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1 Labeling Sequential Data

The task of assigning label sequences to a set of observation sequences arises
in many fields, including bioinformatics, computational linguistics and speech
recognition [6, 9, 12]. For example, consider the natural language processing
task of labeling the words in a sentence with their corresponding part-of-speech
(POS) tags. In this task, each word is labeled with a tag indicating its appro-
priate part of speech, resulting in annotated text, such as:

(1) [PRP He] [VBZ reckons] [DT the] [JJ current] [NN account] [NN
deficit] [MD will] [VB narrow] [TO to] [RB only] [# #] [CD 1.8] [CD
billion] [IN in] [NNP September] [. .]

Labeling sentences in this way is a useful preprocessing step for higher natural
language processing tasks: POS tags augment the information contained within
words alone by explicitly indicating some of the structure inherent in language.

One of the most common methods for performing such labeling and segmen-
tation tasks is that of employing hidden Markov models [13] (HMMs) or proba-
bilistic finite-state automata to identify the most likely sequence of labels for the
words in any given sentence. HMMs are a form of generative model, that defines
a joint probability distribution p(X,Y") where X and Y are random variables
respectively ranging over observation sequences and their corresponding label
sequences. In order to define a joint distribution of this nature, generative mod-
els must enumerate all possible observation sequences — a task which, for most
domains, is intractable unless observation elements are represented as isolated
units, independent from the other elements in an observation sequence. More
precisely, the observation element at any given instant in time may only directly
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depend on the state, or label, at that time. This is an appropriate assumption
for a few simple data sets, however most real-world observation sequences are
best represented in terms of multiple interacting features and long-range depen-
dencies between observation elements.

This representation issue is one of the most fundamental problems when
labeling sequential data. Clearly, a model that supports tractable inference is
necessary, however a model that represents the data without making unwar-
ranted independence assumptions is also desirable. One way of satisfying both
these criteria is to use a model that defines a conditional probability p(Y |x) over
label sequences given a particular observation sequence x, rather than a joint
distribution over both label and observation sequences. Conditional models are
used to label a novel observation sequence x, by selecting the label sequence y,
that maximizes the conditional probability p(y,|z+). The conditional nature of
such models means that no effort is wasted on modeling the observations, and
one is free from having to make unwarranted independence assumptions about
these sequences; arbitrary attributes of the observation data may be captured
by the model, without the modeler having to worry about how these attributes
are related.

Conditional random fields [8] (CRFs) are a probabilistic framework for label-
ing and segmenting sequential data, based on the conditional approach described
in the previous paragraph. A CRF is a form of undirected graphical model that
defines a single log-linear distribution over label sequences given a particular
observation sequence. The primary advantage of CRFs over hidden Markov
models is their conditional nature, resulting in the relaxation of the indepen-
dence assumptions required by HMMs in order to ensure tractable inference.
Additionally, CRFs avoid the label bias problem [8], a weakness exhibited by
maximum entropy Markov models [9] (MEMMSs) and other conditional Markov
models based on directed graphical models. CRFs outperform both MEMMs
and HMMs on a number of real-world sequence labeling tasks [8, 11, 15].

2 Undirected Graphical Models

A conditional random field may be viewed as an undirected graphical model,
or Markov random field [3], globally conditioned on X, the random variable
representing observation sequences. Formally, we define G = (V, E) to be an
undirected graph such that there is a node v € V' corresponding to each of the
random variables representing an element Y, of Y. If each random variable
Y, obeys the Markov property with respect to G, then (Y, X) is a conditional
random field. In theory the structure of graph G may be arbitrary, provided
it represents the conditional independencies in the label sequences being mod-
eled. However, when modeling sequences, the simplest and most common graph
structure encountered is that in which the nodes corresponding to elements of



Y form a simple first-order chain, as illustrated in Figure 1.

Y1 Yo Y3 Yn-1 Yn

X =X1,....Xn-1,Xn

Figure 1: Graphical structure of a chain-structured CRFs for sequences. The
variables corresponding to unshaded nodes are not generated by the model.

