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Abstract

This paper is a survey of the upper bounds on the complexity of basic algebraic
and geometric operations with Pfaffian and Noetherian functions, and with sets defin-
able by these functions. Among other results, we consider bounds on Betti numbers
of sub-Pfaffian sets, multiplicities of Pfaffian intersections, effective  Lojasiewicz inequal-
ity for Pfaffian functions, computing the frontier and closure of restricted semi-Pfaffian
sets, constructing smooth stratifications and cylindrical cell decompositions (including
an effective version of the complement theorem for restricted sub-Pfaffian sets), relative
closures of non-restricted semi-Pfaffian sets and bounds on the number of their connected
components, bounds on multiplicities of isolated solutions of systems of Noetherian equa-
tions.

1 Introduction

Pfaffian functions, introduced by Khovanskii [24, 25] at the end of the 1970s, are analytic
functions satisfying triangular systems of Pfaffian (first order partial differential) equations
with polynomial coefficients. Over R, these functions, and the corresponding semi- and sub-
Pfaffian sets, are characterized by global finiteness properties similar to the properties of
polynomials and semialgebraic sets. This allows one to establish efficient upper bounds on
the complexity of different algebraic and geometric operations with these functions and sets.

One of the important applications of the Pfaffian theory is in the real algebraic geometry
of fewnomials — polynomials defined by simple formulas, possibly of a high degree. The
complexity of operations with fewnomials in many cases allows upper bounds in terms of the
complexity of the defining formulas, independent of their degree.
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Over C, Pfaffian functions, and more general Noetherian functions (satisfying the same
kind of equations but without the triangularity condition) are characterized by local finiteness
properties, sufficient for upper bounds on the complexity of stratification, frontier and closure.

This paper is a survey of results about the upper bounds for operations on Pfaffian and
Noetherian functions, and on sets definable by these functions. All bounds are functions
of a finite set, called format, of some natural parameters (like the degree or the number of
variables) associated with a Pfaffian or Noetherian function or a definable set. The goal is to
obtain upper bounds that are as low as possible.

The content of the paper is as follows. We start with definitions and examples of Pfaffian
functions (including fewnomials), semi- and sub-Pfaffian sets. We discuss Khovanskii’s bound
on the number of isolated solutions of a system of Pfaffian equations, and its extensions for
Betti numbers of semi- and sub-Pfaffian sets.

Next, we derive an upper bound for the multiplicity of a Pfaffian intersection. This bound
is then used to obtain an effective version of the  Lojasiewicz inequality for a Pfaffian function,
and an algorithm for constructing the frontier and closure (in its domain of definition) of a
semi-Pfaffian set. The bound for Pfaffian multiplicities is also used to construct an algorithm
for a weak stratification of a semi-Pfaffian set, i.e., for a representation of the set as a disjoint
union of smooth manifolds. The complexity (running time) of the stratification algorithm is
explicitly estimated in terms of the format of the input semi-Pfaffian set. This also implies
explicit upper bounds on the number of strata and their formats. Stratification is used for
an effective proof of the following complement theorem: the complement of a projection of
a restricted (relatively compact in its domain of definition) semi-Pfaffian set to a subspace
is again a projection of a semi-Pfaffian set. The proof of the theorem uses an algorithm
for a cylindrical cell decomposition of a restricted semi-Pfaffian set, a construction which is
important in its own right.

For general (not necessarily restricted) semi-Pfaffian sets, the complement theorem is not
known to be true. We describe a wider category of sets, called limit sets, which is a Boolean
algebra and is also closed under projections to subspaces. We describe an explicit upper
bound on the number of connected components of a limit set in terms of the format of the
set.

Noetherian functions do not generally satisfy the global finiteness properties of Pfaffian
functions. However, it is possible to establish some local finiteness properties. We describe
in some detail a proof of an explicit upper bound on the multiplicity of an isolated solution
of a system of Noetherian equations. This proof involves several stages. First, we give a
brief introduction to integration over Euler characteristics. Next, we consider the univariate
case, which implies, in particular, an upper bound on the vanishing order of a multivariate
Noetherian function. As another application of the univariate result, we derive an upper
bound for the degree of nonholonomy of a system of polynomial vector fields. The last stage
of the proof for the multivariate case involves a lower bound on the codimension of the set
of intersections of high multiplicity.

2 Pfaffian functions and sub-Pfaffian sets

Pfaffian functions, introduced by Khovanskii at the end of the 1970s, are real or complex
analytic functions satisfying triangular systems of Pfaffian (first order partial differential)



Complexity of computations with Pfaffian and Noetherian functions 3

equations with polynomial coefficients. We use the notation K
n, where K is either R or C,

in the statements relevant to both cases.

2.1 Definition ([24, 25, 18]) A Pfaffian chain of the order r ≥ 0 and degree α ≥ 1 in an
open domain G ⊂ K

n is a sequence of analytic functions f1, . . . , fr in G satisfying differential
equations

dfj(x) =
∑

1≤i≤n

gij(x, f1(x), . . . , fj(x)) dxi (2.1)

for 1 ≤ j ≤ r. Here gij(x, y1, . . . , yj) are polynomials in x = (x1, . . . , xn), y1, . . . , yj of
degrees not exceeding α. A function f(x) = P (x, f1(x), . . . , fr(x)), where P (x, y1, . . . , yr) is
a polynomial of a degree not exceeding β ≥ 1, is called a Pfaffian function of order r and
degree (α, β). Note that the Pfaffian function f is defined only in the domain G where all
functions f1, . . . , fr are analytic, even if f itself can be extended as an analytic function to a
larger domain.

