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Abstract

The architectureof a softwaresystemclassifiests componentsnto subsystemsanddescribeghe relationships
betweenthe subsystemsThe information containedin suchan abstractionis of immensesignificancein various
softwaremaintenancectivities. Thereis considerablénterestin extractingthe architectureof a softwaresystem
from its sourcecode,andhencein techniqueshat classifythe component®f a programinto subsystemsTechniques
for classifying subsystemgpresentedn the literature differ in the type of componentghey placein a subsystem
andthe informationthey useto identify relatedcomponentsHowever,thesetechniquesavebeenpresentedising
differentterminologyandsymbols,makingit harderto performcomparativeanalysesThis paperpresentsa unified
framework for expressingtechniquesof classifying subsystem®f a software system. The framework consists
of a consistentset of terminology, notation, and symbolsthat may be usedto describethe input, output, and
processingerformedby thesetechniques.Using this framework severalsubsystentlassificationtechniqueshave
beenreformulated.This reformulationmakesit easierto comparethesetechniquesa first steptowardsevaluating
their relative effectiveness.

1 Introduction

A softwaresystemis typically comprisedof severalinterconnecte@domponentssuchasproceduresfunctions,
global variables,types,files, documentationgtc. An architectureof a software systemclassifiesits components
into subsystemand describesnteractionsbetweenthesesubsystem$l6, 33]. It providesa high level abstraction
of the organizationof a systemandcanbe usedto addresghe systemlevel propertiessuchascapacity throughput,
consistency and componentcapability [38].

Unlessthe architectureof a systemis documentedwhich is very rare, its maintainerhasto infer its overall
structuralorganizationfrom its sourcecode. However,the architectureof a softwaresystemis not usuallyapparent
from its sourcecode. As a resultthereis considerablénterestin developingautomatedsupportfor recoveringthe
architectureof a softwaresystemfrom its sourcecode.

The crucial problemin recoveringthe architectureof a software systemis classifyingits componentsnto
subsystemsThe interactionsbetweensubsystemsay be inferredfrom the interactionbetweentheir membercom-
ponents.The subsystemsnust, of course,containcomponentghat arerelated. Different subsystentlassfications
may be createdby grouping componentsdasedon different types of relationships. For instance,syntactic-units
suchasfunctions,proceduresyariables,andtypesmay be organizedso that units belongingto the same*‘module’”

Theterm “module” is usedin this paperin the senseusedby Parnaq30] in the contextof abstractdatatyping andinformation hiding.



are placedin the samesubsystenil, 6, 21, 27, 28, 31, 36]. Alternatively, one may place syntactic-unitsrelated
to the samefault in the samesubsystenf17, 37]. A subsystenmay also consistof collection-units—files and
modules—wheraunits affected by the samechangerequestare groupedtogether[23]. One may also classify a
collection of completeprogramsinto subsystemgepresentingsoftware libraries [22]. Subsystemsnay also be
comprisedof both syntacticand collection units [11, 25].

Researclin subsystentlassificationtechniquegSCT),asmay be evidentfrom the abovedescriptionhasbeen
influencedby different applicationneeds,and has often progressedn isolation of the knowledgeof others. This
is reflectedby the fact that SCTs have beenpresentedising very differentterminology and symbols. As a result
it is difficult to compareand contrastvarioustechniques.SCTs intrinsically dependupon heuristicswhich can be
improvedby borrowingideasfrom other SCTs. Suchan exchangeof ideasis currently limited dueto the lack of
a unified framework within which SCTs may be described. A unified frameworkis also necessaryto developa
soundfoundationfor what may be consideredas a collection of ad hoctools. This paperattemptsto provide just
that. The frameworkwe developallows the comparisorof the inputs, processingand outputsof variousSCTs. It
makesit easyto createnew SCTs by mixing the strategiesusedin different SCTs and alsoenableghe creationof
meta-SCF, i.e., SCTs parameterizeaver the choice of strategies.

Therestof the paperis organizedasfollows. Section2 placesresearchin SCTin the contextof otherresearch
efforts. Section3 presentour frameworkfor expressingSCTs usinga consistensetof notation,terminology,and
symbols. Severalof the known SCTs are reformulatedin Section4 using our framework. As a corollary, our
reformulateddescriptionof a SCT may be significantly different from its descriptionin the original paper. We do
not attemptto highlight the differencesand leaveit for the readerto find the correspondencéor transformation)
betweenour descriptionsandthatin the original works. Section5 summarizeghe benefitsof a unified framework
using exampledrom the contextof the SCTs reformulated.Section6 concludeghe paperwith someobservations
aboutwhy theseheuristictechniqueanay be successfuin identifying modulesin legacycode.

2 Related works

The phrase“software architecturé hasbeenusedby researchersnd practitionersfor quite sometimenow,
althoughwithout a formal definition. The emeging field of softwarearchitecturesims at formalizing the notion
of architecturesand developinglanguagesto specify architectures. In addition to describingthe structureand
topology of a system,these architecturespecificationlanguageswill addresssystemlevel propertiessuch as
capacity throughput,consistencyand componentapability[38]. Subsystentlassificationtechniquesnay be used
to automaticallyextractthe architecturef existing systemsandto documenthemusingarchitecturespecification
languages.

The problemof classifyingthe subsystems softwarebelongsto the broaderclassof problemsof recovering
the designof a softwaresystem.A comprehensivasurveyof otherdesignrecoverytechniquess beyondthe scope
of this work, andis unwarrantedinceit may befound elsewherd5, 10, 41]. Subsystentlassificatioris essentially
a graphpartitioning problem. Hence,it hasmuchin commonwith VLSI layout problems. Someof the SCTs [6,
23] havein fact beeninfluencedby algorithmsfor VLSI layout [13, 14].

Researchin subsystentlassificationis also of significanceto researchin reengineeringproceduralprograms
into object-orienteghrogramg18, 40]. Suchareengineeringaskimplicitly requireddentifying a setof classestheir
instancevariables,and their methods,a requirementanalogougo recoveringthe modular subsystems Currently
the identificationof objectsis doneby analyzinga naturallanguagedescriptionof the systemusing object-oriented
analysismethodsdesignedfor forward engineering[12]. Object identification by processinga natural language
is inherentlynon-automatablelt may be automatedr semi-automatedising SCTs instead[28]. Going one step
further then, SCTs may be usedto identify objectsduring forward engineeringif the designor requirementsare
statedin a notationsuitablefor machineanalysis.lIt is thereforenot a coincidencehata recentlyproposedechnique
for deriving modulardesignsfrom formal specfication [8] bearsa resemblancéo someof the SCTs discussedn
this paper.

Softwareerrorsoccurwhena maintenanc@rogrammer’anodelof the architectureof a softwaresystemdiffers
from the actualarchitecture A tool hasrecentlybeenproposedo reducetheseerrorsby validatinga programmer’s



model[26]. Usingthistool amaintenanc@rogrammela) postulates setof subsystemsf aprogram,(b) postulates
thecomponentshatbelongto thatsubsystemand(c) postulateselationshipdbetweerthe subsystemsThetool then
extractsthe actualrelationshipdetweerthe subsystemby reflectingthe relationshipdetweerthe component®nto
the postulatedsubsystemsThe similarities and the differencesbetweenthe postulatedrelationshipsand extracted
relationshipshighlight the discrepancie the programmer’amodelof the system.This approachmay be extended
further by using SCTs to extractsubsystentlassificationsand comparingthe congruencéetweenthe extractedand
the postulatedsubsystentlassificationsusing a congruenceametric [20].

3 A unified framework for subsystem classification techniques

In this sectionwe developa unified framework—terminologynotation,and symbols—to describethe inputs,
outputs,and processingperformedby SCTs. This frameworkis usedin the next sectionto describeseveralSCTs.

3.1 Interconnectionrelations: Inputs to SCT

In order to recoverthe subsystenclassificationof a program,a SCT takesas input someinterconnection
relations[32] betweenthe componentof program. A programmay have a variety of componentspotentially
relatedby severaldifferentinterconnectiorrelations. Theserelationsmay be representeds directedgraphswith
nodesrepresentingprogramcomponent&nd edgesdenotinginterconnectiondetweenthesecomponents(An edge
emanategrom a source node andterminateson a target node.) Differentinterconnectiongraphsrelate different
programcomponentsWe introducethe following genericsymbolsto categorizeprogramcomponentsisedin an
interconnectiongraph:

» P: the setof all the sourcenodes,

* Q: the setof all the target nodes,

» R: the setof programcomponentdaggedon edges,and

* § = PUQUTR: the setof all the programcomponentsn a graph.

Notice thatthesesetsaregenericin thattheir memberships definedwith respecto a giveninterconnectionrelation.

The component®f a programmay be of severaldifferent“types,” suchasfunction, variable,procedurefile,
documentgetc. Insteadof creatingdifferentsetsof componentdor eachof thesetypes,we assumehat eachunique
softwarecomponenis representedby a uniqueabstractentity. The “type” (andalsothe “name”) of a component
is availableas an attributeof this entity. This makesour setshomogenousvithout any loss of generality.