2.1 Potential Functions

The graphical structure of a conditional random field may be used to factorize
the joint distribution over elements Y, of Y into a normalized product of strictly
positive, real-valued potential functions, derived from the notion of conditional
independence.! Each potential function operates on a subset of the random
variables represented by vertices in G. According to the definition of conditional
independence for undirected graphical models, the absence of an edge between
two vertices in GG implies that the random variables represented by these vertices
are conditionally independent given all other random variables in the model.
The potential functions must therefore ensure that it is possible to factorize the
joint probability such that conditionally independent random variables do not
appear in the same potential function. The easiest way to fulfill this requirement
is to require each potential function to operate on a set of random variables
whose corresponding vertices form a maximal clique within G. This ensures
that no potential function refers to any pair of random variables whose vertices
are not directly connected and, if two vertices appear together in a clique this
relationship is made explicit. In the case of a chain-structured CRF, such as that
depicted in Figure 1, each potential function will operate on pairs of adjacent
label variables Y; and Y;4;.

It is worth noting that an isolated potential function does not have a direct
probabilistic interpretation, but instead represents constraints on the configu-
rations of the random variables on which the function is defined. This in turn
affects the probability of global configurations — a global configuration with a
high probability is likely to have satisfied more of these constraints than a global
configuration with a low probability.

1The product of a set of strictly positive, real-valued functions is not guaranteed to satisfy
the axioms of probability. A normalization factor is therefore introduced to ensure that the
product of potential functions is a valid probability distribution over the random variables
represented by vertices in G.



3 Conditional Random Fields

Lafferty et al. [8] define the the probability of a particular label sequence y
given observation sequence x to be a normalized product of potential functions,
each of the form

exp (Y Nt (i1, yi . 4) + Y sk (yi, @,0)), (2)
j k

J

where ¢;(yi—1,Yi,, 1) is a transition feature function of the entire observation
sequence and the labels at positions ¢ and ¢ — 1 in the label sequence; s (y;, x, )
is a state feature function of the label at position ¢ and the observation sequence;
and \; and p are parameters to be estimated from training data.

When defining feature functions, we construct a set of real-valued features
b(x, i) of the observation to expresses some characteristic of the empirical dis-
tribution of the training data that should also hold of the model distribution.
An example of such a feature is

b(x,i) =

1 if the observation at position 7 is the word “September”
0 otherwise.

Each feature function takes on the value of one of these real-valued observation
features b(x, %) if the current state (in the case of a state function) or previous
and current states (in the case of a transition function) take on particular val-
ues. All feature functions are therefore real-valued. For example, consider the
following transition function:

b(.’l),l) if Yi—1 = IN and Yi = NNP
0 otherwise.

tj(yi—layia :B’Z) = {

In the remainder of this report, notation is simplified by writing

S(yi7 x, Z) = S(yi—l, Yi, T, 7’)

and
n

F](yam) = ij(yiflvyiamai)a

i=1
where each f;(yi—1, s, x, 1) is either a state function s(y;—1,ys, &, ?) or a transi-

tion function ¢(y;—1,yi,x,4). This allows the probability of a label sequence y
given an observation sequence x to be written as

Pyl ) = i exp (S0, w.2). ®)

Z(x) is a normalization factor.



4 Maximum Entropy

The form of a CRF, as given in (3), is heavily motivated by the principle of
maximum entropy — a framework for estimating probability distributions from
a set of training data. Entropy of a probability distribution [16] is a measure of
uncertainty and is maximized when the distribution in question is as uniform as
possible. The principle of maximum entropy asserts that the only probability
distribution that can justifiably be constructed from incomplete information,
such as finite training data, is that which has maximum entropy subject to a
set of constraints representing the information available. Any other distribution
will involve unwarranted assumptions. [7]

If the information encapsulated within training data is represented using
a set of feature functions such as those described in the previous section, the
maximum entropy model distribution is that which is as uniform as possible
while ensuring that the expectation of each feature function with respect to
the empirical distribution of the training data equals the expected value of
that feature function with respect to the model distribution. Identifying this
distribution is a constrained optimization problem that can be shown [2, 10, 14]
to be satisfied by (3).