2.2 Remark This definition is more restrictive than the definition from [25], where the
Pfaffian chains are defined as sequences of nested integral manifolds of polynomial 1-forms.
Both definitions lead to essentially the same class of Pfaffian functions, although the orders
and degrees of Pfaffian chains for the same Pfaffian function can be different according to
these two definitions. We found Definition 2.1 to be more convenient to trace the behaviour
of parameters of Pfaffian functions under different operations.

More general definitions of Pfaffian functions, where the coefficients of (2.1) are not
necessarily polynomial, were considered in [29, 32]. Most of our constructions can be adjusted
to this more general definition, however upper bounds on the complexity may not be efficient
enough in this case.

2.3 Examples (a) Pfaffian functions of order 0 and degree (1, β) are polynomials of de-
grees not exceeding β.

(b) The exponential function f(x) = eax is a Pfaffian function of order 1 and degree
(1, 1) in R, due to the equation df(x) = af(x) dx. More generally, for i = 1, 2, . . . , r, let
Ei(x) := eEi−1(x), E0(x) = ax. Then Er(x) is a Pfaffian function of order r and degree (r, 1),
since dEr(x) = aE1(x) · · ·Er(x) dx.

(c) The function f(x) = 1/x is a Pfaffian function of order 1 and degree (2, 1) in the
domain {x ∈ R | x 6= 0}, due to the equation df(x) = −f 2(x) dx.

(d) The logarithmic function f(x) = ln(|x|) is a Pfaffian function of order 2 and degree
(2, 1) in the domain {x ∈ R | x 6= 0}, due to the equations df(x) = g(x) dx and dg(x) =
−g2(x) dx, where g(x) = 1/x.

(e) The polynomial f(x) = xm can be viewed as a Pfaffian function of order 2 and de-
gree (2, 1) in the domain {x ∈ R | x 6= 0} (but not in R), due to the equations df(x) =
mf(x)g(x) dx and dg(x) = −g2(x) dx, where g(x) = 1/x. In some cases a better way to deal
with xm is to change the variable x = eu reducing this case to (b).

(f) The function f(x) = tan(x) is a Pfaffian function of order 1 and degree (2, 1) in the
domain

⋂
k∈Z

{x ∈ R | x 6= π/2 + kπ}, due to the equation df(x) = (1 + f 2(x)) dx.

(g) The function f(x) = arctan(x) is a Pfaffian function in R of order 2 and degree (3, 1),
due to the equations df(x) = g(x) dx and dg(x) = −2xg2(x) dx, where g(x) = (x2 + 1)−1.
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(h) The function cos(x) is a Pfaffian function of order 2 and degree (2, 1) in the domain⋂
k∈Z

{x ∈ R | x 6= π + 2kπ}, due to the equations cos(x) = 2f(x)− 1, df(x) = −f(x)g(x) dx,
and dg(x) = ((1 + g2(x))/2) dx, where f(x) = cos2(x/2) and g(x) = tan(x/2). Also, since
cos(x) is a polynomial of degree m of cos(x/m), the function cos(x) is Pfaffian of order 2 and
degree (2,m) in the domain

⋂
k∈Z

{x ∈ R | x 6= mπ + 2kmπ}. The same is true, of course, for
any shift of this domain by a multiple of π. However, cos(x) is not a Pfaffian function in the
whole real line.

2.4 Lemma The sum (resp. product) of two Pfaffian functions f1 and f2 of orders r1 and
r2 and degrees (α1, β1) and (α2, β2) respectively, is a Pfaffian function of order r1 + r2 and
degree (α, max{β1, β2}) (resp. (α, β1 + β2)), where α = max{α1, α2}. If the two functions are
defined by the same Pfaffian chain of order r, then the orders of the sum and of the product
are both equal to r.

Proof Combine Pfaffian chains for f1 and f2 into a Pfaffian chain for f1 + f2 and f1f2. If a
Pfaffian chain is common for the two functions, then it is also a Pfaffian chain for their sum
and product. 2

2.5 Lemma A partial derivative of a Pfaffian function of order r and degree (α, β) is a
Pfaffian function having the same Pfaffian chain of order r and degree (α, α + β − 1).

Proof is straightforward. 2

2.6 Example (Fewnomials) Generalizing Example 2.3 (e), we can view a polynomial f ∈
R[x] = R[x1, . . . , xn] as a Pfaffian function in the following sense. Each monomial

fi1···in := ai1···inxi1
1 · · · xin

n

of f with ai1···in 6= 0 is a Pfaffian function in the domain G := {x ∈ K
n | x1 · · · xn 6= 0}, of

order n + 1 and degree (2, 1), due to the equations

dfi1···in =
∑

1≤j≤n

ijfi1···ingj dxj ,

dgj = −g2
j dxj ,

where gj = 1/xj . According to Lemma 2.4, f is a Pfaffian function in G of order n + m and
degree (2, 1), where m is the number of all monomials in f (with non-zero coefficients). Let
K be a set of all monomials of f . Then f is called a fewnomial with the support K.

A polynomial F = P (x1, . . . , xn, u1, . . . , um) of degree β in x1, . . . , xn, u1, . . . , um, where
x1, . . . , xn are variables and u1, . . . , um ∈ K are monomials, is called a fewnomial of pseudode-
gree β with support K. Obviously F is a Pfaffian function of order n+m and of degree (2, β).
Note that β may be different from the degree d of the polynomial P after the substitution of
the monomials uj. We call d the degree of F .

