
Proof of OS scheduling behavior in the presence
of interrupt-induced concurrency

June Andronick1,2, Corey Lewis1, Daniel Matichuk1,2,
Carroll Morgan1,2, and Christine Rizkallah1,2

1 Data61, CSIRO (formerly NICTA) firstname.lastname@data61.csiro.au
2 UNSW firstname.lastname@unsw.edu.au

Abstract. We present a simple yet scalable framework for formal rea-
soning and machine-assisted proof of interrupt-driven concurrency in
operating-system code, and use it to prove the principal scheduling prop-
erty of the embedded, real-time eChronos OS : that the running task
is always the highest-priority runnable task. The key differentiator of
this verification is that the OS code itself runs with interrupts on, even
within the scheduler, to minimise latency. Our reasoning includes context
switching, interleaving with interrupt handlers and nested interrupts; and
it is formalised in Isabelle/HOL, building on the Owicki-Gries method for
fine-grained concurrency. We add support for explicit concurrency con-
trol and the composition of multiple independently-proven invariants.
Finally, we discuss how scalability issues are addressed with proof engi-
neering techniques, in order to handle thousands of proof obligations.

1 Introduction

We address the problem of providing strong machine-checked guarantees for
(uniprocessor) operating-system code with a high-degree of interrupt-driven con-
currency, but without hardware-enforced memory protection. Our contribution
is a technique to reason feasibly about preemptive real-time kernels; we demon-
strate its effectiveness on the commercially-used embedded eChronos OS [3].

Rather than inventing our own, new concurrency formalism from scratch,
we chose to “go for simplicity”. The Owicki-Gries method [19], more than 40
years old, was invented when mechanised theorem proving was scarce, when the
principal concern was compact, elegant formalisms applied to small intricate
problems.3 Proving an elegant property of a small, intricate operating system
thus seemed to be an ideal experiment; an added attraction was that the system
is in real-world use. We further motivate the choice of Owicki-Gries in §4.1.

There were, however, two immediate concerns: even a small operating system
kernel is nowhere near small enough to be reasoned about by hand, as the OG
(Owicki-Gries) pioneers typically did [8]; and the OG concurrency model did not
at first seem right for reasoning about the coarse-grained concurrency of switch-
ing between tasks. In OG, atomic actions are arbitrarily interleaved, and OG ’s

3 Broadly speaking, this was the “Hoare/Dijkstra/Gries School” of Formal Methods.

“await statements” (§2 below) are not designed for reasoning about interrupt-
driven scheduling including the scheduler and context-switching code itself.

The former concern would, we hoped, be taken care of by the increased power
and sophistication of theorem provers in the decades since OG was introduced:
we use Isabelle/HOL [18]. The latter concern is handled by our novel style of
OG reasoning, presented in a previous paper [4], that adapts OG to allow rea-
soning about interrupt-induced and scheduler-controlled concurrency. Although
conceptually simple, this style introduces significant extra text that we hide
through modern techniques: we call it “await painting”. Await-painting intro-
duces an active-task variable that tracks which task is allowed to execute, and
wraps every atomic statement with an AWAIT using that variable to restrict
the allowed interleavings. It is what allows the program code itself to control the
interleaving between tasks, something not normally done in OG.

The top-level theorem we prove is a scheduling property, not directly express-
ible in OG without the await-painting step: that the currently executing task is
the highest-priority runnable task. We prove it on a model of the interleaving
between the OS and the (possibly nested) interrupt handlers. In future work,
we aim to prove that this model is a correct abstraction of the existing eChronos
OS implementation. Our proof assumes that all application-provided code is well
behaved; that is, it does not change any OS variables, and application-provided
interrupt handlers only call a specific API function. Although the eChronos OS
does not explicitly export any functions modifying OS variables, the OS is not
able to enforce these constraints as the system runs on hardware with no memory
protection. These assumptions can, however, be statically checked.

Our specific contributions are the following ones. We extend the model pre-
sented previously [4] (Contribution 2), while the proofs themselves are new (Con-
tributions 1, 3, 4, 5). Most of our model and proof framework is generic and
should apply to systems that support interruptible OS-es, preemptible applica-
tions and nested interrupts. All our proofs and model are available online [1].

1. We provide a proof framework, using a formalisation of OG in Isabelle/HOL [20],
to reason about interrupt-driven and scheduler-controlled concurrency. Our
framework is driven by the aim to handle complex parallel composition which
requires that invariants can be proved compositionally. (§4.1)

2. We give an updated model of our interleaving framework and instantiation to
the eChronos OS . It extends the one presented previously [4] by including
system calls that can influence the scheduling decisions, introduces non-
determinism to properly represent under-specified operations, and properly
separates generic interleaving and eChronos instantiation. (§3)

3. We show that proving the scheduling property for the eChronos system is
within the capabilities of modern theorem provers, at least for an application
of this size. This includes handling the OG-characteristic of quadratically
many “interference-freedom” verification conditions. (§4.2)

4. We develop a number of proof engineering techniques to address some ob-
served problems that occur in a proof of this scale. (§4.3)

5. We contribute to the real-world utility of an existing preemptive kernel that
is in widespread use, in particular in medical devices.

2 Background and big picture

The goal of our work is to provide a verification framework for OS code involving
interrupt-induced concurrency, in particular real-time embedded OS -es.

