms [18, 12]. To illustrate the effect of the
parameters, we have designed an experiment with a toy problem named Half
Kernel, that includes 4,000 normal samples and 5% outliers, which were added
to the normal data at random using a uniform distribution. Figure 1 shows the
different models that have been generated using the OCSVM algorithm with
different values of the γ and ν parameters. The best model, i.e., Figure 1(b), has



Fig. 1. Sensitivity of a OCSVM to the γ and ν parameters (Half Kernel data set).

been built using the optimal parameter settings (ν∗, γ∗). Figures 1(a) and 1(c)
show that choosing γ values less than the optimal value results in building overly
general and simple models with a high false positive rate (FPR) with respect to
the target class, whereas larger values are prone to building poor models with a
high false negative rate (FNR). The ν parameter affects the results in the same
manner as shown in Figures 1(d) and 1(e). To illustrate how the optimal value
of this parameter depends on the data, in Figure 1(f) we have added another 5%
anomalies to the Half Kernel data set and used the same setting as in Figure 1(b)
to train a OCSVM model. This figure shows how dramatically the model may
deviate towards outliers, if the ν parameter is not set correctly. Consequently,
the optimal ν and γ parameter values depend on the given data set, and thus
we require a method to select these parameter values from the data. We now
summarize two families of approaches to this problem, namely, supervised and
unsupervised learning approaches.

Supervised Learning of the Parameters: If ground truth labels are avail-
able, it is possible to optimize the choice of values for the ν and γ parameters
via n-fold cross-validation. Zhuang et al. [21] suggested that the most reliable
approach to search the parameter space in this manner is to use grid-search,
and due to its considerable computational requirements, an efficient parameter
search algorithm should be used. To this end, they have first applied a coarse-
grained search over the entire parameter space and then performed two further
fine-grained searches to reduce the complexity by restricting the search space.

Unsupervised Learning of the Parameters: A major drawback of super-
vised learning in this context is the need for ground truth labels. Consequently,
several heuristic unsupervised approaches have been proposed to estimate the
γ and ν parameters when the training set is not clean and no ground truth la-
bels are available to find an optimal parameter setting. Emmott et al. [5] have
assumed prior knowledge about the value of the ν parameter. Then, the value
of the γ parameter has been increased until a predefined proportion of the data
has been rejected. Since there is usually more than one pair of parameters that



result in approximately this predefined proportion of outliers, this approach may
not be successful in finding an optimal parameter setting. Since the proportion
of outliers might be unknown, Rätsch et al. [12] proposed a heuristic to find an
appropriate ν value for a OCSVM. Their main assumptions are that outliers are
far enough from normal samples and the γ parameter is known, and the idea is
to increase ν over the range (0, 1) to find a value that maximizes the separa-
tion distance between the normal class and the rejected samples. The distance
is defined by the following equation:

Dν =
1

N+

∑
f(x)≥ρ

f(x)− 1

N−

∑
f(x)<ρ

f(x), (3)

where N+ and N− are the number of samples in the target and outlier classes,
respectively. Rätsch et al. have reported that if there is no clear separation
between negative and positive samples, the proposed heuristic may come up
with extreme solutions, i.e., 0 or 1. Moreover, the choice of the γ parameter and
its effect on finding a good value for the ν parameter has not been discussed in
their work. Liu et al. [10] have estimated the γ parameter as 1

γ = 2
∑l
i,j=1 ‖xi−

xj‖2/l2, which can be used in combination with Rätsch’s method to estimate
both the γ and ν parameters in a fully unsupervised manner. Hereafter, we call
this method Duplex Max-margin Model Selection (DMMS) as it is based on the
max-margin principle and maximizes the separation between the two classes.