In the sequel we will reserve the term “polynomial” for Pfaffian functions of order 0 and
degree (1, β) (see Example 2.3 (a)).

We define specializations for the class of Pfaffian functions over R of more general concepts
of semi- and subanalytic sets (see, e.g., [4]).
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2.7 Definition (Semi-Pfaffian sets) A set X ⊂ R
n is called semi-Pfaffian in an open domain

G ⊂ R
n if it consists of points in G satisfying a Boolean combination F of some atomic

equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions having a common
Pfaffian chain defined in G. We will write X = {F}. A semi-Pfaffian set X is restricted
in G if its topological closure lies in G. A semi-Pfaffian set is called basic if the Boolean
combination is just a conjunction of equations and strict inequalities.

2.8 Definition (Sub-Pfaffian sets) A set X ⊂ R
n is called sub-Pfaffian in an open domain

G ⊂ R
n if it is an image of a semi-Pfaffian set under a projection into a subspace.

Our main object of study will be a following subclass of sub-Pfaffian sets.

2.9 Definition (Restricted sub-Pfaffian sets) Consider the closed cube Im+n := [−1, 1]m+n

in an open domain G ⊂ R
m+n and the projection map π : R

m+n → R
n. A subset Y ⊂ In is

called restricted sub-Pfaffian if Y = π(X) for a restricted semi-Pfaffian set X ⊂ Im+n.

A restricted sub-Pfaffian set need not be semi-Pfaffian as the following example, due to
Osgood [35], shows. This fact is the most significant difference between the theories of semi-
and sub-Pfaffian sets on the one hand, and semialgebraic sets on the other.

2.10 Example Let

Y := {(x, y, z) ∈ I3 | ∃u ∈ [0, 1] (y = xu, z = xeu)} ⊂ R
3.

Then Y is a two-dimensional restricted sub-Pfaffian set such that any real analytic function
vanishing on Y in the neighbourhood of the origin is identically zero. Hence Y is not semi-
Pfaffian.

Restricted sub-Pfaffian sets form a Boolean algebra. Finite unions and intersections of
arbitrary sub-Pfaffian sets are clearly sub-Pfaffian. The fact that complement of a restricted
sub-Pfaffian set in In is also restricted sub-Pfaffian is a particular case of Gabrielov’s com-
plement theorem [13]. We will consider an algorithmic version of this theorem in Section 7.

2.11 Definition (Format) Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M

{x ∈ R
s | fi1 = · · · = fiIi

, gi1 > 0, . . . , giJi
> 0} ⊂ G, (2.2)

where fij, gij are Pfaffian functions with a common Pfaffian chain of order r and degree (α, β),
defined in an open domain G. Its format is a tuple (r,N, α, β, s), where N ≥ ∑1≤i≤M (Ii+Ji).
For s = m + n and a sub-Pfaffian set Y ⊂ R

n such that Y = π(X), its format is the format
of X.

We will refer to the representation of a semi-Pfaffian set in the form (2.2) as to disjunctive
normal form (DNF ).

2.12 Remark In this paper we are concerned with upper bounds of various characteristics
of semi- and sub-Pfaffian sets and complexities of computations, as functions of the format.
In fact, these characteristics and complexities also depend on the domain G in which the
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corresponding Pfaffian chains are defined. Note that Definition 2.1 imposes no restrictions
on an open set G, thus allowing it to be arbitrarily complex and induce this complexity on the
corresponding semi- and sub-Pfaffian sets. To avoid this, we will always assume in the sequel
(unless explicitly stated otherwise) that G is “simple”, like R

n, In, {x | x1 > 0, . . . , xn > 0},
or {x | ‖x‖2 < 1}. A more general approach allows G to be a semi-Pfaffian set defined by
Pfaffian functions in a larger domain G′ ⊃ G, which in turn is defined by Pfaffian functions
in some G′′ ⊃ G′, and so on (see details in [16]).

3 Betti numbers of sub-Pfaffian sets

3.1 Topological complexity of semi-Pfaffian sets

We start with the following fundamental result of Khovanskii which can be considered as an
analog of Bezout’s theorem for Pfaffian functions.

3.1 Theorem ([24, 25]) Consider a system of equations f1 = · · · = fn = 0, where fi,
1 ≤ i ≤ n, are Pfaffian functions in a domain G ⊂ R

n, having a common Pfaffian chain of
order r and degrees (α, βi), respectively. Then the number of non-degenerate solutions of this
system does not exceed

M(n, r, α, β1, . . . , βn) := 2r(r−1)/2β1 · · · βn(min{n, r}α + β1 + · · · + βn − n + 1)r. (3.1)

Applying directly this result to fewnomials (see Example 2.6) f1, . . . , fn in the domain
{x | x1 > 0, . . . , xn > 0} ⊂ R

n, we get the upper bound

2(n+m)(n+m−1)/2(2n + 1)n+m

on the number of non-degenerate solutions of the system f1 = · · · = fn = 0. Here m is the
number of different monomials occurring in at least one of polynomials fi. There is, however,
a better upper bound.

3.2 Corollary The number of non-degenerate solutions of a system of polynomial equations
f1 = · · · = fn = 0 belonging to the octant {x | x1 > 0, . . . , xn > 0} does not exceed

2m(m−1)/2(n + 1)m,

where m is the number of different monomials occurring in at least one of the polynomials fi.