A real-time OS (RTOS), like the eChronos OS , is typically used in tightly
constrained embedded devices, running on micro-controllers with limited mem-
ory and no memory-protection support. The role of the OS is closer to that of
a library than of a fully-fledged operating environment, allowing the application
running on top to be organised in multiple independent tasks and providing
a set of API functions that the application tasks can call to synchronise (sig-
nals, semaphores, mutexes). The OS also provides the underlying mechanism for
switching from one task to another, and is responsible for sharing the available
time between tasks, by scheduling them according to some given OS -specific
policy. For instance, tasks can cooperatively yield control to each other (cooper-
ative scheduling); or tasks can be scheduled according to their assigned priority,
and their execution must then be preempted if a higher priority is made avail-
able (preemptive scheduling). The system typically also reacts to external events
via interrupts. An interrupt handler needs to be defined for each interrupt by
the application. When an interrupt occurs, the hardware ensures that the corre-
sponding interrupt handler is executed (unless the interrupt is disabled/masked).

The job of the scheduler is to ensure that at any given point the running task
is the correct one, as defined by the scheduling policy of the system.

For instance, in a priority-based preemptive system, when a task in unblocked
(e.g. by an interrupt handler sending the signal it was waiting for) a context
switch should occur if this task is at a higher priority than the currently running
one. This defines the correctness of the scheduling behavior and is the target of
our proof about the eChronos OS .

To reason about such an RTOS, and prove such a scheduling property, we
present a verification framework supporting the concurrency reasoning required
by preemption and interrupt handling (on uniprocessor hardware).

In previous work [4] we provided a model of interleaving that faithfully rep-
resents the interaction between application code, OS code, interrupt handler and
scheduler, in such an RTOS. Roughly, the system is modelled as a parallel com-
position A1||...||An||Sched ||H1||...||Hm, where the code for each application Ai

is parameterised (including calls to OS API functions), as well as the code for
each interrupt handler Hj , and the code for the scheduler. The key feature of
the framework is that the interleaving in the parallel composition is controlled
using a small formalised API of the hardware mechanisms for taking interrupts,
returning from interrupts, masking interrupts, etc. We have formalised our logic
in Isabelle/HOL, based on [20].

In this paper we present (a) a logic to prove invariants about such parallel
composition, with support for handling complex proofs and (b) instantiation of
the model to the eChronos OS and proof of its scheduling behavior.
Namely, the property we prove is

‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|} (1)

where ‖−b is the derivability of a “bare” program (i.e. with no annotations),

and is defined in terms of ‖−i at the end of §4.1. The notation ‖−i I p c q

means that if the (annotated) parallel program c starts in a state satisfying the
precondition p, then the invariant I holds at all reachable execution steps of c,
and the postcondition q holds if c terminates. The definition, explained in detail
in §4.1, adds an invariant to the original Owicki-Gries statement ‖− p c q, which
in turn is an extension of traditional Hoare-logic statement ` p c q. Owicki-
Gries extends the sequential programs of Hoare-logic with two constructs: the
parallel composition c1||c2 and the AWAIT -statement AWAIT b DO c OD. The
execution of c1||c2 is the execution of the current instruction of either c1 or c2.
The statement AWAIT b DO c OD can only execute if condition b is satisfied,
in which case c is executed atomically (meaning that b is still true as c begins,
and reasoning within c is purely sequential).

eChronos sys is our model of an eChronos system. The eChronos OS 4 provides
a priority-based preemptive scheduler with static priorities. It comprises about
500 lines of C code and runs on ARM uniprocessor hardware.5 Our model is
an instantiation of the generic model of interleaving [4], with definitions for
the scheduler, and for the API system calls (the ones that may influence the
scheduling decisions) which are called from application or handler code. This
model is given in §3.

Coming back to the property (1), it says that the eChronos system, starting
in any initial state and never terminating, will satisfy the scheduler invariant
at every point of execution. The precondition True is always trivially satisfied
and the postcondition False is valid because the system is an infinite loop of
execution. The invariant property for the eChronos OS states that the running
task is always the highest priority runnable task. We describe its formal definition
and proof in §4.2.

Owicki-Gries reasoning introduces quadratically many proof obligations due
to parallelism: indeed our proof for the eChronos scheduling behavior initially
generates thousands. However, using a combination of (a) compositional proofs
for proving invariants; (b) controlled interleaving to eliminate unfeasible exe-
cutions; and (c) proof engineering techniques to automate discharging a large
number of conditions, we show the feasibility of this approach for a preemptive
and interruptible real-time OS running on a uniprocessor §4.3.

3 The model

In recent work [4] we presented a model of interleaving between application code,
interrupt handler code, and scheduler code, for an ARM platform that supports

4 The eChronos OS [3] comes in many variants, varying in the hardware they run
on, the scheduling policy they enforce and the synchronisation primitives they offer.
In this paper we simply refer to the eChronos OS for the specific variant that we
are targeting, called Kochab, which supports the features that create interesting
reasoning challenges (preemption, nested-interrupts, etc).

5 We specifically target an ARM Cortex-M4 platform, simply referred to as ARM here.

both direct and delayed calls to the scheduler. The model was designed to be
generic and we then instantiated it to the eChronos OS .

Here we present this model, with several improvements. We explicitly sepa-
rate the generic portion to clarify how one could use the framework to formalise
a different system. We extended the formalisation of the eChronos OS to include
system calls that can influence the scheduling decisions. Finally, we introduce
non-determinism to properly represent under-specified operations.