Tax et al. [18] have proposed a heuristic to estimate the γ and ν parameters
for a SVDD in a fully unsupervised manner. Their proposed heuristic optimizes
the estimated FP and FN rates by solving the following minimization problem:

Λ(γ, ν) =
|SV |
N

+ λ|SVb|

(
1

γ0.5smax

)d
, (4)

where SV and smax represent the set of support vectors and the maximum
distance in the training set, respectively. SVb indicates the set of border support

vectors (i.e., those with 0 < αi < C), and λ is a regularizer. The first term ( |SV |N )
is an estimate of the error on the target class, and the second term controls the
error on the outlier class. Since the RBF kernel has been used for this heuristic, it
is also possible to use the same parameter setting to train a OCSVM. Hereafter,
we refer to this heuristic as Duplex Error-minimisation Model Selection (DEMS)
as its objective is to minimize FPR and TPR.

There is another work by Liu et al. [10] that uses an unsupervised self-guided
soft labeling mechanism to train a one-class classifier, different from the OCSVM
and SVDD methods, by applying the soft labels directly in the optimization
problem of the studied one-class classification algorithm, which is very different
from the aim of this paper and so is not discussed here.

In addition to estimating the parameters, Suvorov et al. [17] and Tax et al.
[19] have proposed to use samples from the outlier class directly in the opti-
mization function of a OCSVM or a SVDD to boost the accuracy. However, Tax
et al. [19] have shown that choosing “poor” outlier examples, i.e., outliers that



fall inside or very close to the target class, reduces the accuracy of the trained
model to be similar to a random classifier. They have also discussed that if only
examples from the target class are available, generating synthetic outliers in low
density regions can help tighten the data description and enhance accuracy, but
an automatic method to generate such examples has not been proposed.

We summarize the shortcomings of the existing methods as follows:

1. Even a moderately high resolution grid-search may incur a substantial num-
ber of iterations and high time-complexity. Moreover, the granularity of the
search can have a major effect on the final result.

2. In many applications, examples from the outlier class are not available for use
in finding an optimal parameter setting via cross-validation. Moreover, it is
not assured that a nearly clean data set of normal samples is available during
training. These problems have not been studied by the existing approaches.

3. Even if negative examples are available as well as positive ones, based on the
work presented by Tax et al. [19], it is not guaranteed that their contribution
improves the accuracy of the trained model, unless they are far enough from
the target class. None of the existing methods resolves this problem.

4. All the existing unsupervised parameter estimation methods (except DEMS)
assume prior knowledge of either γ or ν, but both parameters may be un-
known in many applications. This makes it impossible to optimise one pa-
rameter based on knowing the other one.

5. The DEMS method is a fully unsupervised method, but it requires a mech-
anism like grid-search to search over the parameter space and suffers from
the time-complexity problem in point 1 above. Moreover, this approach has
been examined on only a limited number of data sets.

3 Problem Statement

We are given an unlabeled data set DS comprising unlabeled data points xi ∈
Rd(i = 1, 2, ..., l) from the normal and outlier classes. Like [16], we assume that
outliers are uniformly distributed in the feature apace. Our aim is to find a
compact region in the search space for the parameters γ and ν that contains the
optimal parameter settings γ∗ and ν∗ for a OCSVM with RBF kernel. Once such
a compact region has been found, we can either directly estimate the optimal
settings, or efficiently apply a grid-search method within this compact region. In
this way, we can estimate the optimal parameter settings for training a OCSVM
(or SVDD) without requiring ground truth labels or resorting to exhaustive
grid-search, even when the fraction of outliers in DS is high.

In addition, we aim to develop a method of pre-processing the data set DS
that can: (1) filter “border-line” data points that can affect the accuracy of the
learned OCSVM model; and (2) add synthetic outliers in low density regions
of nearly clean data sets to enhance the accuracy of the trained OCSVM by
generating labeled data sets.

In the following section we propose two unsupervised methods to automati-
cally estimate optimal parameter values γ∗ and ν∗, which address the shortcom-
ings that were identified in Section 2 for the existing methods to this problem.