Proof Making a change of variables xj = eyj we reduce the system f1 = · · · = fn = 0 to a
system of linear equations in m exponential functions of the kind ei1y1+···+inyn . The left-hand
sides of these equations are Pfaffian functions in R

n having a common Pfaffian chain of order
m and degrees equal to (1, 1). Now the bound follows directly from Theorem 3.1. 2

Theorem 3.1 implies various upper bounds on the topological complexity of a semi-Pfaffian
set as functions of the format by applying almost without change some well-developed tech-
niques for semialgebraic sets. Here is an example.
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3.3 Corollary Consider a system of equations f1 = · · · = fk = 0, where fi, 1 ≤ i ≤ k,
are Pfaffian functions in a domain G ⊂ R

n, having a common Pfaffian chain of order r and
degrees (α, βi), respectively. Then the number of connected components of X := {f1 = · · · =
fk = 0} does not exceed

2r(r−1)/2+1β(α + 2β − 1)n−1((2n − 1)(α + β) − 2n + 2)r, (3.2)

where β := max1≤i≤k{βi}.
Proof (cf. [33]) Choose a large enough positive R ∈ R such that {x ∈ X | ‖x‖2 ≤ R} has the
same number of connected components as X. For a sufficiently small real ε > 0 the number
of connected components of X does not exceed the number of connected components of the
smooth compact hypersurface Xε := {F = 0}, where F := f 2

1 + · · · + f 2
k + ε(‖x‖2 − R).

After a generic rotation of coordinates in R
n, the projection of Xε on any of them is a

Morse function. In particular, all solutions of the system of equations

F =
∂F

∂x2
= · · · =

∂F

∂xn
= 0 (3.3)

are non-degenerate and thus, by Theorem 3.1 and Lemma 2.5, their number does not exceed
(3.2). Because Xε is compact, each of its connected components contains a solution of system
(3.3). This concludes the proof. 2

The most general (to our knowledge) upper bound on the topological complexity of semi-
Pfaffian sets is provided by the following theorem (see [49]).

3.4 Theorem Consider a semi-Pfaffian set X := {F} ⊂ G ⊂ R
n, where G is an open do-

main, F is either a conjunction of equations and strict inequalities or a Boolean combination
(with no negations) of non-strict inequalities. Let F contain equations or inequalities of the
kind f ∗ 0, where ∗ ∈ {=, >,≥}, and there are s different Pfaffian functions f in G having a
common Pfaffian chain of order r and degree (α, β). Then the sum of the Betti numbers of
X does not exceed

sn2r(r−1)/2O(nβ + min{n, r}α)n+r. (3.4)

This theorem is a direct analog of the Basu [2] refinement of the Petrovskii-Oleinik-
Thom-Milnor [37, 34, 42, 33] bounds for semialgebraic sets, and can be proved in a similar
way replacing references to Bezout’s theorem by references to Khovanskii’s Theorem 3.1.

3.5 Remark Corollary 3.3, Theorem 3.4, and most of the other upper bounds for Pfaffian
functions appearing in the sequel can be reformulated for a particular case of fewnomials
similar to how it was done for Theorem 3.1. These specifications are straightforward and will
be omitted.

3.2 Number of consistent sign assignments

3.6 Definition For a given finite family h1, . . . , hk of Pfaffian functions hi in an open domain
G define its consistent sign assignment as a non-empty semi-Pfaffian set in G of the kind

{x ∈ G | hi1 = · · · = hik1
= 0, hik1

+1 > 0, . . . , hik2
> 0, hik2

+1 < 0, . . . , hik < 0},

where i1, . . . , ik1 , . . . , ik2 , . . . , ik is a permutation of 1, . . . , k.
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3.7 Theorem ([18]) Let h1, . . . , hk be Pfaffian functions in G having a common Pfaffian
chain of order r and degrees (α, β1), . . . , (α, βk), respectively. Then the number of distinct
consistent sign assignments for h1, . . . , hk does not exceed

min{3k, 2r(r−1)/2+1(2n + 1)r(α + 8kβ)n+r+1},

where β := max1≤i≤k{βi}.

Proof The bound 3k is trivial. Choose in every consistent sign assignment one arbitrary
point. Let Λ be the set of all chosen points. There exists a positive ε ∈ R such that for
every x ∈ Λ and every i = 1, . . . , k the inequality hi(x) > 0 implies hi(x) > ε, and hi(x) < 0
implies hi(x) < −ε. It is easy to prove that the number of consistent sign assignments does
not exceed the number of connected components of the semi-Pfaffian set

S :=

{
x ∈ G | h :=

∏

1≤i≤k

(hi + ε)2(hi − ε)2 > 0

}
.

For a small enough positive δ < ε, the number of connected components of S does not exceed
the number of connected components of {x ∈ G | h = δ}. It remains to apply Corollary 3.3
to {x ∈ G | h = δ}. 2

3.3 Sub-Pfaffian sets defined by formulae with quantifiers

We now address the problem of estimating the topological complexity of restricted sub-
Pfaffian sets. Until recently this question did not have a satisfactory solution even in the
particular case of projections of semialgebraic sets defined by Boolean formulae. In the Pfaf-
fian category the situation is further complicated by the fact that the quantifier elimination
process cannot be used.