3.1 A generic model of interrupt-driven interleaving

In the generic part of the model we focus both on formalising the hardware
mechanisms that control interleaving and on faithfully representing the concur-
rency induced by interrupts. The system is modelled as the parallel composition
svcaTake||svca||svcs||H1||...||Hm||A1||...||An, where the scheduler (Sched in §2) is
taking into account here both direct/synchronous calls to the scheduler (svcs)
and delayed/asynchronous ones (svca). ARM provides a direct (synchronous)
supervisor call (SVC) mechanism that can be thought of as a program-initiated
interrupt. It is triggered by the execution of the SVC instruction (SV C now),
which results in the execution switching to an SVC handler (svcs). ARM also
provides a delayed (asynchronous) supervisor call, also behaving like an inter-
rupt, with instructions allowing programs to enable and disable it. It is triggered
by raising a flag (svcaReq), whose status is constantly checked by the hardware
(modelled by svcaTake). If the flag is raised and the asynchronous SVC is en-
abled, the execution will switch to a specific handler (svca). In the case of the
eChronos OS , both SVC handlers will execute the scheduler.

The formal model of interleaving is presented in Figure 1.6 The code for the
application initialisation, application tasks, interrupt handlers and SVC handlers
are parameters as they are system-specific.

The code for each part of the parallel composition is in fact wrapped in an
infinite WHILE loop, reflecting the reactive nature of the system. Moreover, to
faithfully represent the controlled interleaving allowed by the hardware we await-
paint most of the code. This means that we introduce an active-task variable,
AT , and associate each task, including the interrupt handlers, with a unique
identifier. Every atomic statement c in Task t is then converted into a statement
AWAIT AT=t THEN c END . As described in §2 this prevents the execution of c

until the await-condition holds. Only when the command AT:= t is performed
will Task t be able to execute. In particular, this means that no other Task t′

with t′ 6=t will be able to interfere. In the model this await-painting is performed
by the control function, which recursively wraps every command with an AWAIT .

6 The model is written in a simple formalised imperative language with parallel com-
position and await statements, which has the following syntax:

c ≡ x := v | c;; c | IF b THEN c ELSE c FI | WHILE b DO c OD |
AWAIT b THEN c END | (COBEGIN c ‖ c COEND)

The SCHEME constructor models a parametric number of parallel programs, as seen
in [20]. Here this is the number of handlers plus the number of application tasks.

definition interleaving app-init svca-code svcs-code handler-code app-code ≡
hardware-init ;;
app-init ;;

(COBEGIN
WHILE True DO svcaTake OD
‖ WHILE True DO control svca svca-code OD
‖ WHILE True DO control svcs svcs-code OD
‖ SCHEME [user0 ≤ i < user0 + nbRoutines]
IF i ∈ I THEN
WHILE True DO ITake i ;; control i (handler-code i) OD

ELSE
WHILE True DO control i (app-code i) OD

FI
COEND)

Fig. 1. Definition of generic interrupt-driven interleaving in Isabelle/HOL

To be precise, we await-paint all of the code except for where concurrency can
actually occur: during the background hardware routine svcaTake, and when an
interrupt is taken, ITake. These represent our model of the hardware mecha-
nisms that control the interleaving and context switching. We define them as
below, with an AWAIT with the condition that the interrupt is allowed to be
taken. We have previously described these functions in detail [4], but abstractly
they save the AT variable on a stack (the notation x#xs adds x to the list xs)
and switch to the interrupt or SVC handler. While these are the only places
where concurrency is not controlled, they are still guarded by the condition that
the interrupt is enabled (is in the set EIT of enabled interrupts), is not already
running (or itself interrupted), and is allowed to interrupt the active task.

can-interrupt i ≡ i ∈ EIT − ATStack ∧ i ∈ interrupt-policy AT

ITake i ≡ AWAIT can-interrupt i
THEN ATStack := AT # ATStack ;; AT := i END

svcaTake ≡ AWAIT svcaReq ∧ can-interrupt svca
THEN ATStack := AT # ATStack ;; AT := svca;; svcaReq := False END

One of the central features of the eChronos OS is that while OS code is
interruptible, it is not preemptible. In practice, this means that although stan-
dard interrupts are handled immediately, the call to the scheduler via the SVCa

interrupt is delayed until the OS code is completed. To achieve this, SVCa is
temporarily removed from EIT , ensuring that svcaTake cannot execute.

We also provide a model of the SV C now and IRet hardware instructions
that are called by OS functions.

SVC-now ≡ ATStack := AT # ATStack ;; AT := svcs

IRet ≡ IF svcaReq ∧ can-interrupt ′ svca
THEN AT := svca;; svcaReq := False
ELSE AT := hd ATStack ;; ATStack := tl ATStack FI

can-interrupt ′ i ≡ i ∈ EIT − ATStack ∧ i ∈ interrupt-policy (hd ATStack)

SV C now is used to directly switch to the SVC interrupt handler. IRet
returns control from an interrupt handler: it either switches control to svca (if
svca has both been requested and is allowed to interrupt the head of ATStack)
or returns control to the head of ATStack, which was saved as part of ITake.
Although not explicitly part of interleaving, we require that the last command
of svca code, svcs code, and handler code is IRet. This can be checked when
instantiating the interleaving model to a specific system.