5 Maximum Likelihood Parameter Inference

Assuming the training data {(z®), y*))} are independently and identically dis-
tributed, the product of (3) over all training sequences, as a function of the
parameters X, is known as the likelihood, denoted by p({y®}[{z™ 1, X). Max-
imum likelihood training chooses parameter values such that the logarithm of
the likelihood, known as the log-likelihood, is maximized. For a CRF, the log-
likelihood is given by

E(A):Zlog (k) Z)\F (y®), ()
k

This function is concave, guaranteeing convergence to the global maximum.

Differentiating the log-likelihood with respect to parameter A; gives
OL(N)
Y Esv x) [F5(Y, X)) -
Z D(Y |29 A) {Fj (Y, w(k))} ,

where p(Y, X) is the empirical distribution of training data and E,[-] denotes
expectation with respect to distribution p. Note that setting this derivative to



zero yields the maximum entropy model constraint: The expectation of each
feature with respect to the model distribution is equal to the expected value
under the empirical distribution of the training data.

It is not possible to analytically determine the parameter values that maxi-
mize the log-likelihood — setting the gradient to zero and solving for A does not
always yield a closed form solution. Instead, maximum likelihood parameters
must be identified using an iterative technique such as iterative scaling [5, 1, 10]
or gradient-based methods [15, 17].

6 CRF Probability as Matrix Computations

For a chain-structured CRF in which each label sequence is augmented by start
and end states, yg and y,+1, with labels start and end respectively, the prob-
ability p(y|x, A) of label sequence y given an observation sequence & may be
efficiently computed using matrices.

Letting ) be the alphabet from which labels are drawn and y and y’ be
labels drawn from this alphabet, we define a set of n + 1 matrices {M;(x)|i =
1,...,n+ 1}, where each M;(x) is a |V x Y| matrix with elements of the form

Mi(y/a ylm) = exp (Z )‘jfj (yla Y, x, Z))

J

The unnormalized probability of label sequence y given observation sequence x
may be written as the product of the appropriate elements of the n+ 1 matrices
for that pair of sequences:

1 n+1
p(yle, A) = (@) 11 Mi(yir, il ).

=1

Similarly, the normalization factor Z(x) for observation sequence x, may be
computed from the set of M;(x) matrices using closed semirings, an algebraic
structure that provides a general framework for solving path problems in graphs.
Omitting details, Z(x) is given by the (start,end) entry of the product of all
n + 1 M;(x) matrices:

n+1
Z(@) = [_H Mi(x) (4)

‘| start,end



7 Dynamic Programming

In order to identify the maximum-likelihood parameter values — irrespective
of whether iterative scaling or gradient-based methods are used — it must be
possible to efficiently compute the expectation of each feature function with
respect to the CRF model distribution for every observation sequence z(*) in
the training data, given by

Ep(Y|m<k>,>\) |:Fj(Y7 ﬂf(k))] = ZP(Y = y|m(k),>\)Fj(y, ﬂ’f(k))- (5)
Yy

Performing such calculations in a naive fashion is intractable due to the required
sum over label sequences: If observation sequence x*) has n elements, there
are nlY! possible corresponding label sequences. Summing over this number of
terms is prohibitively expensive.

Fortunately, the right-hand side of (5) may be rewritten as

n
S (Vi =y, Y = ylz® N £y, 2R, (6)
i=1y"y

eliminating the need to sum over n!Yl sequences. Furthermore, a dynamic

programming method, similar to the forward-backward algorithm for hidden
Markov models, may be used to calculate p(Yi_; = ¢/, Y; = y|x®) X).

Defining forward and backward vectors — «; (@) and 3;(x) respectively — by
the base cases

ao(ylz) =

1 if y = start
0 otherwise

and
1 if y=stop

0 otherwise

ﬁn+1(y|$) = {

and the recurrence relations

ai(w)T = ai_l(w)TMi(:B)
and

Bi(x) = Mit1(x)Bit1(x),

the probability of Y; and Y;_; taking on labels 3’ and y given observation se-
quence *) may be written as

ai—1(y'|2) M;i(y', y|x) B (y|x) .

Y1 =9, Y =ylz® A) =
p( 1 v, ylm ) ) Z(IE)

Z(x) is given by the (start,stop) entry of the product of all n 4+ 1 M;(x) ma-
trices as in (4). Substituting this expression into (6) yields an efficient dynamic
programming method for computing feature expectations.
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