In this section we describe a reduction of estimating of Betti numbers of sets defined by
formulae with quantifiers to a similar problem for sets defined by quantifier-free formulae.
More precisely, let X be a subset in In0 = [−1, 1]n0 ⊂ R

n0 defined by a formula

X = {x0 | Q1x1Q2x2 · · ·Qνxν((x0, x1, . . . , xν) ∈ Xν)}, (3.5)

where Qi ∈ {∃,∀}, Qi 6= Qi+1, xi ∈ R
ni , and let Xν be either an open or a closed set in

In0+···+nν being a difference between a finite CW -complex and one of its subcomplexes. For
instance, if ν = 1 and Q1 = ∃, then X is the projection of Xν .

We express an upper bound on each Betti number of X via a sum of Betti numbers of some
sets defined by quantifier-free formulae involving Xν . In conjunction with Theorem 3.4 this
implies an upper bound for restricted sub-Pfaffian sets defined by formulae with quantifiers.

Throughout this section each topological space is assumed to be a difference between a
finite CW -complex and one of its subcomplexes.

3.8 Example The closure X of the interior of a compact set Y ⊂ In is homotopy equivalent
to

Xε,δ = {x | ∃y(‖x − y‖ ≤ δ) ∀z(‖y − z‖ < ε) (z ∈ Y )}
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for small enough δ, ε > 0 such that δ � ε. Representing Xε,δ in the form (3.5), we conclude
that X is homotopy equivalent to Xε,δ = {x | ∃y ∀z X2}, where

X2 = {(x, y, z) | (‖x − y‖ ≤ δ ∧ (‖y − z‖ ≥ ε ∨ z ∈ Y ))}

is a closed set in I3n. Our results allow to bound from above the Betti numbers of X in
terms of the Betti numbers of some sets defined by quantifier-free formulae involving X2.

3.4 A spectral sequence associated with a surjective map

3.9 Definition A continuous map f : X → Y is locally split if for any y ∈ Y there is an
open neighbourhood U of y and a section s : U → X of f (i.e., s is continuous and fs = Id).
In particular, a projection of an open set in R

n on a subspace of R
n is always locally split.

For any two continuous surjective maps f1 : X1 → Y and f2 : X2 → Y , define the
operation ×Y :

X1 ×Y X2 :=
⋃

y∈Y

f−1
1 (y) × f−1

2 (y).

Note that if Y is a singleton, then X1 ×Y X2 coincides with the usual Cartesian product
X1 × X2.

3.10 Theorem ([20]) Let f : X → Y be a surjective cellular map. Assume that f is either
closed or locally split. Then for any Abelian group G, there exists a spectral sequence E r

p,q

converging to H∗(Y,G) with

E1
p,q = Hq(Wp, G), (3.6)

where

Wp = X ×Y · · · ×Y X︸ ︷︷ ︸
p+1 times

. (3.7)

In particular,

dim Hk(Y,G) ≤
∑

p+q=k

dim Hq(Wp, G) (3.8)

for all k.

3.11 Remark Let X,Y ⊂ R
n and f a surjective cellular map satisfying the following prop-

erty. For any convergent sequence in Y there is an infinite subsequence which is an f -image
of a convergent sequence in X. This condition includes both the closed and the locally split
cases and may be more convenient for applications. For such an f , Theorem 3.10 is also true.

3.5 Upper bounds for Betti numbers of sub-Pfaffian sets

Let X = X0 ⊂ R
n0 be a sub-Pfaffian set defined by a formula

Q1x1Q2x2 · · ·QνxνF(x0, x1, . . . , xν), (3.9)

where F is a quantifier-free Boolean formula with no negations having s atoms of the kind
f > 0. Let all f ’s be Pfaffian functions in an open domain G having a common Pfaffian chain
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of order r and degrees at most (α, β). Assume for definiteness that X is closed (the case of
an open set is similar).

Consider first the case of a single quantifier Q1 = ∃. Then ν = 1 and (3.9) reduces to
∃x1X1, where X1 = {F(x0, x1)}. Note that in this case X = f(X1), where f is the projection
map onto a subspace. According to Theorem 3.10,

bq0(X) ≤
∑

p1+q1=q0

bq1(X1 ×X · · · ×X X1︸ ︷︷ ︸
p1+1 times

), (3.10)

where bi stands for the ith Betti number. Observe that X1 ×X · · · ×X X1 is a closed set
definable by a Boolean combination with no negations of (p1 + 1)s atoms of the kind g > 0,
where the g’s are Pfaffian functions in an open domain G ⊂ R

n0+(p1+1)n1 having a common
Pfaffian chain of order (p1 + 1)r, degrees (α, β), and n0 + (p1 + 1)n1 variables. Let tk :=
n0 + (k + 1)n1. According to Theorem 3.4, for any q1 ≤ dim(X),

bq1(X1 ×X · · ·×X X1) ≤ ((p1 + 1)s)tp1 2(p1+1)r((p1+1)r−1)/2O(tp1β + min{p1r, tp1}α)tp1+(p1+1)r.

Then, due to (3.10), for any k ≤ dim(X) ≤ n0,

bk(X) ≤
∑

p1+q1=k

bq1(X1 ×X · · · ×X X1)

≤ k((k + 1)s)tk 2(k+1)r((k+1)r−1)/2O(tkβ + min{kr, tk}α)tk+(k+1)r.

Relaxing the obtained bound, we get

bk(X) ≤ (ks)O(tk)2(O(kr))2(tk(α + β))O(tk+kr).