3.2 Instantiation to the eChronos OS

To model the eChronos OS we now just need to instantiate the above framework
with the OS specific code. We give an overview of this instantiation below7 while
the full details can be found online [1] or in our previous paper [4].

eChronos-sys ≡ interleaving eChronos-init eChronos-svca-code eChronos-svcs-code

eChronos-handler-code eChronos-app-code

eChronos-svca-code ≡ schedule;; context-switch True;; IRet

eChronos-svcs-code ≡ schedule;; context-switch False;; IRet

eChronos-handler-code i ≡ E :∈ {E ′ | E ⊆ E ′};; svcaRequest ;; IRet

eChronos-app-code i ≡ userSyscall :∈ {SignalSend , Block};;
IF userSyscall = SignalSend
THEN svcaDisable;; R :∈ {R ′ | ∀ i . R i = Some True −→ R ′ i = Some True};;
svcaRequest ;; svcaEnable;; WHILE svcaReq DO SKIP OD

ELSE IF userSyscall = Block
THEN svcaDisable;; R := R(i 7→ False);; SVC-now ;; svcaEnable;;
WHILE svcaReq DO SKIP OD

FI
FI

In this work we focus on the scheduling behaviour, modelling only the parts
that might affect scheduling decisions. These decisions depend on two variables,
R for runnable tasks and E for the events signalled by interrupt handlers.

The parameters eChronos svca code and eChronos svcs code are almost
identical and are used by the OS to call the scheduler. First, schedule, de-
fined below, picks the next task to run by first updating R through handling the
unprocessed events E before using whichever scheduling policy is in place. After
choosing the task a context switch is performed, with the old task being saved
and the new task being placed on the stack.

7 For presentation purposes, we omit ghost variables added to the program for veri-
fication purposes. The notation x :∈ S stands for non-deterministically updating x
to be any element of S.

schedule ≡ nextT := None;;
WHILE nextT = None
DO E-tmp := E ;; R := handle-events E-tmp R;; E := E − E-tmp;;
nextT := sched-policy R OD

context-switch preempt-enabled ≡
contexts := contexts(curUser 7→ (preempt-enabled , ATStack));;
curUser := the nextT ;; ATStack := snd (the (contexts curUser));;
IF fst (the (contexts curUser))
THEN svcaEnable
ELSE svcaDisable FI

Next, eChronos handler code is mostly application-provided and is only al-
lowed to affect the behaviour of the OS by expanding the set of events E. A
flag is then raised saying that the scheduler should be run as soon as enabled.
To finish, the handler, by calling IRet, either returns control to the previously
executing context or, if allowed, switches control to the scheduler.

Finally, the only way the application code can affect the interleaving be-
haviour is via system calls. We model two representative syscalls, signal send
and block. In the eChronos OS , syscalls run with interrupts enabled, but pre-
emption disabled; that is, they are surrounded by disabling and enabling the
svca interrupt. This is to delay a call to the scheduler requested by an interrupt
handler until after the OS syscall is finished. Each syscall ends with a loop that
ensures that, if required, the scheduler executes before the OS returns control to
the application. The syscall signal send increases the set of runnable tasks and
sets a flag indicating that the scheduler needs to be run, while block modifies R
so that the specific application task is no longer runnable and then directly calls
svcs via SV C now.

4 Proof framework and scheduler proof

4.1 Framework and compositionality lemma

In this section we explain our definition of derivability of a (bare) parallel program
c with respect to an invariant I, precondition p and postcondition q, denoted
‖−b I p c q . We present the framework that we build to ease the proof of such
a statement, by assuming helper invariants, and decomposing the proof into
composable subproofs. In §4.2, we use this framework to state and prove the
scheduler correctness ‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|}.

We use the Owicki-Gries (OG) treatment of concurrency, captured in Is-
abelle/HOL by Prensa [20]. Reasoning about high-performance shared-variable
system code requires a very low level of abstraction [4], and motivated our
choosing OG over alternatives such as the the more structured Rely-Guarantee
method. Futhermore, our goal was to verify existing code rather than to syn-
thesise new code, i.e. a bottom-up proof rather than a top-down correctness-
by-construction exercise. An attractive possibility, however, is to now use the
invariants and assertions that OG and the code helped us to synthesise, and to

explore whether with that “head start” a Rely-Guarantee approach would be
possible: probably it would suggest proof-motivated modification to the code.

The OG method, introduced 40 years ago, extends the Hoare-style assertional-
proof technique to reason about a number of individually sequential processes
that are executed collectively in parallel. Namely, OG provides (1) a definition
of validity of a Hoare triple over a (fully annotated) parallel composition of pro-
grams, denoted ‖= p c q ; (2) a set of proof rules for efficient verification of such
a statement, with an associated derivability statement, denoted ‖− p c q ; (3) a
soundness theorem of the rules w.r.t validity, namely ‖− p c q −→ ‖= p c q ;
and finally (4) an automated verification condition generator (VCG), i.e. a tactic
oghoare in Isabelle/HOL to decompose a derivability statement into subgoals.