4 Methodology

We divide the problem of finding optimal parameter settings into two steps: (1)
estimating the γ parameter, and (2) estimating the ν parameter.

Estimation of γ: Recall from Section 2 that the γ parameter is the band-
width parameter of the RBF kernel, which acts as a scaling factor to smooth the
learned density estimate to reflect the true data density. Lihi et al. [20] proposed
a method that estimates a local scaling factor for each sample xi in an affinity
matrix A ∈ Rl×l (Aij = exp(−γiγjd2(xi, xj)), where d(., .) is some distance met-
ric). They used the distance between xi and its Kth nearest neighbor to obtain
an estimate of γi, and showed that setting K = 7 results in good estimates even
for high-dimensional data sets.

Inspired by Lihi et al. [20], we introduce a density measure siK for each data
point xi in the training set DS:

siK =
1

K

∑
k∈KNNi

‖xi − xk‖; ∀i = 1..l, (5)

where KNNi is the set of the K nearest neighbors of xi inclusive. The density
measure siK reflects the density of points around point xi. Our challenge is to
find the value si

∗

K of a point xi∗ that corresponds to the “limit” of the density
of normal points, and can thus be used to estimate the γ parameter. To do this,
we define an ordered set SK = {siK ,∀i = 1..l|Smk ≥ S

m−1
K ,∀m = 1..l}, which can

be used to fit a function FS(m) to visualize the densities of points in DS. It can
be shown that for data sets that follow the definition of DS in Section 3, the
function FS(m) is similar to Figure 2. We propose that the knee-point in this
monotonically increasing function, which is shown in Figure 2 by a circle, carries
important information that can be used to set the γ parameter. The knee-point
actually represents a sudden change in the densities where we have the normal
points near to the data boundaries followed by the outliers.

For a given monotonically increasing function f(x), a knee-point is a point
with maximum curvature. The curvature at each point x of the function f(x) is
defined below as Cf (x) [13], hence a knee-point can be formulated as Equation
6.

xmaxCf
= arg max

x
Cf (x), where Cf (x) =

f ′′(x)

(1 + f ′(x)2)0.5
. (6)

Using this definition, the knee-point of the function FS(m) is mmax
CFS

. Thus

we set γ = 1
FS(mmax

CFS
) in our heuristic. Later in Section 5, we show that this

heuristic works reasonably well for a variety of data sets with different inherent
structures. We now propose two variants of our heuristic that provide a means
of estimating the ν parameter.

Quick Model Selection (QMS): The information gained via the knee-
point of FS(m) can be utilized to estimate the ν parameter as well. As the
knee-point is an indicator of a sudden change in FS(m), it shows that densities
siK greater than mmax

CFS
are very rare in the training set. As a result, we argue



Fig. 2. Illustration of the knee-point of a monotonically increasing function FS(m).

that samples xi with this property are good representatives of outliers, which

leads us to set ν =
|SK |−mmax

CFS

|SK | . This is similar to using the K Nearest Neighbor

(K-NN) method to detect outliers in a data set, with the key difference that we
use this unsupervised method just once in the pre-processing step to estimate an
optimal parameter setting for a OCSVM, and after training the OCSVM, unlike
the K-NN method, there is no need to compute distances for the test instances.

Another important property of QMS is that it can be used to automatically
select good examples of outliers for training purposes. To this end, we introduce
a shrinking factor η in the range (0, 1] that can be used to safely divide samples
into three groups:

– Normal (siK < η × FS(mmax
CFS

))

– Outlier (siK > (2− η)× FS(mmax
CFS

))

– Border-line (η × FS(mmax
CFS

) ≤ siK ≤ (2− η)× FS(mmax
CFS

))

Now, we can remove the border-line samples from the data set and label the out-
lier examples as they are sufficiently far from the normal samples. This process
is shown in Figure 3 for a Banana data set comprising 10,000 normal instances
and 20% anomalies, which were generated using a uniform distribution. This ex-
ample also illustrates the robustness of our method to the percentage of outliers
in the training set.