In [20] this bound is generalized for formulae with ν quantifiers. More precisely, if X ⊂ R
n0

is defined by (3.9), then for any k ≤ dim(X) ≤ n0,

bk(X) ≤ sO(uν)2O(νuν+r2v2
ν)(uν(α + β))O(uν+rvν),

where
uν := 2νn0n1 · · ·nν, vν := 22νn2

0n
2
1 · · ·n2

ν−2nν−1.

4 Multiplicities of Pfaffian intersections

4.1 Definition A deformation of a Pfaffian function f(x) in G ⊂ K
n is an analytic function

θ(x, ε) in a domain G′ ⊂ K
n+1 such that G = G′ ∩{ε = 0}, θ(x, 0) = f(x), and, for a fixed ε,

the function θ(x, ε) is Pfaffian having the same Pfaffian chain and the same degree as f(x).

4.2 Definition Let f1(x), . . . , fn(x) be Pfaffian functions in G ⊂ K
n. The multiplicity at

y ∈ G of the Pfaffian intersection f1 = · · · = fn = 0 is the maximal number of isolated
complex solutions, for a fixed ε 6= 0, of the system of equations θ1(x, ε) = · · · = θn(x, ε) = 0
converging to y as ε → 0. Here θi(x, ε) is any deformation of fi(x) for all 1 ≤ i ≤ n.

4.3 Theorem ([11]) Let f1(x), . . . , fn(x) be Pfaffian functions in G ⊂ K
n having a common

Pfaffian chain of order r and degrees (α, β1), . . . , (α, βn), respectively. Then the multiplicity
of the Pfaffian intersection f1 = · · · = fn = 0 at any point y ∈ G does not exceed (3.1).
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4.4 Corollary (Pfaffian  Lojasiewicz inequality [11]) Let f be a Pfaffian function in an
open domain G ⊂ R

n of order r and degree (α, β). Then there is a neighbourhood U of {f = 0}
in G such that for any x ∈ U ,

|f(x)| ≥ C(dist(x, {f = 0}))q ,

for a real C > 0 and a positive integer

q ≤ 2r(r−1)+14n−1β(α + β − 1)n−1(min{n, r}α + (n − 1)(4α + 3β − 5) + β)r

≤ 2r(r−1)+1O(n)rO(α + β)n+r.

The following corollary will be needed in Section 5 for proving upper bounds on the
frontier and closure of a semi-Pfaffian set and for an algorithm which computes frontier and
closure.

Let

K(m,n, r, α, β) := M(n, r, α, β, . . . , β︸ ︷︷ ︸
m+1

, τm, . . . , τm︸ ︷︷ ︸
n−m−1

),

where M(n, r, α, β1, . . . , βn) is defined in (3.1) and τm = (m + 2)(α + β − 1). Let

K(n, r, α, β) := max
0≤m<n

K(m,n, r, α, β).

4.5 Corollary ([14]) Let f1, . . . , fI , g1, . . . , gJ be Pfaffian functions in a domain G ⊂ R
n

having a common Pfaffian chain of order r and degrees (α, β) each. Let κ > K(n, r, α, β) be
an integer. For a point y ∈ G, let Fi(x, y) be the Taylor expansion of fi(x) at y of order κ2,
and let Gj(x, y) be the Taylor expansion of gj(x) at y of order κ. Then the closure of the
semi-Pfaffian set

X := {x ∈ G | f1(x) = · · · = fI(x) = 0, g1(x) > 0, . . . , gJ (x) > 0}

contains y if and only if the closure of the following semialgebraic set Xy contains y:

Xy := {x ∈ G | Fi(x, y) ≤ |x−y|κ2
, for i = 1, . . . , I, Gj(x, y) > |x−y|κ, for j = 1, . . . , J}.

The next corollary will be needed in Section 6 for a stratification algorithm.

4.6 Definition For a set of differentiable functions h = (h1, . . . , hk), a set of distinct indices
i = (i1, . . . , ik) with 1 ≤ iν ≤ n, and an index j, 1 ≤ j ≤ n, different from all iν we define a
partial differential operator

∂h,i,j := det




∂h1/∂xi1 . . . ∂h1/∂xik ∂h1/∂xj

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
∂hk/∂xi1 . . . ∂hk/∂xik ∂hk/∂xj

∂/∂xi1 . . . ∂/∂xik ∂/∂xj


 .

When k = 0, the corresponding operator is simply ∂j := ∂/∂xj . For m ≥ 0 we define ∂m
h,i,j

(resp. ∂m
j ) as the mth iteration of ∂h,i,j (resp. ∂j).
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4.7 Corollary Let i = (i1, . . . , ik) be a set of distinct indices, 1 ≤ iν ≤ n. Let f be a Pfaffian
function in an open neighbourhood G of a point x ∈ R

n of order r and degree (α, βk+1). Let
h = (h1, . . . , hk) be a set of Pfaffian functions in G of order r and degrees (α, β1), . . . , (α, βk)
respectively, each having the same Pfaffian chain as f , and such that h1(x) = · · · = hk(x) = 0,

det




∂h1/∂xi1 . . . ∂h1/∂xik

. . . . . . . . . . . . . . . . . . . . . . . . .
∂hk/∂xi1 . . . ∂hk/∂xik


 (x) 6= 0.

Suppose that ∂m1
h,i,1 · · · ∂mn

h,i,nf(x) = 0 for 0 ≤ m1 + · · · + mn ≤ M(k + 1, r, α, β1, . . . , βk+1),
mi1 = · · · = mik = 0. Then f vanishes identically on {y ∈ R

n | h1(y) = · · · = hk(y) = 0} in
the neighbourhood of x.