We explain these standard OG definitions before going into our extensions,
which are proved sound with respect to the concurrency semantics. In the follow-
ing, c and ac are mutually recursive datatypes; c is sequential code, which can
contain a parallel composition of annotated code, ac. The parallel composition
consists of a list of annotated programs with their postconditions. An annotated
program can contain an AWAIT statement, whose body is a sequential program.

c ≡ x := v | c;; c | IF b THEN c ELSE c FI | WHILE b DO c OD |
COBEGIN ts COEND

ts ≡ [] | (aco, {|a|})#ts
aco ≡ None | Some ac
ac ≡ {|a|} x := v | ac;; ac | {|a|} IF b THEN ac ELSE ac FI |

{|a|} WHILE b INV {|a|} DO c OD | {|a|} AWAIT b THEN c END

In the above b is a boolean expression, and a is an assertion. Validity ‖= p c q
is defined in terms of the execution semantics of the program, as in Hoare logic
(all states reachable via multiple steps of execution from initial states satisfy-
ing the precondition will satisfy the postcondition). The execution of the stan-
dard language constructs is also defined as in Hoare logic. For parallel composi-
tion, one of the programs is at each step non-deterministically chosen to make
progress. For the AWAIT statement, the body is executed, under the condition
that the guard is satisfied (and that the body does not contain any parallel
composition). The derivability rules (‖− p c q) are also the same as for Hoare
logic. The key feature of OG is providing a proof rule for parallel composition,
which consists in showing local correctness and interference-freedom for a list
[(Some ac1, q1), ..., (Some acn, qn)] of annotated programs. Each program aci
and postcondition qi is first proved correct in isolation using standard sequential
Hoare logic rules. Then, each assertion a in aci is proved to not be interfered
with by any (annotated) statement {|a′|} st′ in another program acj (shown us-
ing standard Hoare logic as well: {|a ∧ a′|} st′ {|a|}). This interference-freedom
requirement makes the OG technique non-compositional and quadratic. How-
ever, in systems with limited concurrency like ours, the complexity is reduced
and we apply proof engineering techniques to make it scale to verify real OS
scheduling behavior.

Our first, small, extension to the original definition of derivability is to explic-
itly talk about the invariant of the program. The programs we target are infinite

loops, where the postcondition is not reached. Therefore, their correctness can
be expressed better in terms of an invariant over their execution. An invariant
for an annotated program is merely a property repeated in all annotations. How-
ever, manually inserting it everywhere is tedious, error-prone and results in bad
readability. Instead, we define the derivability of invariants as follows:

‖−i I p c q ≡ ‖− p (add-inv-com I c) q

where add inv com I c simply inducts over the structure of program c and adds
a conjunction with I to all annotations.

Our second extension is to be able to assume a helper invariant, while proving
a main invariant. This feature is necessary in larger proofs where the property
of interest relies on a number of other invariants. These invariants might need
different sets of annotations; proving them all together quickly becomes unread-
able, and even infeasible due to the explosion of complexity. It also makes it
hard for multiple people to work on a single proof. We modify the original set
of OG derivability rules to allow assuming an invariant, denoted I ‖− p c q ,
as follows: preconditions get an extra conjunction with I (i.e. I can be assumed
true initially) and postconditions get an extra implication from I (i.e. the post-
condition itself only need to be proven if I holds). Then ‖− p c q simply stands
for UNIV ‖− p c q (UNIV is the universal set) and I ′ ‖−i I p c q stands for
I ′ ‖− p (add-inv-com I c) q . Putting things together, we provide a composition-
ality lemma to decompose the proof along the invariants.

I ′ ‖−i I p c q ‖−i I ′ p ′ c ′ q ′ merge-prog-com c c ′ = Some c ′′

‖−i (I ′ ∩ I) (p ∩ p ′) c ′′ (q ∩ q ′)
(2)

where the merge of two programs requires the programs to only differ on annota-
tions (i.e. have identical program text), and if so, returns the same program text
with merged annotations (by conjunction). Our proof of the eChronos scheduler
uses this lemma extensively, and would have not been tractable without it.

Finally we define the derivability of an invariant I over a bare program (i.e.
not annotated) as the existence of an appropriate annotation sufficient to prove
I , as follows:
‖−b I p c q ≡ ∃ c ′. extract-prg c ′ = c ∧ ‖−i I p c ′ q (3)

Since invariants are merely annotations, we can prove an introduction rule for
derivability, which allows us to directly introduce helper invariants:

∃ c ′. extract-prg c ′ = c ∧ ‖−i (I ∩ I ′) p c ′ q

‖−b I p c q
(4)

4.2 The statement and its proof

Now that we have defined our framework, we present the statement of eChronos’
scheduler correctness:

‖−b {|scheduler-invariant |} {|True|} eChronos-sys {|False|} (1)

The definition of eChronos sys is described in §3. Here we define scheduler invariant

and explain its proof.
As previously mentioned, the key property enforced by the eChronos OS is

that the running application task is always the highest priority runnable task.
We express this property as an invariant scheduler invariant , defined as follows:

scheduler-invariant x ≡
AT x ∈ U ∧ svca ∈ EIT x ∧ ¬ svcaReq x −→
sched-policy (handle-events (E x) (R x)) = Some (AT x)

where x is the current state. The statement says that whenever the currently
active task is a user (i.e. not an interrupt handler and not the scheduler), and we
are not inside a system call (we will come back to that), then that user is indeed
the one supposed to be running, according to the scheduling policy. The latter is
expressed by the fact that the scheduling policy would choose the running user
if re-run with the current values of events E and of the runnable set R.