Revised DMMS (RDMMS): We also propose to use our heuristic to
estimate the γ parameter for the DMMS method, which was explained in Section
2. We further modify the distance metric Dν (Equation 3) as Equation 7 below,
for we have found it to be a more practical metric in our experiments:

Dν = medianf(x)≥ρf(x)−medianf(x)<ρf(x). (7)

Our proposed heuristic approaches can address the challenge of the time-
complexity of grid-search, by providing an initial guess for the optimal parame-
ter setting and substantially reducing the search space. In the next section, we
evaluate our heuristics on a variety of data sets in terms of their accuracy and
run-time, and compare them with supervised grid-search and several existing
unsupervised approaches.



Fig. 3. Pre-processing a Banana data set using QMS; (a) dividing samples into Normal,
Border-line, and Outlier sets, (b) the original data set, (c) pruned labeled data set
including good examples of outliers.

5 Experimental Evaluation

We evaluated our proposed methods in comparison to the DEMS and DMMS
methods. Similar to [20], we set K = 7 in our proposed approaches. Since Tax
et al. [18] have reported that the DEMS method is not sensitive to the value of
the λ parameter, its default value (λ = 1) was used in our experiments. We also
implemented a supervised grid-search method, including two phases of coarse-
grained and fine-grained search based on the proposed method by Hsu et al. [8],
to make sure that the time-complexity is kept low. This method applies a 10-fold
cross validation to find optimal parameter settings.

Several real and synthetic data sets were used to evaluate the accuracy and
time-complexity of the methods. To evaluate accuracy, we used the Receiver
Operating Characteristic (ROC) curve and the corresponding Area Under the
Curve (AUC) as it is insensitive to class balance. The reported AUC values were
averaged over 200 runs. The experiments were conducted on a machine with an
Intel Core i7CPU at 3.40 GHz and 16 GB RAM. MATLAB LIBSVM toolbox
(version 3.20) [2] was used to implement the OCSVM method.

5.1 Data sets

We ran our experiments on 7 real data sets from the UCI Machine Learning
Repository, namely Contraceptive Method Choice (CMC), Cardiotocography
(Cardio), Breast Cancer Wisconsin (Cancer), Ozone Level Detection (Ozone),
Forest CoverType (Forest), Shuttle, and Vowel. We also generated 3 synthetic
data sets: a Banana, a C-shape and a Smile (including a mixture of two Gaussians
and one C-shaped distribution). These combinations enable us to examine our
proposed heuristics on a variety of data structures. All data sets were scaled in
the range [0, 1] using feature scaling technique. For all data sets, 5% anomalies
in the range [0, 1] were added using a uniform distribution, and test and training
sets were randomly selected from the data with the ratio of 1 to 4. In this way
we know the actual labels and we are able to evaluate the methods.

We empirically observed that the data should be scaled in the range [0, 1] to
make it possible to estimate the γ parameter based on our heuristics.



Table 1. Accuracy and time-complexity of our proposed unsupervised parameter esti-
mation methods (QMS and RDMMS) in comparison with existing supervised (S-Grid-
S) and unsupervised (DEMS and DMMS) methods.

AUC CPU Time (in seconds)
Data set #Features DEMS DMMS S-Grid-S QMS RDMMS DEMS DMMS S-Grid-S QMS RDMMS