5 Frontier and closure of a semi-Pfaffian set

5.1 Bounds on formats of frontier and closure

5.1 Definition The closure X̄ of a set X in an open domain G is the intersection with G
of the usual topological closure of X:

X̄ := {x ∈ G | ∀ε > 0 ∃y ∈ X (|x − y| < ε)}.

The frontier ∂X of X in G is ∂X := X̄ \ X.

From the definition one could hope to infer that the closure and frontier of a semi-Pfaffian
set are sub-Pfaffian. It turns out that a much stronger statement is true: closure and frontier
are actually semi-Pfaffian.

5.2 Theorem ([14]) Consider a semi-Pfaffian set in disjunctive normal form (DNF)

X :=
⋃

1≤i≤M

{x ∈ G | fi1 = · · · = fiIi
= 0, gi1 > 0, . . . , giJi

> 0} ⊂ R
n

having format (r,N, α, β, n). Then the closure X̄ and frontier ∂X of X in G are semi-Pfaffian
sets which can be represented in DNF with the format of X̄ being (r,N ′, α, β′, n), where

N ′ = (ND)(n+r+1)O(n),

β′ = DO(n), D = β + α(K(n, r, α, β) + 1)2, and K(n, r, α, β) is as defined in Section 4. The
format of ∂X is (r,N ′′, α, β′, n), where

N ′′ = (ND)(n+r+1)2O(n).

Proof The idea is to reduce the problem of describing the closure to the semialgebraic case
using Corollary 4.5.

Since the closure of the union of sets equals to the union of closures, it is sufficient to
consider just the case of a basic semi-Pfaffian set

X := {x ∈ G | f1 = · · · = fI = 0, g1 > 0, . . . , gJ > 0}
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with I + J = N . We let κ := K(n, r, α, β) + 1 and use the notations from Corollary 4.5.
According to Corollary 4.5, the closure X̄ contains y ∈ G if and only if y belongs to the
closure X̄y. Let h1(x), . . . , hr(x) be the common Pfaffian chain for fi, gj , (i = 1, . . . , I,
j = 1, . . . , J). Direct calculation shows that

Fi(x, y) = Φi(x, y, h1(y), . . . , hr(y)) and Gj(x, y) = Ψj(x, y, h1(y), . . . , hr(y)),

where Φi and Ψj are polynomials in x, y, and h = (h1, . . . , hr), of degrees not exceeding
β + ακ2 and β + ακ, respectively.

Thus, y ∈ X̄ if and only if

(y, h1(y), . . . , hr(y)) ∈ {(z, h1, . . . , hr) ∈ G × R
r | ∀ε > 0 ∃x (|x − z| ≤ ε,

Φi(x, z, h) ≤ |x − z|κ2
for i = 1, . . . , I, Ψj(x, z, h) > |x − z|κ for j = 1, . . . , J)}, (5.1)

where z = (z1, . . . , zn) are variables. Formula

∀ε > 0 ∃x (|x − z| ≤ ε,

Φi(x, z, h) ≤ |x − z|κ2
for i = 1, . . . , I, Ψj(x, z, h) > |x − z|κ for j = 1, . . . , J) (5.2)

of the first order theory of R contains two blocks of quantifiers of sizes 1 (for ε) and n (for x),
n+r free variables, and N polynomials of degrees at most β +ακ2. According to the efficient
quantifier elimination algorithm [38] (see also [3]), there is an equivalent (defining the same
set in R

n+r) quantifier-free formula in DNF with format (r,N ′, α, β′, n). Substituting hk(y)
for hk into this formula, we obtain a semi-Pfaffian set in DNF with the properties required
in the theorem.

The statement for ∂X = X̄ \ X follows from the statement for X̄, using Theorem 3.7 to
represent the difference of two sets in DNF as a set in DNF. 2

5.2 Complexity of computing frontier and closure

The proof of Theorem 5.2 shows that closure and frontier of a semi-Pfaffian set can be
efficiently computed. Indeed, for given input functions fi1, . . . , fiIi

, gi1, . . . , giJi
, i = 1, . . . ,M ,

we can write out an explicit formula (5.2) with concrete polynomials Φi(x, z, h), Ψj(x, z, h),
and concrete integer κ. Then the quantifier elimination algorithm from [38, 3] is applied,
which represents the closure X̄ as a quantifier-free formula in DNF. To find the frontier ∂X,
the algorithm first lists all consistent sign assignments for the family of all Pfaffian functions
involved in DNF formulae for X and X̄. Then it selects all the assignments A which lie in
X̄ and do not lie in X, by checking whether A ∩ X̄ 6= ∅ and A ∩ X = ∅. The union of the
selected assignments coincides with ∂X.

In order to estimate the “efficiency” of a computation we need to specify more precisely
a model of computation. As such we use a real numbers machine which is an analogy of a
classical Turing machine but allows the exact arithmetic and comparisons on real numbers.
Since we are interested only in upper complexity bounds for algorithms, we have no need
in a formal definition of this model of computation (it can be found in [5]). In most of
our computational problems we will need to modify the standard real numbers machine by
equipping it with an oracle for deciding feasibility of any system of Pfaffian equations and
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inequalities. An oracle is a subroutine which can be used by a given algorithm any time the
latter needs to check feasibility. We assume that this procedure always gives a correct answer
(“true” or “false”) though we do not specify how it actually works1. An elementary step
of a real numbers machine is either an arithmetic operation, or a comparison (branching)
operation, or an oracle call. The complexity of a real numbers machine is the number of
elementary steps it makes in the worst case until termination, as a function of the format of
the input.