The condition of not being in a system call is because, as explained in §3,
preemption is turned off during system calls, meaning that any asynchronous
request for the scheduler is delayed until the system call finishes running. There-
fore, when the currently active task is a user, but is inside a system call, it might
not be of highest priority. However, as soon as the system call is finished, the
execution must not go back to that user but must instead immediately call the
scheduler. The invariant should, therefore, only be checked outside of system
calls. Being outside a system call is defined by the asynchronous scheduler being
enabled. 8 The third premise represents the specific situation where preemption
is turned back on, but the request for asynchronous scheduling is still on, waiting
for the hardware to do the switch (as explained in §3). The execution only goes
back to the user when this asynchronous scheduling request has been handled.

Now we describe how we prove (1). We use lemma (4), and for this we create
a suitable complete annotation of eChronos sys sufficient to prove the invariant
scheduler invariant . The details of the annotations are not particularly insightful,
but the process of identifying them and incrementally building them is discussed
at the end of this section. The main theorem we prove is:

‖−i ({|scheduler-invariant |} ∩ helper-invs) {|True|} eChronos-sys-ann {|False|} (5)

where eChronos sys ann is the fully annotated program, whose extracted pro-
gram text is eChronos sys, and where helper invs are a set of nine invariants
about eChronos state variables and data structures, required to prove sched-

uler invariant . We prove lemma (5) by applying the compositionality lemma. We
first prove the scheduler invariant assuming all the helper invariants:

helper-invs ‖−i {|scheduler-invariant |} {|True|} eChronos-sys-ann {|False|} (6)

We then prove each helper invariant independently (and this can be done by
different people, increasing efficiency). These invariants reveal much about the
data structures but do not represent a high level correctness property of the

8 Disabling the scheduler is one of the functions that the eChronos OS does not export,
to keep control of latency, as mentioned in §1.

eChronos OS . We omit their definitions for space reasons (they are available
online [1]), and just give two representative examples:

last-stack-inv x ≡ last (AT x # ATStack x) ∈ U
ghostP-inv x ≡ ghostP x −→ AT x ∈ I ∪ {svca, svcs}

The first invariant describes the allowed shape of the stack, namely that its
last element is always a user task. It is representative of the invariants about
the data structures. The second invariant is representative of the need for ghost
variables to express where certain programs are in their execution. Here ghostP is
a ghost flag that represents the fact that the asynchronous scheduler is running.
The invariant ghostP inv ensures that ghostP cannot be set if the active task
is a user application. It is needed in the proofs of interference-freedom of user
applications’ assertions: it tells us that the asynchronous scheduler instructions
cannot violate them as they cannot be running.

For each of the nine helper invariants, we prove that it is preserved by
eChronos sys ann. Some of them rely on others so we reuse the compositionality
lemma for these.

We proved all of these helper lemmas along with lemma (6) in an iterative
process to discover the required annotations. Roughly, we start with minimal
annotations, and run the oghoare tactic to generate the proof obligation for local
correctness and interference-freedom. We apply the techniques discussed in §4.3
to reduce the number of subgoals by removing duplication and automatically
discharging as many as possible. We are then left with a manageable set of
subgoals, where we can identify which assertion in the program is being proved,
and can start augmenting assertions as required to prove these subgoals.

4.3 Proof-engineering considerations

The oghoare proof tactic, offered in the Isabelle distribution and derived from [20],
is the VCG used for decomposing an annotated program into subgoals. Each of
these goals is ultimately either a judgement that the precondition for each pro-
gram step is sufficient to demonstrate its postcondition or that a given annotation
is not interfered with by anything else running in parallel.

The tactic is defined as a mutually recursive function that decomposes pro-
gram sequencing, program (user-defined) annotations, and parallel composition.
The provided implementation of this tactic results in a quadratic explosion of
proof obligations: a ∼200 line parallel program takes oghoare ∼90 seconds to
generate ∼3, 000 subgoals.

Rather than solve each of these goals by hand, we chose to write a single
custom tactic which was powerful enough to solve all of them. Here we lever-
aged Isabelle’s existing proof automation and parallelisation infrastructure [17].
With some instrumentation and custom lemmas, Isabelle’s simplifier [18, §3]
can discharge almost all of the subgoals produced from oghoare. Isabelle’s pro-
vided PARALLEL GOALS tactical allows us to apply our custom tactic to all
subgoals simultaneously in parallel, resulting in a significant reduction in over-
all proof processing time. Despite this infrastructure, however, these ∼3, 000

subgoals can still take over an hour to prove. This is impractical from a proof
engineering perspective, as this proof needs to be re-run every time the tactic
is adjusted or the program annotations are changed. This prompted the de-
velopment of several proof engineering methodologies that, although generally
applicable, were instrumental in the completion of this proof.

Subgoal deduplication and memoization An initial investigation revealed
that many of the proof obligations produced by oghoare were identical. Isabelle’s
provided distinct subgoals tactic can remove duplicate subgoals, but takes over
30 seconds to complete on 3, 000 subgoals. We found that we could instead store
proof obligations as goal hypotheses as they are produced, which are efficiently
de-duplicated by Isabelle’s proof kernel. This adds negligible overhead, and re-
sults in approximately a 3-fold reduction in the total number of proof obligations.

This large number of duplicate subgoals is a consequence of having many
identical program annotations. The oghoare tactic recurses on the syntax of the
annotated program, generating non-interference verification conditions for each
annotation. Rather than complicate the implementation of oghoare, we chose to
simply de-duplicate these proof obligations as they are produced.