Interconnectiorrelationsprovide the foundationfor softwaremaintenanceools, in general[7, 9, 35]. While
there exist severalinterconnectionrelations (or graphs),those used by the SCTs studiedin this papercan be
classifiedinto three categories,as follows.

Definition: An interconnectiongraph whose edgesare taggedwith numeric valuesis called a weightedcross-
refeencegraph (WXG). A numericvalue in thesegraphsdenotethe strengthof the interconnectiorbetweenthe
nodes(or componentstonnectedoy the correspondingedge.

Definition: An interconnectiongraphwhoseedgesare taggedwith a programcomponentis called a component
flow graph (CFG). An edgein a CFG representsa producer/consumellype relationshipbetweenthe sourceand
target node.

Definition: An interconnectiongraph whose edgesdo not have any tagsis called a componentross-efeence
graph (CXG).

The CXGs, WXGs, and CFGsusedby the SCTs describedn this paperare summarizedn Tables1, 2, and
3, respectively. The symbolsz, 5, and ¢, respectively,denotethe threetypesof graphs. Thesesymbolsare
subscriptedo identify a specfic graph. The tablesalso describethe relation representedy eachinterconnection
graph and their correspondingsets?, @, and R.



Table1 Summaryof componentcross-referencgraphsusedby SCTs studiedin this
paper. SeeSection3.1 for descriptionof italicized phrases.

Type of components
CXG .
- source target Relation expressedby 7 (s1, s3)
P Q
Tsu procedure synta_lct|c syntacticunit s, appearssomewherén the declarationof procedures;
unit
Tga procedure| global procedures; assigndo (i.e., modffies the value of) global variable s»
variable
Tgu . . procedures; uses(without modifying) global variabless
Tyr . . procedures; refersto (i.e., assighsor uses)global variables, directly
(i.e., without aliasing)
Tgi . . procedures; refersto (i.e., assignsor uses)global variables, either
direcly or indirectly (dueto aliasingwith a formal parameter)
T " procedure| procedures; calls proceduress
Tti . type procedures; hasa direct or downwad refelenceto type s» in its
interface(i.e., type of formal parameterandreturntype).
T . . procedures; hasa local variableof type s
Tig . . procedures; refersto a global variableof type s,
Tt type . type s; is usedin definingtype s
i.e., type sy is a sub-partof type s, or equivalentlytype s» is
super-partof type s;
Tuse statement| variable | block s; usesvariabless
block
Tset . . block s; modifiesvariabless
Tef . . block s; modifiesvariabless beforeusingit.
Tlive " " variables, is live T atthe endof block s;.
Td file syntactic | file s; containsa declarationof syntactic-unitss
unit
Ty " file file s; includesfile s,

T: A variableis live aftera block if it is used,beforebeing modified,in someotherblock [3].

3.1.1 Notation used Let s;, s2, andz represenfprogramcomponents.We usethe notation(s;,s2) asa
shorthandfor (s, s2) € ¢(w), wheree(w) givesthe setof edgesin the CXG #. The notations(s1, s2) givesthe
weightof the edgefrom component; to componens, in the WXG 7, wheren(s;, s2) = 0 impliesthatthereis no
suchedge.Analogously, (s, z, s2) givesa booleanvalue denotingthe absencer presencef an edgewith tag =
from components; to components, in the CFG ¢, i.e., component: flows from components; to componentss.

The Booleanvalue true is mappedto 1 and the value falseto 0. Conversely,all positive naturalnumbers
map to true and 0 to false This mappingbetweenthe booleanand the naturalnumberdomainspermitsthe use
of predicatesin arithmetic expressionsand vice-versa.



Table2 Summaryof weightedcross-referencgraphsusedby SCTs studiedin this paper.

Type of components
WXG .
] source target Relation expressedby 7(s1, s2)
P Q
N program lexical | Numberof timeslexical affinity s, appearsn documentatiorof s,
doc. affinity*
i function type Numberof timesprocedures; hasa direct or upwardreferenceto type
S1

¥: Pairsof wordsarelexical affinity if they appearwithin £5 word distance[22].

Table 3 Summaryof CFGsusedby SCTs studiedin this paper.

Type of components
CFG .
W source tag target Meaning of ¢/(s1, z, s2)
P R Q
Ygr procedure global procedure | procedures; modifiesvariablez,
variable procedures, usesvariablez, and
the definition of z in s; reachess,
Yge " " " procedures; modifiesvariablez,
procedures, usesvariablez, and
thereis an executablepath from procedures; to
procedures, (thoughthe definitionfrom s; doesnot
reachthe usein s;)
(P " " " procedures; modifiesvariablez and
procedures, usesvariablez,
i.e., Tgq(s1, ) A Tgyu(s2,x).
(thereneednot be any executionpath from procedure
s to proceduress)
Yp file syntactic file Syntactic-unit(suchasa variable,function, type) = is
units declaredn file s; andusedin file s

A ' is usedasa shorthandor an existentiallyquantifiedsymbol,with each’_’ in anexpressionrepresenting
a different existentially quantfied symbol. The expressiony(_, B, ) is shorthandfor {4(X,B,Y) : 3X,Y .
»(X,B,Y)}.

Notice the differencebetweenthe two usagesof ¢(X, B,Y) above. In the first usageit is an unevaluated
term. But in the secondusageit is evaluatedasa predicatethattestswhethercomponentB flows from component
X to componentY. The differenceis significantsincey(_, B, ) constructsa set. If for two pairsof X andY,
¥(X, B,Y) evaluatedo true, therewould be two entriesin the setif the termis not evaluatedout only one entry
(true) if thetermis evaluated.In a graph-theoretiénterpretatiomy(_, B, _) is the subgraphnducedby edgeswith
tag B in graph .

This ‘' notationmay similarly be extendedtio be usedas agumentto = and»n and usedwith setoperators,
suchas| | (length), U (union), N (intersection),and — (setdifference). A _ expressionrmay also be usedwith
arithmeticoperatorssuchasX. In this casethe elementsof the set are evaluatedand the resulting valuesadded.
Thus,Xn(A,) givesthe sumof the weightsof all the edgesin WXG n emanatingfrom componentA.

SomeSCTsinputa CFGbut actuallyusethe numberof elementglowing from onenodeto another jnformation
typically encodedusinga WXG. Insteadof defininga new WXG we defineandusea function A that transforms



aCFGinto aCXG,ie. A : CFG — WXG.

AY(s1, s2) = (51, -, 52)|

Our useof this transformationdoesnot necessarilyimply that any implementationof that SCT will actually
require that the transformationbe computed. Using a transformationhelpsin differentiatingthe type of relation
inputby a SCTandthe mannerin whichit is used. Theknowledgethata SCT actuallyusesa WXG butis described
to input a CFG is preservedn our reformulationof the SCTs.

3.1.2 On global variables and types Figures1, 2, and 3 define the majority of the interconnection
relationsunambiguously exceptthoseinvolving global variablesand types. What constitutesa global variable
or a type and what it meansto use, modify, or referencesuch a componentdiffers betweenSCTs. In several
instancesthesephrasesand terms have only beendefinedloosely, most often by examples. In the absenceof

precisedefinitionsin an original work, any precisereformulationof it hasthe potential of misrepresentinghe

work. Hence,we do not attemptto give precisemeaningsto thesephrasesbut insteadpresenta summaryof

their usagebelow.

The definition of a “global variable”tendsto beinfluencedby the programminganguagehe SCT is designed
for and/or experimentedwith. In FORTRAN a variable appearingin a COMMON block is global [28]. For
C, someSCTs definevariables“extern ,” i.e., externalto a function, to be global [27]. Othersconsiderlocal
variablesthat are defined as“static ,” i.e., within the local scopeof a function but with global lifetime, asglobal

variablestoo [21].

The definition of what constituteghe useor modificationof a variablealsobecomedifficult whena program
containgpointers. Sincethe SCTs we describedo not makethesetermsany moreprecisewe refrainfrom attempting
a betterddfinition. A variableis saidto be “referenced”if it is “used” or “modified.”

While the SCTs usethe term “global variablé€ within the parametersf the conventionallyacceptedusagethe
sameis not true aboutthe terms“type.” Considerthe following code fragmentin C:
typedef Storage char[];
struct  Stack {
int  sp;
Storage  buffer;
PSS
Accordingto the conventionaldefinition, this codefragmentintroducesthe typesStorage and Stack .
However,Pateletal. alsoconsiderafield of arecord(i.e.,astruct in C) to beatype[31]. Thus,according
to Pateletal. the abovefragmentalso introducestypesStack.sp  and Stack.buffer

Definition: A type (say z) is a sub-partof anothertype (sayy) if z is usedin definingy. Conversely,type y
is saidto be a super-partof z. The sub-partand super-partrelationsare transitive, asymmetric,and irreflexive,
and hencedefine a partial order [31].

In the aboveexample,by conventionaldefinition, Storage andint are sub-partsof Stack . However,
accordingto Patelet al.’s definition, Storage.buffer and Storage.sp  too are sub-partsof Stack .