Cancer 10 0.620 0.691 0.796 0.813 0.781 2.50 0.42 34.06 0.04 0.64
Cardio 22 0.632 0.876 0.964 0.958 0.959 31.46 6.65 319.71 0.27 7.13
CMC 9 0.522 0.567 0.766 0.836 0.805 9.57 2.08 112.40 0.13 2.45
Forest 54 0.591 0.883 0.985 0.958 0.958 351.93 155.33 10176.60 7.10 193.41
Ozone 72 0.697 0.877 0.981 0.942 0.941 83.74 14.69 689.87 0.53 21.81
Shuttle 9 0.683 0.596 0.999 0.995 0.997 236.24 71.17 1555.03 4.30 87.93
Vowel 10 0.784 0.867 0.927 0.957 0.951 3.77 0.70 49.45 0.06 0.92
Banana 2 0.850 0.570 0.900 0.896 0.849 200.04 59.05 2034.83 4.21 145.19
C-shape 2 0.894 0.554 0.901 0.898 0.840 196.41 58.34 2277.96 4.15 122.85
Smile 20 0.696 0.596 0.981 0.991 0.992 387.90 122.02 7966.55 5.29 148.92

Average 0.697 0.708 0.920 0.924 0.907 150.36 49.05 2521.65 2.61 73.13

5.2 Results and Discussion

Table 1 reports the accuracy and run-time of the examined methods. As the
traditional supervised grid-search (S-Grid-S) method has considerable computa-
tional requirements, we set an upper-bound equal to 10,000 data points on the
size of the whole data set in all the experiments reported in this table.

Based on the reported results in Table 1, our proposed methods outper-
form the existing unsupervised parameter estimation methods (i.e., DEMS and
DMMS). In comparison with the S-Grid-S method, on 3 real data sets (Cancer,
CMC, and Vowel) our methods result in considerably higher accuracy and lower
time complexity, while the S-Grid-S method outperforms our QMS method only
on Forest and Ozone, and for the rest of the data sets their accuracy is almost
the same. To identify the statistical significance of results between the two ap-
proaches with highest AUC, i.e., QMS and S-Grid-S, we conducted a t−test
with a level of significance of α = 0.05. The returned p = 0.63 for the accuracy
measure fails to reject the null hypothesis with a level of significance, i.e., the
difference between the AUC of the two approaches is not statistically signifi-
cant. Moreover, the returned p = 0.034 for the training time indicates that the
time-complexity of our method is significantly lower than the S-Grid-S method.
Since l � d in our experiments, the time-complexity of S-Grid-S using tradi-
tional matrix inverse is O(l3) [3], while the most expensive part of our QMS
method, i.e., finding the K nearest neighbors, requires O(l2). Note that S-Grid-
S requires a labeled data set to find the optimal parameter settings, but our
proposed methods are completely unsupervised, i.e., learning of the parameter
settings is performed without having access to the labels (the labels have been
used only for testing purposes).

To compare the scalability of the two methods with the best accuracy, i.e.,
S-Grid-S and QMS, we have conducted another experiment with the Forest data
set. The number of data points has been increased between 10K and 500K,
and we have given both methods at most 6 hours to find the optimal parameter
settings. As shown in Figure 4, our QMS method successfully finds the parameter



Fig. 4. Scalability of QMS in comparison with the supervised grid-search method on
the Forest data set (it took more than 24 hours for the S-Grid-S method to find optimal
parameter settings when the size of the data set is 20K).

settings in this time limit, but the running time of the S-Grid-S method exceeds
the limit even for a data set of 20K samples.

6 Conclusion

We proposed two parameter estimation algorithms, namely QMS and RDMMS,
for the OCSVM and SVDD algorithms, which estimate optimal parameter set-
tings without any need for ground truth labels or exhaustive grid-search over
the parameter space. Our experimental evaluation showed that our methods
outperformed existing heuristic approaches that found the parameter settings in
an unsupervised manner. Moreover, our QMS method had comparable accuracy
to the supervised grid-search method, while it was in average more than 900
times faster than the supervised-grid search method on the examined real and
synthetic data sets. The QMS method also outperformed all the existing meth-
ods in terms of time-complexity. In future work, we aim to use this heuristic in
training OCSVMs for concept-drifting data streams, where we need to train a
new model using the recent data.
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