Although this de-duplication reduces the total time required to finish the
proof, it still indicates that the oghoare tactic is doing redundant computation
and that the observed ∼90 second overhead could be reduced. To address this,
we developed a new tactical for memoization, SUBGOAL CACHE, which caches
the result of applying a given tactic to the current subgoal. When the tactic is
subsequently invoked again, the cache is consulted to determine if it contains a
previously-computed result for the current subgoal. On a cache hit, the stored
result is simply applied rather than having the tactic re-compute it. Isabelle’s
LCF-style proof kernel guarantees that such a cache is sound, as each cached
result is a previously-checked subgoal that was produced by the kernel.

We applied SUBGOAL CACHE to each of the mutually recursive tactics
that oghoare comprises. Including subgoal de-duplication, this change reduces
the running time of oghoare from ∼90 seconds to ∼5 seconds (on a ∼200 line
program), without requiring any change to the underlying algorithm.

Subgoal proof skipping Even once these ∼3, 000 subgoals have been de-
duplicated down to ∼1, 000 distinct subgoals, discharging them all can take
between 5 and 30 minutes, depending on the particular annotations. The devel-
opment strategy was to run the simplifier on all the subgoals and then analyse
those that remained unsolved. Each iteration required adding additional pro-
gram annotations or providing the simplifier with additional lemmas in order to
discharge more subgoals. This would then require waiting for up to 30 minutes
again to see if the change was successful.

To save time, we added another tactical, PARALLEL GOALS SKIP, which
builds on Isabelle’s skip proofs mode and PARALLEL GOALS tactical. This
tactical is equivalent to the existing PARALLEL GOALS, but records which
subgoals were successfully discharged as global state data. This global record

can then be accessed if the tactic is re-executed in Isabelle/jEdit (after, for
example, going back and adding another annotation to the function). When
re-executing the tactic, subgoals that were previously discharged are instead
simply skipped and assumed solved. In practice, this reduces the effective itera-
tion time from minutes to seconds, depending on the significance of the change.
When the proof is complete, PARALLEL GOALS SKIP is then replaced with
PARALLEL GOALS in order to avoid skipping proofs and guarantee soundness.

Together these methodologies make this approach far more tractable and
scalable than was previously thought possible.

5 Related work

We discuss models of interrupts, verification of operating systems, models of
real-world systems with concurrency, and automation and mechanisation of OG.

The closest work to ours formalises interrupts explicitly [9,13,12], using “own-
ership” to reason about resource sharing. That provides verification modularity,
but the run-time discipline it induces limits the effective concurrency unaccept-
ably for a real-time system where low latency is paramount. Indeed, they assume
that interrupts are disabled when data is shared and during scheduling and con-
text switching; we do not. They also do not support nested interrupts, although
some [9] do suggest how they could. However, one [12] does support multicore.

Other works in OS verification, less closely related, either do not model in-
terrupts, or target systems where OS code runs with interrupts disabled. Close
to the eChronos OS is FreeRTOS [2], a real-time OS for embedded micro-
controllers. Its verification has been the target of several projects: in [7,10,6],
the focus of the verification is on the scheduling policy itself (picking the next
task), or on the correct handling of the data-structure lists and tasks by the
scheduler. While FreeRTOS runs with interrupts mostly enabled, interrupt han-
dling is not modelled in these works, nor is context-switching. That work is
complementary to ours, where we leave the policy generic. In [5], the authors
target progress properties (absence of data-race and deadlock) of their proposed
multicore version of FreeRTOS. Again, this is orthogonal to our focus on correct-
ness. Another embedded real-time OS that has been verified [14] is used in the
OSEK/VDX automotive standard. It has been model-checked in CSP, and the
interleaving model has some similarities with ours, where tasks are in parallel
composition with the scheduler. But again, interrupts are out of scope.

In OS verification generally, existing, larger OS -es that are formally veri-
fied [16,21], run with interrupts disabled throughout the executions of system
calls from applications, making those calls’ executions sequential.

Finally, a notable verification effort outside the pure OS world is on-the-fly
garbage collection (GC) in a relaxed memory model [11]. They too chose the
rigour of Isabelle/HOL, and used a system-wide invariant. Concurrency control
is via message passing, while the eChronos OS uses shared variables.

A GC is also the target of the main existing use of formalised and mechanised
Owicki-Gries. Prensa, the author of the OG formalisation [20] in Isabelle/HOL,

on which our work is based, used her framework to verify a simple GC algorithm.
In terms of scale, Prensa’s model contains only two threads in parallel, one
of which contains only 2–3 instructions: this generates only ∼100 verification
conditions. Our proof effort generates ∼3, 000 VC ’s, and so requires significant
proof engineering [15] to be feasible. Also, Prensa’s work does not extract the
correctness property in a separate, well-identified invariant annotation. Nor does
it allow control of concurrency and interleaving between the parallel processes,
that is, the inclusion of a task-scheduler which is itself subject to verification.