Definition: A procedurep directly refeencesa typet if it referencesa variable,say v, of type¢. A procedure
downwad refeencesthe sub-partsof typesit directly references.It upwad refeencesthe super-partof types
it directly references. (The phrases‘upward” and “downward” imply directionsin a tree representatiorof the
sub-partrelation.)

Pateletal.'s SCT usesa WXG 1, that countsthe direct and upwardreferencego typesin a procedure.For
the aboveexample the expressiorS.sp will be countedasa referenceto eachof the typesStack , Stack.sp ,
andint . Ogandoetal. usea CXG ; thatmaintainsthe directanddownwardreferencedo typesin the interface
specificationof a procedurg27]. In this CXG, a formal parameterf type struct  Stack , asin our example,
also defines upwardreferencedo typesint , Storage , andchar .

Pateletal. andOgandoetal. usethetermssub-typeandsuper-typerespectivelyto meansub-partandsuper-
part. We usethe latter termsbecauseahe former havea well acceptedneaningin the contextof type inheritance.



3.1.3 Filtering interconnectiongraphs Most SCTsfilter theinputinterconnectiorgraphsfor “noise’ that
may negativelyinfluencethe subsystemgheyrecover. We considersuchoperationsseparatdrom the computations
performedto createsubsystemsThe filters appliedby variousSCTs may be summarizedasfollows:

1. Removea relation betweena procedureanda type (sayt) if thereexistsa relation betweenthat procedureand
a super-partof type ¢ [21, 27].

2. Remove“utility” componentdrom an interconnectiorgraph. Theseare componentgusually proceduresand

global variables)connectedo severalothercomponent$6, 23]. Functionsandproceduresn anexternallibrary

or in auser-definedibrary aretypical exampleof utility componentsHutchensandBasili alsoconsiderroutines

that“do all their communicatiorvia parameterandreturnvaluesandarealsocalledby morethanoneroutine”

as utility componentq17].

Combine(not remove)utility componentdelongingto a standardibrary into a single componen{25].

Remove(rather,do not include)information pertainingto “loop variables”from the interconnectiorgraph[31].

Removeall lexical affinities whose“resolving power” (seeSection4.1.2)in adocumenis onestandardieviation

abovethe meanresolvingpower of all the lexical affinities in that document22].

6. Removecomponentsonnectedo single componentd36].

ok w

3.2 Properties of a subsystemclassification
The subsystentlassiication recoveredby a SCT may be describedn termsof:

1. the set of programcomponentsncludedin it,
2. its organizationalstructureof its subsystemsand
3. the interpretationassignedto the structure.

Theseissuesare discussedn the rest of this section.

3.2.1 Program componentsincluded in subsystemclassification Let 7 be the set of program
componentdn the subsystemsecoveredby a SCT. Clearly, for any SCT, 7 would be a subsetof the set S,
the setof all programcomponentsisedin the interconnectiorrelationsit inputs. For someSCTs the set7 may be
constrainedurther to P (the setof sourcenodes)or P U Q (the setof sourceandtarget nodes),seeTable 4.

3.2.2 Organizational structur e of a subsystemclassification In the simplestcase,eachsubsystem
may simply be a subsetof the programcomponents Sucha subsystentlassificationis termedflat. If the pairwise
intersectionof all of the subsystemof a flat subsystemclassificationis empty, the subsystemclassificationis
termed partitioned

When attemptingto recover modules, each subsystemin a partitioned subsystemclassification may be
interpretedasrepresentinga module. Sincea programcomponenin a partitionedsubsystenclassificationbelongs
to only one subsystema componenis associatedvith only one module. This is what is usually desired.

Giventhatall the SCTs are essentiallyheuristic,requiringthat a subsystentlassificationbe partitionedis too
stronga constraint. Some SCTs createclassificationghat are flat, but not partitioned. There are also SCTs that
createclassificationghat arenot evenflat. A subsystentlassificationis not flat whenits subsystemsnay contain
other subsystemsnot just programcomponents.Such subsystenctlassificationsare termedstratified if they can
be representedy directedacyclic graphs,with programcomponentsat the terminal nodes,intermediatenodes
representingsubsystemsand edgesgoing from the node of a subsystento thoseof its members.It is sometimes
desiredthat a subsystentlassfication be a tree, not just a directedacyclic graph,implying that eachsubsystem
or programcomponentbelongsto at most one subsystem.A stratified subsystentlassificationthat is also a tree
is called hierarchic.

Thereis a specialtype of hierarchicsubsystentlassificationcalleda dendogramwhich is recoveredoy SCTs
thatusenumericalclusteranalysis[19]. A dendrogranmay be visualizedasa treewith numericlevelsassignedo
eachintermediatenode,suchthat the numericlevelsincreasemonotonicallyfrom a child nodeto the parentnode.
This may be representedliagrammaticallyby drawing a tree suchthat the length of the line connectinga parent



anda child subsystems proportionalto the differencein their levels. An exampledendrogranis shownin Figure
1; the ordinateaxis in the figure showsthe absolutelevel numbers.

The level numbersin a dendrogrammay be usedto definean ordering“immediately below” betweenpairs of
nodesevenif they are not in the samesubtree.

Definition: A nodeor aleaf Y is immediatelybelowa node X if (a) Y is at a level lessthanor equalto X and
(b) the parentnodeof Y is notimmediatelybelow X . Further,a nodeis saidto be immediatelybelowitself.

In the diagrammaticrepresentatiomf a dendrogramstatedearlier, eachbranchcut by a line drawn through
a node X andperpendiculato the ordinateaxis identifiesa nodeor leaf immediatelybelow X . In Figurel node
M, and M3 areimmediatelybelow Ms; D, G, M2, and M, areimmediatelybelow M, .

3.2.3 Interpr etations of an organization structure A subsystemconsistsof componentsthat are
relatedto eachother. One can arrive at different subsystemclassificationbasedon the specific relationships
usedto group components Someof the relationshipghat SCTs useto relatecomponentsare: (a) the components
belongto the samemodule,(b) the componentsare affected by the samechangerequest,(c) the componentsare
relatedto the samesoftwareerror. Whatit meansfor a pair of programcomponentgo be in the samesubsystem
thereforedependson the SCT.

A fundamentalguestionthat remainsunanswereds “What constitutesa subsystem?A subsystenis clearly
a subsetof programcomponentdor flat subsystenctlassfications. The definition of a subsystenis not quite so
straightforwardwhen subsystenclassificationsare stratfied.

Considerthetreein Figurel. It representshe outputof SCTs generatinghierarchicalsubsystentlassfications.
The symbolsA ... G represenprogramcomponentsand the symbols M . .. M4 represenintermediatenodesof
the tree. Clearly, eachnon-leafnodein the treerepresents subsystemThe questionis “Who areits members?”

There are three interpretationscommonly assignedto a hierarchic subsystenclassification,each giving a
differentsetof membersn the subsystemassociatedvith the nodesof the tree. We usethe symbols/;, I, and
I3 suchthat I (M;) givesthe membersof subsysteml/; using interpretationk.

Interpr etation 1: A subsystemwith respectto an intermediatenode of a hierarchic subsystemclassification
consistsof its children. Thus, for Figure 1:

L(M,)={A,B,C}
Li(My) ={E, I}
Ii(Ms) = {D, G, Mz}
L(My) = {My, M3}

Accordingto this interpretationa subsystenis a setconsistingof programcomponentsand other subsystem$§11,
25].

Interpr etation 2: The programcomponentsat the leavesof a subtreerootedat a node belongto the subsystem
representedy that node. Thus, for Figure 1:

L(M,)={A,B,C}

I,(My) = {E, I}

L(Ms) = {D,E, F,G}
I(Ms)={A,B,C,D, E,F,G}

Thisinterpretatiorcreatesubsystemthataresetsconsistingonly of programcomponentsTheresultingsubsystems
may overlap,but mustcomply with the constraintthatif the intersectionof two subsystemss non-empty thenone
of them s a proper subsetof the other [23].

Interpr etation 3: The third interpretationis usually assignedto dendrograms.The subsystenat eachnode of
a dendrogramconsistsof a partition of all the programcomponentsn the dendrogram suchthat if node X is
immediatelybelow node Y, then the set of programcomponentsn the subtreerootedat X is a subsetin the
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Figure1 A samplehierarchicalsubsystenclassification.

partition of Y, and vice-versa. In otherwords, I>(X) € I3(Y) if andonly if X is immediatelybelow Y. Thus
for Figure 1:

L(My) =04; Is(M;) ={{A,B,C}{E, F},{D},{G}}
L(]\l2) = 02) IB(A/IZ) = {{A}) {B}) {C}) {E) F}) {D}) {G}}
L(M3) =0.6; I3(M3)={{A,B,C},{D,E,F,G}}

L(My) = 0.7; Is(Ms) = {{A,B,C,D,E,F,G}}

where L(M;) gives the level of subsysteml/; in the dendrogram.

A dendrogram,therefore, representdayers of partitioned subsystemclassifications,with a level number
associatedo eachlayer. The partition at the highestlevel placesall programcomponentsn one set. The partition
at the lowestlevel placeseachcomponentin a subsystenby itself. Further,all componentplacedin the same
subsysternat onelevel arealso placedin the samesubsystemsit everyhigherlevel. The aboveinterpretationof a
dendrogranfollows strictly from its definition[19] andis usedby SCTs employingnumericalclusteringtechniques.

3.3 Computation performed by a SCT

Dependingupon the type of computation(algorithms)they use, SCTs may largely be classifiedas graph-
theoetic, conceptual numerical or flow-analysisbased as follows:

1. If atechniqueusesgraph-theoreticomputationsjt is termedgraph-theoetic.
2. If a techniqueusescomputationsthat may be explainedusing flow-analysisconcepts[3], it is termed flow-
analysisbased
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Figure2 A sampledissimilarity matrix andthe correspondinglendrogranresultingfrom single-link HAC. Sincethe matrix is
symmetric,only the lower triangleand the diagonalare shown. A dendrogranis a hierarchyof a setof equivalence
relations(i.e., partitions). It may be representedsa tree. The partitionsat any dissimilarity value may be
determinedby drawing a line perpendiculato the dissimilarity valuesaxis. Eachbranchof the tree cut by the line
represents partition consistingof componentsn the subtreerootedat that branch. Componentsn a partition at a
lower dissimilarity value are morelikely to be similar. At the highestlevel of dissimilarity valueall componentsare
in the one partition. Insteadof the possiblyinfinite numberof levels (sincerangeis R +) onemay divide the levels
into somefixed levels of intervals. The axis on the right represent®ne suchinterval assignment.

3. If the valuesof attributesare measuredn an ordinal scale,the techniqueis termedconceptual24].
4. However,if attributevaluesare measuredn a ratio or an interval scaleand numeric computationsare used,
the techniqueis termednumeric

SCTs generatingstratifiedsubsystentlassificationgnay also be classifiedastop-downor bottom-up[23]. The
top-down SCTs createsubsystemat the top of a stratifiedsubsystentlassificationand theniteratively decompose
them to createsubsystemsat lower levels. Bottom-up SCTs create subsystemsat the bottom of a subsystem
classfication and theniteratively meige subsystemso createthoseat the higher levels.

All stratified SCTs studiedin this paper,exceptChoi and Scacchi’s[11], are bottom-up. The computationof
top-downstratifiedSCTs may be abstractedy the algorithmtemplateof Figure3. Startingwith aninterconnection
graph,thesealgorithmsiteratively find a setof componentghat may be said to be most similar (Steps1), place
thesecomponentsnto the samesubsysten{Steps2), and createa newinterconnectiorgraphby combiningthe two
componentgSteps3. Stratified SCTs differ in the strategieschosenat eachof thesesteps.

Notice that a subsystenclassfication createdby thesealgorithmsconsistsof programcomponentforming
the sourceandtarget nodes(P U Q) of the interconnectiorgraphit inputs. However,Table 4, Column“Elements
from,” showsthat someof the stratifiedSCTs organizea differentsetof programcomponentsThis is becausenost
SCTs transformtheir input interconnectiorgraphbeforestratifyingit. Table4, Column“Elementsfrom,” identifies
the setwith respectto the input to a SCT, not its stratificationalgorithm.

An organizationof a setof entitiesinto subsetsuchthat entitiesin the samesubsetarein “some sense’more
similar to eachother thanto thosein different subsetds often referredto as a cluster [15]. Since a subsystem
classificationis analogougo a cluster[23], someof the SCTs we study usehierarchical agglomerativeclustering
or HAC [19]—a classof numericalclusteranalysisalgorithms—or its variations.
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i nput : An interconnection graph d.

output: A stratified subsystem classification over the set PUQ
s0: put each elenent of PUQ in a subsystem by itself

while d has nore than one elenment do

sl: identify a set (wth at |least two el enents) of nost sinilar subsystens
s2: create a new subsystem by nmerging the sinmilar subsystens
s3: create a new d by replacing the sinmlar subsystens by the new subsystem

end-whil e

Figure3 Algorithm templatefor generatingstratifiedSCTs by top-downcomputation.A specificstratifiedSCT maybe described
by describingthe input interconnectiorgraphit inputs andthe strategiest usesat eachof the Stepssl, s2, ands3.

The choicesat Stepssl, s2, ands3 may berestrictedfurtherif a SCTusesHAC. Theinputto a HAC algorithm
is a symmetric,directedWXG without self edgeq(i.e., thereis no edgefrom a nodeto itself). The strategyat Step
sl dependauponwhetherthe weightson the WXG representa) similarity betweentwo nodesor (b) dissimilarity
betweertwo nodes.Two nodesaremost similar if they haveeitherthe highestsimilarity or the lowestdissimilarity.
Steps2 of a HAC algorithmidentifiesa set of nodesthat are pairwise most similar.

Since HACs output dendrogramsthe strategyusedat Steps2 must satisfy interpretation/s, definedearlier.
This maybe achievedy creatinga new clusterby taking the union of the mostsimilar clusters.The (dis)similarity
value betweenthe clustersmerged is assignedas the level numberfor the new cluster.

HAC algorithmstraditionally choosefrom one of four strategieq19]—single-link, complete-link, weighted-
average-link, and unweighted-average-link—to createa new WXG after meiging a setof similar clustersto create
a new cluster(Figure 3, Steps3). Let X be the setof similar clustersbeing combinedin a giveniteration,n be
the new clusterreplacingall the membersof X, ande be anothercluster(notin X). In the single-link strategythe
smallestdissimilarity betweenany elementof X ande is usedasthe dissimilarity between: ande. The complete-
link strategyusesthe largestsuchdissimilarity andthe othertwo strategiesiseweightedand unweightedaverages
of dissimilaritiesbetweerne andmemberf X. SomeSCTs useyet anotherstrategy termedcumulative-link, where
the sumof the dissimilaritiesbetweene andall the elementsof X is takenasthe dissimilarity betweene andn.

The dendrogramin Figure 2 is the result of applying single-link HAC on the dissimilarity matrix in the same
figure. In this example,A, and A3 combineat level 0.2, A, combineswith A, and A3 atlevel 0.3, A; combines
with A,, A3, and A, atlevel 0.4. Finally, all the componentdorm a single clusterat level 0.7.

4 Reformulation of SCTs using our unified framework

This sectiongives an overview of variousof SCTs. The overview presentsa unified view in that, instead
of usingtermsand symbolsfrom the original work, the termsand symbolsintroducedin the previoussectionare
used. This allows one to comparethe information used,the computationperformed,and the output generatedy
various techniques.

Table 4 classfies SCTs studiedin this paperbasedon the classfication schemedevelopedn Section3. The
details of the computationsare elaboratedupon below.

4.1 Numeric, stratified SCTs

The numeric,stratfied SCTs we examineeitheruseHAC or somevariationof HAC. To describea SCT that
usesa HAC algorithm,it is sufficient to describeg(a) whetherit usesa similarity matrix or a dissimilarity matrix, (b)
how this matrix is computedand(c) which of thefive strategies—single-link, complete-link, weighted-average-link,
unweighted-average-link, or cumulative-link—it usesat Step s3.

We usethe symbolsdiss; andsim; to denotea dissimilarity matrix and a similarity matrix, respectively.
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Table 4 Classificationof SCTs basedon criteria introducedin Section3.

Subsystemclassification characteristics
SCT of .. Computation used | Input graph | Elements » Stratified?
Partitioned? .
from (not flat?)
Belady & numeric T S es no
Evangelisti,81 ar y
Choi & Scacchi,90 graph-theoretic (VFa PUQ yes yes
Hutchens& Basili, .
85 (both ARTS) numeric Yo PUQ yes yes
Livadas& o
Johnson94 graph-theoretic gir "ty S no no
T, Mg
Maareket. al., 91 numeric T P yes yes
g/ISaarek& Kaiser, numeric Yr PUQ yes yes
Miuller & Uhl, 90 mixed Generic P no yes
ﬂ-) d)) T’
Ogandoet al., 94 graph-theoretic Tyr, Tt S no no
Ong & Tsai, 93 graph-theoretic | "/ Mive: S no no
Tsety Tuse, - -
Patelet. al., 92 numeric Mt P no no
Schwanke91 numeric Tsu, Te P yes yes
Selby& Basili, 91 numeric Vya PUQ yes yes

4.1.1 SCTs of Hutchens and Basili Hutchensand Basili suggesttwo SCTs [17]. Both use CFG vy,

and createsubsystem®f componentdrom the correspondingset? U Q. The relation,, (A4, z, B) implies that
procedureA refersto a globalvariablez thatis modifiedby procedure3. EventhoughCFG1),, maybecomputed
from CFGs 7y, andmyu, ¥gz(s1, %, s2) = Tyr(s1, ) A Tgu(s, s2), We maintainthat this SCT inputsa CFG, not
two CXGs. This is becauseHutchensand Basili also investigateother CFGs,,, and,., but chooseCFG v,

becausdt is computationallyless expensiveto construct.