6 Conclusion

Our contribution has been the intersection of three ideas: that modern proof-
automation now makes Owicki-Gries reasoning about concurrency feasible for
much larger programs than before; that OG can be used in a style that allows
reasoning about programs that control and limit their own concurrency; and that
an ideal target to test these ideas is a small, highly interleaved preemptive real-
time operating system. To our knowledge this is the first proof of an OS system
running with interrupts enabled even during scheduling, and allowing nested in-
terrupts. The proof does make assumptions about application code conventions,
as remarked in §1, precisely because the OS is not hardware protected. But
these are statically checkable and reasonable for applications running on a real-
time OS . Our experience in doing this proof should be useful to the wider ITP
community: we can contribute proof-engineering insights for dealing with a huge
amount of goals. Furthermore, our proof of scheduler correctness for a real-time
OS already in commercial use in medical devices has real, practical value.

The work we have done so far sits roughly in the middle of a complete verifi-
cation of an application running on the eChronos OS platform. Above, further
work could provide a verified OS API specification that application program-
mers could use to prove their programs’ correct behavior. Below, we have yet
to prove refinement between the large-grained atomic steps and the low-level
primitives for concurrency, and that the OG model on which our proof is based
accurately captures the behaviour of our target processor. Those last two will
be our next step, as well as continuing to develop proof-engineering techniques
crucially needed for efficient and scalable concurrency software verification.

Acknowledgements The authors would like to thanks Gerwin Klein and Stefan
Götz for their feedback on drafts of this paper. NICTA is funded by the Aus-
tralian Government through the Department of Communications and by the
Australian Research Council through the ICT Centre-of-Excellence Program.

References

1. eChronos model and proofs, https://github.com/echronos/echronos-proofs

2. FreeRTOS, http://www.freertos.org/

3. The eChronos OS, http://echronos.systems

4. Andronick, J., Lewis, C., Morgan, C.: Controlled Owicki-Gries concurrency: Rea-
soning about the preemptible eChronos embedded operating system. In: Workshop
on Models for Formal Analysis of Real Systems (MARS) (2015)

5. Chandrasekaran, P., Kumar, K.B.S., Minz, R.L., D’Souza, D., Meshram, L.: A
multi-core version of FreeRTOS verified for datarace and deadlock freedom. In:
MEMOCODE. pp. 62–71. IEEE (2014)

6. Cheng, S., Woodcock, J., D’Souza, D.: Using formal reasoning on a model of tasks
for FreeRTOS. Formal Aspects of Computing 27(1), 167–192 (2015)

7. Divakaran, S., D’Souza, D., Kushwah, A., Sampath, P., Sridhar, N., Woodcock,
J.: Refinement-based verification of the FreeRTOS scheduler in VCC. In: Butler,
M., Conchon, S., Zadi, F. (eds.) ICFEM. Lecture Notes in Computer Science, vol.
9407, pp. 170–186. Springer (2015)

8. Feijen, W.H.J., van Gasteren, A.J.M.: On a Method of Multiprogramming. Mono-
graphs in Computer Science, Springer (1999)

9. Feng, X., Shao, Z., Guo, Y., Dong, Y.: Certifying low-level programs with hardware
interrupts and preemptive threads. Journal of Automated Reasoning 42(2-4), 301–
347 (2009)

10. Ferreira, J.F., Gherghina, C., He, G., Qin, S., Chin, W.N.: Automated verification
of the FreeRTOS scheduler in HIP/SLEEK. International Journal on Software
Tools for Technology Transfer 16(4), 381–397 (2014)

11. Gammie, P., Hosking, T.A., Engelhardt, K.: Relaxing safely: Verified on-the-fly
garbage collection for x86-TSO. In: Steve Blackburn (ed.) PLDI 2015: the 36th
annual ACM SIGPLAN conference on Programming Language Design and Imple-
mentation. p. 11. ACM (2015)

12. Gotsman, A., Yang, H.: Modular verification of preemptive OS kernels. J. Funct.
Program. 23(4), 452–514 (2013)

13. Guo, Y., Zhang, H.: Verifying preemptive kernel code with preemption control
support. In: 2014 Theoretical Aspects of Software Engineering Conference, TASE
2014, Changsha, China, September 1-3, 2014. pp. 26–33. IEEE (2014)

14. Huang, Y., Zhao, Y., Zhu, L., Li, Q., Zhu, H., Shi, J.: Modeling and verifying
the code-level OSEK/VDX operating system with CSP. In: Theoretical Aspects of
Software Engineering (TASE). pp. 142–149. IEEE (2011)

15. Klein, G.: Proof engineering considered essential. In: Cliff Jones, Pekka Pihla-
jasaari, Jun Sun (ed.) FM. pp. 16–21. Springer (2014)

16. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Comp.
Syst. 32(1), 2:1–2:70 (2014)

17. Matthews, D.C., Wenzel, M.: Efficient parallel programming in Poly/ML and Is-
abelle/ML. In: Petersen, L., Pontelli, E. (eds.) POPL 2010 WS Declarative Aspects
Multicore Progr. pp. 53–62. ACM (2010)

18. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL — A Proof Assistant for
Higher-Order Logic, LNCS, vol. 2283. Springer (2002)

19. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340 (1976)

20. Prensa Nieto, L.: Verification of parallel programs with the Owicki-Gries and rely-
guarantee methods in Isabelle/HOL. Ph.D. thesis, T.U. München (2002)

21. Yang, J., Hawblitzel, C.: Safe to the last instruction: automated verification of a
type-safe operating system. In: 2010 PLDI. pp. 99–110. ACM (2010)

	 Proof of OS scheduling behavior in the presence of interrupt-induced concurrency