Both of the SCTs of HutchensandBasili usedissimilarity matricesbut eachusesa differentformulato compute
it. Thefirst SCT computeshe dissimilarity matrix, termedrecomputed dissimilarity, asfollows:

degree(A) + degree( B) — 2simq(A, B)
degree(A) 4+ degree(B) — simy(A, B)

wherematrix sims givesthe binding strength betweentwo procedureandthe vectordegree givesthe numberof
bindingsinvolving a given procedure as follows:

Sim2 (A) B) = Ang (A) B) + Ad)gx(B) A)
degree(A) =Y Athye(A, )+ Athye(L, A)
The secondSCT computesthe expected dissimilarity using the formula:

degree(A) + degree(B)
(dim (stmsy) — 1) X sima2(A, B)

dissi (A, B) =

dissz(A, B) =

12



wheresims anddegree areasdefinedfor recomputedissimilarity and dim(sims) givesthe dimensionof sims,
i.e., its numberof rows or numbercolumns(the two are samesincea dissimilarity matrix is square).

The SCTs of Hutchensand Basili usethe stratificationalgorithmtemplateof Figure 3, generatedendrograms,
and use the cumulative-link strategyto computethe coeficients for the new elementthat replacesthe pair of
elementscombinedinto a subsystemHowever,they are not HAC algorithmsbecausahey maintaintwo matrices
in eachiteration—a similarity matrix (sim,) and a dissimilarity matrix (diss; or disss)—insteadof just one. In
Stepsl, the two algorithmsfirst computethe respectivedissimilarity matrix from the similarity matrix sim» and
they thenusethe dissimilarity matrix to find the pair of similar elements.In Steps3, they computea new similarity
matrix sims using the cumulative-link strategy. Thus, insteadof doing all the operationson either a similarity
matrix or a dissimilarity matrix, asis doneby a HAC algorithm,theseSCTs computetwo matricesin eachiteration.

Therecomputatiorof a dissimilarity matrix from a similarity matrix in eachiterationleadsto the possibility that
the dissimilarity valuesover successivéterationsmay decreaseimplying that an iteration may createa subsystem
with a lower dissimilarity thana subsystentreatedin an earlieriteration. The hierarchyof partitionsthus created
may havedecreasindevel numbers.The resultingclassificationtherefore will not be a dendrogram.To overcome
this problem,Hutchensand Basili suggesthat wheneverthe dissimilarity of a newly createdsubsystems smaller
than the subsystencreatedin the previousiteration, the former should be assignedhe samedissimilarity level
as the latter.

4.1.2 SCT of Maarek et al. Maareket al.’'s SCT differs from othernumeric,stratifiedtechniquesn thatit
usesinformationfrom programdocumentationnot the codeitself [22]. It usesWXG 7,,, relatingthe documentation
of a programandits lexical affinities, and classifiessymbolsbelongingto the correspondinget? into subsystems.
Maareket al. suggestusing either single-link or complete-linkHAC with the dissimilarity matrix createdby the
following function:

>

disss(A,B) = i€ asn aBp

A(1) x pp (i)

where:

e ax = {F :nu(X, F)}, i.e., the setof lexical affinities found in a documentX,

o px(F)=—nu(X, F) xlog (Pr(F, X)), i.e., resolvingpower of lexical affinity F' in a documentX,

e Pr(X,F) = no(F, X)/ > n(F,.), i.e., probability that lexical affinity ' appearsin the documentationof
program X,

e px(F) = (px(F) — px)/o,y, i.€., normalizedresolvingpower of lexical affinity 7' in documentX, and

* px is the meanof px ando,, is its standarddeviation.

4.1.3 SCT of Maarek and Kaiser MaarekandKaiser's SCT usesCFG ¢ (that relatesa file declaring
a syntactic-unitto a file usingthat unit) and createssubsystemgonsistingof symbolsfrom the correspondingset
P U Q [23]. This SCT is an extensionof single-link HAC. It usesthe similarity matrix createdfrom WXG A¢g.

sims(4, B) = Avr(A, B) + App(B, A)

MaarekandKaiser's SCT extendsthe single-link HAC in thatit marksthe partitionscreatedat eachlevel of
the dendrogramas either frozen or prospective. The final subsystenctlassificationconsistsonly of the partitions
markedfrozen. A partition is markedfrozenwhenv,,, the varianceof the size of eachsubsetin the partition from
an example size o is small. If therearek subsetsey, zs, ..., z, in partition p, then

Z ([zi] — a)®

wherethe expressionz;] denoteshe sizeof z;, definedasfollows. If partitionp is markedfrozenthenthe size of
its subsetds forcedto be 1, i.e., [z;] = 1, 1 < i < k. If partitionp is prospectivethen [z;] = |z;].

Uoz(p) =

| =
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To determinea partitionwith a‘small’ v, thev, of upton consecutiveprospectivepartitionsgeneratedy the
single-link HAC are compared.The onewith the smallestv,, is consideredsmall’ andis frozen. Whenn = 1, all
partitionsare markedfrozen,thusresultingin a single-link HAC. Whenn = 2, thev,’s of at mosttwo consecutive
partitionsneedbe compared.This canbe achievedy introducingthefollowing stepinto the stratficationalgorithm:

s4: if wva(new d) > va(d)

then mark d to be frozen
else mark d to be prospective

wherethe (dis)similarity matricesd and new d alsoimplicitly representhe partitions before and after the loop
is executed. In addition, the partition representedy matrix d before enteringthe loop and after its termination
are also markedas frozen.

4.1.4 SCT of Schwanke Schwanke’sSCT usesthe CXGs 7. (which procedurecalls which procedureland
75, (Which procedurereferencesvhich syntacticunit) and createssubsystemgonsistingof componentdrom the
correspondingset? [36]. The similarity matrix it createsmay be statedas:

w(raNrg)+kx (7.(A, B)V 7. (B, A))

ims(A, B) =
sims(4, B) n+w(ranrp)+dx(w(ra —rp)+wirp —ra))

where:

* n, k, and d are user definedparameters,
e ry = {F: m(A, F)}, i.e, the setof syntacticunits referencecby procedure4,

e w(X) = x%;( — log(Pr(z)), i.e., the weight associatedo (or the discriminatingpowerof) a set X of syntactic
units, and

o Pr(z) = |mu(s 2)|/|7su(-, )|, i-e., the proportionof userelationsinvolving syntacticunit z (or the probability
that a relation involves syntacticunit z).

Schwanke’sSCT usesthe single-link HAC algorithm for clustering programcomponents. It also providestwo

interactiveinterfacesto validatea subsystemnasit is created.In the first interface,after every subsystenis created
the useris askedto confirmit. In the secondinterface,a new subsystenis first validatedby using a heuristic; if

the validation fails thenthe useris queried. Schwanke’sheuristicsmay be statedas: If the syntacticunits being
clusteredare declaredin the samefile, thenthe clusteringis okay, elseit is not. Implementationof this heuristic
requiresCXG w4, i.e., which programelementis declaredin which file.

4.1.5 SCT of Selby and Basili SelbyandBasili's SCT usesthe sameCFG asthe SCTs of Hutchensand
Basili, Section4.1.1, and createssubsystemgsonsistingof symbolsfrom the correspondingset” [37]. It uses
single-link HAC with the similarity matrix sim, as definedwith Hutchensand Basili's SCTs.

4.2 Numeric, non-stratified SCTs

Numeric, non-stratiied SCTs are techniqueghat use numeric computationto organize programcomponents
into subsystemsThey are non-stratiied in thatthey only createone set of subsystemsnot levels of subsystems.
Therearethree SCTs thatfall in this category. The subsystemgproducedby two of the techniquesare partitioned
[6, 1], but thoseproducedby the remainingare not [31]. We havenot had the opportunityto reformulateone of
the SCTs sinceit appearedrery recently[1]. A reformulationof the other SCTs is presentedelow.
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4.2.1 SCT of Belady and Evangelisti Beladyand Evangelist’'sSCT [6] usesthe CXG =, i.e., which
functionreferencesvhich globalvariablé, andcreatesubsystemsonsistingof componentérom the corresponding
setS. It createsa similarity matrix which is simply the adjacencymatrix representatiomf .

stmq(A, B) = mgr (A, B) V 4 (B, A)

This similarity matrix is input to Donathand Hoffman'’s clusteringalgorithmto createsubsystemgonsisting
of componentghat are closeto eachotherwhen placedin an N-dimensionalspace[13]. The placementof each
componenton an N -spaceis doneby computingN (typically = 5) eigenvectors.The i*" value of thesevectors
givesthe coordinateof the i*” elementin the similarity matrix. The partitionscreatedoy Donathand Hoffman’s
algorithmare constrainedy two parametersthe numberof subsetgo be generatecndthe maximumsizeof each
subset. The detailsof the algorithm can be found in the original paper[13] .

4.2.2 SCT of Patel et al. Patelet al.’'s SCT usesy;, the WXG representinghe numberof timesa procedure
hasa director upwardreferenceo a type [31]. It classfies symbolsfrom the correspondinget? into subsystems.
It createsa similarity matrix using the following function:

. __i(A) x 1i(B)
s(A, B) 17 (A)]| x [|7(B)]]

wheren;(A) is avectorrepresenting):(A, -) andall vectorsusethe samepermutationfor assigningpositionto the
countsfor the types. The vector product,therefore,representthe computation:

X)) = 20X, a) x (Y, 0)

and the vector dimensionrepresentshe computation:

10N = 2,

where T is the setof all typesusedin the program.

Patelet al.’s SCT doesnot generatea setof subsystemsepresentingnodules.Instead,it providesa function
to testif a setof proceduredelongto the samemodule. A setof proceduresS constitutesa moduleif 7°(.S) > ,
wherer is someexperimentallydeterminedthresholdvalue and 7'(S) is defined as:

_ simg(z,y)
_ zyeSz#y
e AT

4.3 Mixed, stratified SCTs

Mixed, stratified SCTs aretechniqueghat usea combinationof numericand graphtheoreticcomputationgo
organizeprogramcomponentsnto subsystemsTheyarestratifiedin thata subsystemecoveredy thesetechniques
may containother subsystemsand suchinclusionis free of cycles. Of the SCTs we study,only Muller andUhl's
may be classifiedas mixed, stratified.

BeladyandEvangelisti[6] actuallyusetherelation“which functionuseswhich controlblock.” In their context,a controlblock corresponds
to a global variable,hencewe say that they usethe 74, relation.
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4.3.1 SCT of Mdller and Uhl Maller andUhl's SCT is programminglanguageand contextindependent
in thatit doesnot committo any specifictype of input. It acceptsany type of interconnectiorrelations,i.e., either
CXG, WXG, or CFG, but treatsthemall asWXGs [25]. Thusa CFG ¢ input to Muller andUhl's SCTis treated
asa WXG Ay, anda CXG 7 is treatedasa WXG by associatinga weight of oneto eachedge. We, therefore,
usea genericWXG 75 to representhe interconnectiorrelationsinput by this SCT.

Miuller and Uhl's SCT is top-down and can be abstractedy the stratfied SCT templateof Figure 3, (i.e.,
iteratively selectsimilar elements,combinethem, and createa new interconnectiongraph). It differs from other
stratified SCTs in the following ways.

1. During eachiterationit computesseveralsimilarity matricesand providesa collection of rulesto discernif two
elementsare similar. Other techniquesusually computeonly one (dis)similarity matrix and provide only one
rule for detectingsimilar elements.

2. Besidesdeciding whethertwo elementsare similar, it also providesrules to decideif two elementsare not
similar. Thus, it allows elementsto be placedin different subsystemsOther SCTs only permit the selection
of similar elements.

3. It memgessimilar elementsin the interconnectiorgraph, not the similarity matrix. The similarity matricesare
recomputedfrom the new interconnectiongraph.

4. The subsystentlassificationcreatedby this SCT, though stratified, may not be hierarchic.

Its rulesfor identifying similar elementsnaybeclassifiedasbasedn: (1) interconnectiorstrength(2) common
neighbors(3) centricity, and (4) name. The first threerulesusesimilarity matriceslike thoseusedby HAC based
SCTs. Thesecomputationsare, however,definedusing graph-theoreticonceptghenceits classificationasmixed).

The interconnection strength measurebetweentwo nodesA and B is the exactnumberof syntacticobjects
exchangedetweenthe two nodes:
simg(A, B) = n(A, B) +n(B, 4)
Miuller and Uhl classify two componentdo be strongly relatedif their interconnectiorstrengthis greaterthan a

certainthreshold?}, andlooselyrelatedif it is lessthana certainthreshold?;. Componentshatarestronglyrelated
areplacedin the samesubsystermand thosethat are weakly relatedare placedin differentsubsystems.

Miuller and Uhl suggestwo similarity measuredasedon commonneighborsone using common successors:
simio(A, B) = [n(A, ) N n(B, )|
and the other using common predecessors:
simi1(4, B) = |n(-, A) N (-, B)|
Two elements4 and B are placedin the samesubsysteneitherif simyo(A, B) > T, orif sim;,(A, B) > T,
whereT, and 7, are two thresholdvalues.
Miuller and Uhl definecentricity as the numberof dependencebetweenan elementand other elements:

degree(A) =Y n(A, )+ (- A)
This is the sameasthe degreeof a weighteddirectedgraphcomputedby addingthe weightsof its edges.Elements

with degree beyondthresholdsl;, and7}, aretermedcentral andfringe elementsyrespectively.Fringe elements
are assignedto different subsystems.

Identifying similar elementshasedon their namesis uniqueto Muller andUhl's SCT. Two programelements
are consideredo be similar if their nameshave matchingsubstrings(e.g., commonprefixes).

After identifying subsystemsf similar elements,Muller and Uhl's SCT createsa new WXG using the
cumulative-link strategy. Since this SCT allows multiple subsystemgo be createdduring the sameiteration, a
componenbr a subsystenmay be includedin morethanonesubsystemeadingto a non-hierarchicalyet stratified,
subsystenclassfication. However,if during any iteration only one similarity criterion is applied,the subsystem
classificationwould be hierarchical.

Miuller and Uhl's SCT is interactiveand leavesthe selectionof the appropriaterule(s)in eachiterationto the
user. Similarly, the choiceof thresholdvaluesis also left to the userwith the provisionthat thesevaluesmay be
changedbetweeniterations.
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4.4 Graph-theoretic, stratified SCTs

4.4.1 SCT of Choi and Scacchi Choi andScacchi'sSCT usesgraph-theoreticomputationsand createsa
stratifiedsubsystenctlassificatiornthatis alsoa hierarchy[11]. This hierarchyis similar to that of a dendrogramin
that programcomponentsappearonly at the leaf andthat eachcomponentippearsat mostonce. The intermediate
nodesare abstracinodesrepresentingubsystemsThe hierarchyit generatess differentfrom dendrogramsn that
there are no level numbersassociatedvith the nodes.

Choi and Scacchi’'sSCT usesCFG ¢r representinghe flow of resourcesuchasdatatypes,proceduresand
variablesfrom onesourcecodefile to another.The subsystem# createsonsistof symbolsfrom the corresponding
setP U Q. This SCT is top-down. It first finds the biconnectedcomponentsand articulation points [2] of the
graph. It then createsa subsystenfor eacharticulationpoint of ¥ r. Eachsubsystenconsistsof an articulation
point and sub-subsystemareatedoy applyingthe algorithmrecursivelyto the subgraphsnducedby the verticesof
eachbiconnectedccomponentgexceptthe articulationpoints. Choi and Scacchiargue that this approachextractsa
subsystentlassificationwith minimum alterationdistance(sumof distancedetweerpairsof leaves)and minimum
coupling (sum of the numberof children of all nodes).

Notice thatthis SCT doesnot makeuseof the tagson the edgesof CFG ¢y, thereforeusingit asa CXG.

4.5 Graph-theoretic, non-stratified SCTs

Thereare two SCTs that use graph-theoreticcomputationsand generatenon-stratiied subsystemg21, 27].
Due to a close associatiorbetweentheir developerghe two SCTs haveinfluencedeachotherand hencefollow a
similar theme. Both the SCTs aim at creatingsubsystem®f procedurestypes,and global variablesrepresenting
modular subsystemsnd provide two strategies—global-based and type-based—to place programcomponentsn
the samesubsystem.The global-basedstrategycreatessubsystemsonsistingof global variablesand procedures
whereaghe type-basedstrategycreatessubsystemgonsistingof typesand procedures.

Before presentingthe two SCTs, we introduce some additional definitions and notationto help us describe
theseSCTs. Figure 4 containsexamplesthat enumeratehe definitionsintroduced.

4.5.1 Additional definitions and notation The two SCTs use CXGs whosesetof sourcenodesP and
setof target nodes@ are disjoint, i.e., ? N @ = ¢. Thelength of a path (sequencef edgestraversed)in these
graphscanbe at mostone. Hence,thesealgorithmsemploy operationghat requiretraversinga single edgeeither
along (i.e., from the sourcenodeto the target node)or against (i.e., from the target nodeto the sourcenode).

Definition: The setof nodesreachabldrom a nodea by traversingone edgeof a CXG = aredenotedasfollows:

z)={y

T m(z,y) Va(y,z)}
w(z) = w! 1

|7 (z
)= (@) u{a}

Whethera traversalis done along an edgeor againstan edgeis obviousfrom the nodeitself, sincea nodein a
CXG with disjoint 7 and Q can be either a target or a sourceof an edge,but not both, as enumeratedy the
examplein Figure 4.

Definition: Two elementss; and s, havea weak match in CXG = if #+1(s;) N 7t!(sy) = 6. Theyhavea strong
match if 7t1(s;) = 7t1(s2).
Definition: Let WM (7) andSM (w) denotethe pairsof nodesin 7 with strongandweakmatch,respectivelyj.e.:

(51,82) € WM(m) & 7l (s1)Nnatl(ss) £ ¢
(s1,82) € SM(7m) & 7r+1(51) = 7r+1(52)

Definition: Let WAM*(7) give the reflexive, transitive-closureof W M (7).
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Example CXG 7 Single edgetraversals

otH(P1) = {T'1,T2}
=tY(T1) = {P1, P2} Tt (P2) = {T1,T3)
ntl(T2) = {P1} 7t (P3) = {T3, T4}
atH(T3) = {P2, P3,P4} Tt (P4) = {T3, T4)
mt(T4) = {P3, P4}

Weak and strong matches

WM(m) = {(P1, P2),(P2, P3),(P3, P4),(P2, P4), (P;, ), (T1,7T2),(T1,T3),(T3,T4),(T;, T;)}
SM(m) ={(P3,P4),(Pi, Pi)izy.a (T3, Ti)izy, 4}

Partitions createdby weak and strong matches

WM*(m) = {{P1, P2,P3, P4} {T'1,T2,T3,T4}}

SM(m) = {{P3, P4} {P1},{P2},{T1},{T2},{T3},{T4}}

Weak and strong groupings around P and Q

WGp(m) = WGy (m) = {{P1, P2, P3, P4, T1,T2,T3,T4}}

SGp(m) = {{P3,P4,T3,T4},{P1,T1,T2},{P2,T1,73}}

SGg(m) = {{T'1, P1,P2},{T2, P1},{T3, P2, P3, P4} {T4, P3, P4}}

Figure4 Examplesenumeratingdefinitionsintroducedto abstractand Livadasand Johnson’sand Ogandoet
al.'s SCTs. TheseSCTs use CXGs with the propertythat P N Q@ = ¢

Definition: Let Z be a subsetof S. We useWW M} (w) and SMy(w) to denotethe following:

WMy(r)=WM*(z)NZ x Z
SMy(7) = SM(m)NZ x Z

That is, WM (w) and SMz(w) are subsetsof WM*(x) and SM(x), respectively,containingonly relations
betweenthe elementsof Z. If the sets? and Q of = are disjoint, then WMy (7) and WM§(w) partition
WM*(x), i.e.

W Mg (m) UWMg(m) = WM ()
WM (m) N W MY (r) = ¢

Similarly, SMp (7) and SMg(7) partition SM ().

WM*(m) and SM(w) are equivalencerelations,hencethey define partitionsover the setS. If the setsP
andQ aredisjoint, thenW Mz (7) andW Mg () (similarly, SMp(7) andSMg(7)) arealsoequivalenceelations
creatingpartitions over the sets? and Q, respectively.

The subsetdn the partitions createdby weak and strong matchesmay be expandedurther to createweak
groupings (WG) and strong groupings (SG).

Definition: A weak grouping around?, WG, () is the setof subsetof S createdby expandingthe subsetdn
the partitions createdby W M (7) as follows:
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If D is asubsetin the partition dueto W M5 (7) thenD U |J 7' (d) € WM} (n).
deD
A weakgroupingaround@, WG (7); a stronggroupingaround?, SG»(7); anda stronggroupingaround @,
SGg(w), may be similarly createdby expandingthe partitions createdby W M§(7), SMp(7), and SMp (),
respectively.

4.5.2 SCT of Ogando et al. The global-basedstrategyof Ogandoet al. createssubsystemsgiven by
WGG (), i.e., weakgroupingaround@ of the CXG =, (which procedureuseswhich globalvariable)[27]. The
subsystemgreatedby this strategyhave the following properties:

1. If aproceduraefersto theglobalvariablesy; andg, thenthe globalvariablesareplacedin the samesubsystem.
2. If aglobalvariableis placedin a subsystenthenall proceduregeferringit are placedin that subsystem.
3. A global variableis placedin at most one subsystem.

Their type-basedstrategyusesCXG my; that representgelationsbetweenproceduresand types usedin its
interfacedescription(i.e., formal parametersindreturnvalue). This CXG maintainsdirectanddownwardreferences
to types. The CXG is filtered to removerelationsbetweena procedurep anda typet if procedurep referencesa
super-parbf ¢. The type-basedtrategycreatessubsystemgivenby WG (7;), i.e., weak groupingaround@ of
CXG my4; (afterfiltering, seeSection3.1.3). The subsystemsreatedby this strategymay be describedasfollows:

1. If theinterfaceof a procedurerefersto typest; andt, but doesnot referto any of their super-partsthenthe
two typesare placedin the samesubsystem.

2. If atypeis placedin a subsystemthenall procedureseferringto it (in theinterface)areplacedin thatsubsystem.

3. A typeis placedin at most one subsystem.

4.5.3 SCTs of Livadas and Johnson LivadasandJohnson’'sjlobal-based strategyis the sameasOgando
et al.’s, exceptthatit usesthe CXG w,; insteadof the CXG 7, [21]. In otherwords,it createssubsystemsgiven
by WGo(mg:), i.e., weakgroupingaround@ of the CXG 7,; (which procedurereferenceswhich global variable
either directly or indirectly due to aliasingwith a formal parameter).

Their type-basedstrategyis really a family of strategiesin that it is parameterizedy a CXG that gives a
relation betweenproceduresand types (i.e., which procedureuseswhich types). It createssubsystemgiven by
SGp(w), i.e., stronggroupingaround? of the CXG . Livadasand Johnsonhave experimentedwvith various
combinations(unions) of CXGs 7;;, Ty, and mq,.

4.6 Flow-analysis based, non-stratified SCT

SCTs whoserationaleis bestexpressedising flow-analysisterminology[3] are classifiedas flow-analysis
based(eventhoughflow-analysismay be statedin termsof graphoperations).Therearetwo suchSCTs [28, 39].
Thesetwo SCTs have evolved from the respectiveauthor’s experienceswith reengineeringoroceduralprograms
to object-orientedorograms. The presentatiorof Silva-Lepe’stechniqueprimarily consistsof a combinationof
examplesand discussiond39]. This makesit harderto abstractit and hencewe have not reformulatedit. The
secondSCT is presentedising somealgorithms,besidesexamplesand discussiong28]. Our reformulationof this
SCT below, presentst with a precisiongreaterthanthat in the original work.

4.6.1 SCT of Ong and Tsai OngandTsai's SCTis designedo recoverobjects,i.e., modularsubsystems,
from Fortran programs[28]. The subsystemst recoversare flat and may have overlappingsubsystems.Each
subsystenrecoveredby this SCT consistsof a setof variablesand statemenblocks. Therefore,Ong and Tsai’'s
SCT doesnot treat a procedureor function asa unit that cannotbe decomposedas other SCTs do.

This SCT is similar to the graph-theoreticnon-stratifiedSCTs in thatthe sourcenodesP andtarget nodesQ
of the CXGsiit usesaredisjoint,i.e.,? N Q = ¢. Hence,we find it convenientto usethe notationz*! introduced
in the previous subsection.

Ong and Tsai's SCT usesCXGS Tyse, Tsets Taes, and miye. ComputingtheseCXGs requiresstatic flow-
analysisof the programs[3].
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OngandTsai's SCT consistof two steps.In the first stepit createssubsystemsonsistingof globalvariables,
formal parametersand actualparametersThe variablesin eachof thesesubsystemsre saidto identify instance
variablesof an object class. In the next step, statementlocks, signifying “methods” of the class,are addedto
each subsystem.

The placementof variablesinto subsystemsin the first step,is doneusingthe following rules:

1. Al variables belonging tothe sane COMMON bl ock bel ong to t he same subsystem

2. The formal paraneters of each procedure are split into three categories:
use-only, define-and-use, and define-only. For each procedure, the set with
the largest size forms a subsystem

3. If a formal paraneter of a procedure belongs to a subsystem then the
correspondi ng actual parameter of a call to this procedure also belongs
to that subsystem

4. If an actual paranmeter of a procedure call belongs to a subsystem then
the corresponding formal paranmeter of the procedure it calls also bel ongs
to that subsystem

(Note that this stepusesinterconnectiorinformation not containedin the CXGs listed in Figure 1.)

The subsystem®f variablesformed above are expandedo include statementlocks. Let V' be the set of
variablesplacedin subsysteny. Statemenblocks areaddedto ¢ using the following steps:

Let S(V)= U (w}'elf(v)ufrj}e(v)>. The set of statenents that define or use a
ev

variable in V.
For every statement s in S(V) do

For every statenent-block b containing statement s, starting from the
smal | est bl ock and going to bigger blocks, do

s FPOMb)=atL(b)-V. The set of variables used in block b except those
in V. If block b was used to make a method, then these variables
woul d correspond to the formal paraneters.

«  RV(b) =rHi(b)nafl. (b)) —D. The set of variables, other than those in
V, that are used outside block 6 after being nodified in block 6. |If
bl ock b was used to nake a nethod, then these variables woul d be used

to return val ues.
If the sets FP(b) and RV(b) are small then include block b in subsystemyg

Whetherthe sets ' P(b) and RV (b) are small is determined‘by comparingseveralF'P’s and RV'’s for a
graduallyexpandingb that consistsof the statement&rounds [28].” Since P and RV arenot constrainedo be
“smallest] morethanonestatemenblockb containinga statement may qualify to be smallandbe includedin the
subsystem.This allows placementof overlappingstatemenblocksin the samesubsystem.Similarly, a statement
block mayalsobe placedin multiple subsystemsThus,OngandTsai’s SCT generateson-partitionedsubsystems.

5 Benefits of our unified model
Our unified model offers the following importantbenefits.

« It identifiesthe parameterghat areimportantto describeSCTs. If the SCTs are expressedisingthe terminology
introduced,it also makesit easierto comparevarious SCTs.

» Separatinghe computatiorperformedby the SCTs from their inputspavesthe way to createnew SCTs by mixing
and matchingthe information usedand the computationgperformedby different SCTs.

20



Additionally, a comprehensivesurveyof the interconnectiorrelationsusedby SCTs, Figuresl, 2, 3, and 4, may
also be usedto:

« Identify SCTs that may be suitablein a particular context.
« Ildentify “requirements”(or developbenchmarksjor languageprocessingools whendevelopingspecfic SCTs.

Thesebenefitsare further elaboratedupon below.

5.1 Describing and comparing SCTs

We havedevelopeda classfication of the inputs, outputs,and computationgperformedby SCTs. New SCTs
may be expresseaonciselyif they canbe describedusingour classification.For instancejf a new SCT generates
stratified subsystemspne may statewhetherit may be abstractedising the templatein Figure 3, and if so, then
the decisionamadein Stepssl, s2, ands3 may be explained.If the stratifiedSCT happendo be a HAC, thenonly
the formula to computeits similarity matrix or dissimilarity matrix needbe stated.

Most SCTs, exceptthoseinfluencedby numericalclusteranalysis[19], have beendescribedin the original
works using different terminology and notation. Reformulatingthem using our unified framework highlights the
similarities and differencesbetweenthe information usedby the SCTs and the computationghey perform. Some
noteworthyobservationenabledby our reformulationare as follows:

1. The global-baseandtype-basedtrategiesof Ogandoet al., asper our reformulation(Section4.5.2), primarily
differ in the interconnectiorgraphsthey input. They both usethe samecomputationto creategroups,i.e., they
computeweak groupingsaround@ of the CXG they input. However,in the original papertheir computations
appearsignificantly different [27].

2. Livadasand Johnson'stype-basedstrategyis influencedby Ogandoet al.’s type-basedstrategy. As per our
reformulation (Sections4.5.3 and 4.5.2), they differ in that, of the respectiveCXG they input, the former
computesstrong groupingsaround? while the latter computesweak groupingsaround@. A differencenot
explicit in the original work [21].

3. Patelet al. andOgandoet a. both useinterconnectiorgraphsthat statewhich procedureeferencesvhich types
of variables. They both propagatereferencedo a variable of a type to othertypesin the sub-part/super-part
hierarchy. But the two differ in the directionin which referencesare propagatedn the hierarchy. Patelet al.
propagatehe referencesupward” while Ogandoet al. propagateeferencesdownward” (Section3.1.2).

4. The similarity matricessims, sims, and simy computedby Hutchensand Basili (Section4.1.1), Maarekand
Kaiser (Section4.1.3), and Muller and Uhl (Section4.3.1) require the samecomputation,albeit on different
WXGs. Theyall sumtheweightson the edgeshetweenpairsof nodesof the respectiveNXGs. Thedifferences
in the terminologyand symbolsusedin the original works obscureghis similarity.

5. HutchensandBasili (Section4.1.1) andMiuller and Uhl (Section4.3.1), both computethe degree—the sum of
indegree and outdegree—of nodesin the respectivegraphs. However,the original works do not refer to it as
computationof the degreeof a graph.

6. We usethe symbolssim and diss whenevera computationyields a similarity or a dissimilarity matrix (as
definedin Section3.3). While the enumeratiorof this distinctionis necessaryor SCTs usingHAC algorithms
[19], we useit for other SCTs aswell (seethe non-numerichon-stratied SCTS). In additionto highlighting an
important property of thesecomputationsusing thesesymbolsalso identifies computationghat may possibly
be usedwith HAC algorithms.

5.2 Creating new SCTs

SCTs are essentiallyheuristic. New SCTs may be createdby mixing and matchingthe information and the
computationsused by different SCTs. The templatefor a stratified SCT, Figure 3, enablesthe creation of a
parameterizedtratifiedSCT,i.e., a SCTin which theinterconnectiorgraphto be used the formulato computethe
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similarity matrix or dissimilarity matrix, and/orthe decisionsfor Stepssl, s2, and s3 are parameterizedWe have
implementedone such parameterize&CT that allows the following selections:

1. Theinputmaybeoneof two CFGs,eitherthe CFG,, representingheflow of valuesthroughglobalvariables,
describedearlier, or the CFG v, wherevy,, (A, z, B) is true iff the variable,type, or function z is referred
(i.e., used,assignedpr called) by proceduresA and B.

2. The computationsfor Stepssl, s2, and s3 may be either those usedin single-link HAC or those usedin
Hutchensand Basili's SCTs [17].

3. If single-link HAC is chosen,it may be applied on one of three matricessims, diss; or dissz as described
in Section4.1.1.

This ability to createseveralSCTs by parameterizing generaltemplateis interestingbecausesCTs are essentially
heuristic. A parameterizedCT providesthe ability to experimentwith different combinationsof computations
andto choosethe one most suitablefor a particularenvironment. For instance,our parameterizedtratified SCT
can generateten subsystentlassificationsfor eachsoftwaresystem(two CFGsfor eachsystem,two subsystem
classficationsfor eachCFG due to Hutchensand Basili's SCT, andthree subsystentlassficationsfor eachCFG
using single-link HAC).

5.3 Evaluating applicability of third-party programsand SCTs

All the SCTs we study, exceptthat of Ong and Tsai [28], canbe parameterize@n their input interconnection
graph,i.e., their computationmay be statedin termsof a genericCXG, WXG, or CFG. Sucha parameterization
makesa SCT independenbf any programminglanguageor any environmentalcontext. In addition to creatinga
classof SCTs from eachSCT, this enhanceshe possibility of usingthe sameSCT for systemswritten for different
programminglanguagedoy simply replacingthe front end.

The developmenbf a languagespecfic front-endis an expensivetaskin the implementationof a SCT. One
may preferto use a third-party programanalyzersuch as Refine [34] or FIELD [35] to perform this function,
insteadof developingone. Theseanalyzersoften differ in capabilitiesaswell as price. The comprehensivdist of
interconnectiorgraphspresentedn Figuresl, 2, and 3 may be usedto createguidelinesfor evaluatingwhethera
third-party tool extractsthe information neededtio developone or more SCTs.

Here are a few examplesof the information neededfor and the applicability of someSCTs. SCTs that use
‘type’ relatedinformationwould not be usefulwith FORTRAN programssincetheseprogramsdo not haveuser-
definedtypes. SCTs that use ‘global variables’ relatedinformation may not do well with programsusing data
abstractionsTo developOgandoet al.’s type-basedSCT and Patelet al.’'s SCT one needsthe information ‘which
typeis usedto definewhich type’ [27, 31,]. A cross-referenceformation extractiontool that doesnot providethis
informationwould not be suitablefor this purpose.Patelet al.’'s SCT alsorequiresthe countof how manytimesa
relation betweentwo symbolsexists,hencethe tool usedshouldpermit sucha computation.When a techniqueis
not directly applicablein a particularcontext,it may be adaptedusing a different set of relations.

6 Conclusions

We have presenteda frameworkto describetechniqguesthat decomposehe componentsof a programinto
subsystems.Sucha decompositionyeferredto as a subsystenctlassification,is usefulin various contextsduring
software maintenance. Therefore, techniquesfor extracting subsystemclassificationshave been investigated
by researcherglevelopingtools to supportdifferent maintenanceactivities, such as programunderstandind6],
reengineeringegacy code [25, 28, 36], propagatingchanges[23], analyzingerror-pronecomponentg37], and
identifying objectsin sourcecode[21, 27]. Given the differencesin the problemdomains thesetechniqueshave
beenpresentedusing different “languages”— terminology and symbols. Our reformulationof thesetechniques
using a consistent'language”is an attemptto dismantlethe “Tower of Babel' thuscreated.

Our investigationof SCTs stemsfrom our interestin developingautomatedsupportfor identifying modulesas
a precursotto reengineerindegacycode. We feel that thesetechniqueshold promise,eventhoughthey areheuristic
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and dependprimarily on cross-referencénformation. The use of cross-referencénformation for organizingthe
component®f a programinto modulesfinds supportfrom the observatiornthat the notion of information hiding is
itself definedon the basisof scopeandoperationson symbols[30], which areessentiallycross-referenceonstraints.
It is alsosupportedy Parikh’sobservatiorthatcross-referencing oneof the mostimportantsourcef information
for a maintenanceprogrammer[29].

That numericalclusteranalysisprovidesa good heuristicfor recoveringmodules(or objects)may be extrap-
olated—epigrammaticallynot logically—from the very applicationit was first designedfor, namely,to classify
animal and plant kingdoms—classificatiohierarchiescommonlyusedas examplesfor object-orienteddesign. In-
terestingly,numericalclusteranalysishasalso beenusedto generaté'programs*—sequencesf instructionsto an
architect—fromarchitecturaldesignconstraintavhen designingcities [4], the reverseof what SCTs seekto do.
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