Using the complexity upper bound for the quantifier elimination procedure from [38, 3],
we obtain the following statement.

5.3 Theorem There are two algorithms which for an input semi-Pfaffian set X defined as
in Theorem 5.2 produce the closure X̄ and the frontier ∂X, respectively, representing them as
semi-Pfaffian sets in DNF with formats described in Theorem 5.2. The algorithm for X̄ does
not use the oracle, its complexity does not exceed (ND)(n+r+1)O(n). The algorithm for ∂X uses
at most (ND)(n+r+1)O(n) calls of the oracle, its complexity does not exceed (ND)(n+r+1)2O(n).

5.4 Remark An analysis of the proofs of Theorems 5.2 and 5.3 easily shows that they are
also true in a parametric form. More precisely, consider a set X(t) defined by a formula in
DNF, where all atomic Pfaffian functions fij, gij depend on variables x ∈ R

n and t ∈ R
s.

Then there is an algorithm which computes formulae Γ(x, t) and ∆(x, t) in DNF such that
for any fixed t0 ∈ R

s we have {x ∈ R
n | Γ(x, t0)} = X(t0) and {x ∈ R

n | ∆(x, t0)} = ∂X(t0).
Upper bounds on the formats of Γ(x, t), ∆(x, t), and on the complexity of the algorithm are
similar to the analogous bounds from Theorems 5.2 and 5.3.

5.3 Infinitesimal quantifiers

Theorems 5.2 and 5.3 can be interpreted using a language of “infinitesimal quantifiers” [39].

5.5 Definition Let F(x, y) be a Boolean combination of some atomic equations and in-
equalities f = 0, g > 0, where f, g are Pfaffian functions in variable vectors x ∈ R

n, y ∈ R
m

in an open domain G ⊂ R
n+m. Then

• (∃y ∼ 0)F stands for ∀ε > 0 ∃y (|y| < ε and F),

• (∀y ∼ 0)F stands for ∃ε > 0 ∀y (if |y| < ε, then F).

The operators (∃y ∼ 0) and (∀y ∼ 0) are called infinitesimal quantifiers, and can be read
“there exists an arbitrarily small y such that F is true” and “for all sufficiently small y, F
is true”, respectively.

It is easy to see that

¬((∃y ∼ 0)F) ≡ (∀y ∼ 0)¬F and ¬((∀y ∼ 0)F) ≡ (∃y ∼ 0)¬F . (5.3)

Infinitesimal quantifiers are convenient for describing some ε/δ-constructions.

1For some classes of Pfaffian functions the feasibility problem is decidable on standard real numbers ma-
chines or Turing machines. Apart from polynomials, such a class is formed, for example, by terms of the kind
P (ex1 , x1, x2, . . . , xn), where P is a polynomial in the variables x0, x1, . . . , xn (see [45]). For such classes the
oracle can be replaced by a deciding procedure, and we get an algorithm in the usual sense.
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5.6 Example A point x is a local maximum of a Pfaffian function f if and only if

(∀y ∼ 0)((y 6= 0) → (f(x + y) ≤ f(x))).

It is not immediately obvious that the set of all local maxima of f is semi-Pfaffian.

Unlike ordinary quantifiers, the infinitesimal ones can be eliminated in the restricted case.
Due to (5.3), it is sufficient to prove this just for the existential quantifier.

Consider in an open domain G a semi-Pfaffian set X := {(x, y) ∈ G | F(x, y)} ⊂
In+m ⊂ G and the projection map π : X → R

n on the subspace of the x-coordinates. Let
X(x) := π−1(x) ∩ X.

5.7 Lemma The set {x ∈ In | (∃y ∼ 0)F(x, y)} coincides with {x ∈ In | (x, 0) ∈ X(x)},
where 0 is the origin in R

m.

Proof If a semi-Pfaffian set Z is contained in the closed cube Im, then its topological closure
coincides with Z̄. Then the statement (∃y ∼ 0)(y ∈ Z) is equivalent to 0 ∈ Z̄. It follows
that for any fixed x ∈ In the statement (∃y ∼ 0)F(x, y) is equivalent to (x, 0) ∈ X(x). 2

Due to Remark 5.4, the set {x ∈ In | (x, 0) ∈ X(x)} is semi-Pfaffian, with explicit
upper bounds on the format and on the complexity of the algorithm for computing this set.
Lemma 5.7 implies that the same is true for the set {x ∈ In | (∃y ∼ 0)F(x, y)}.

In particular, the set of all points of local maxima (Example 5.6) is semi-Pfaffian. In [39]
the singular locus of a semi-Pfaffian set in In is defined by a formula using only infinitesimal
quantifiers, thus the singular locus is semi-Pfaffian with an explicit upper bound on the
format.

6 Stratification of a semi-Pfaffian set

In [46] Whitney proved that an algebraic set in R
n can be represented as a finite disjoint union

of smooth manifolds which are semialgebraic sets.  Lojasiewicz [30, 31] extended Whitney’s
theorem to the class of real semianalytic sets. Later Gabrielov [13] showed, as a part of an
elementary proof of his complement theorem, that the smooth strata of a semianalytic set
X can be defined by functions belonging to the smallest extension of a family of functions
defining X which is closed under addition, multiplication and taking partial derivatives.
Important classes sharing this property are Pfaffian functions and their special subclasses:
polynomials, fewnomials, exponential polynomials. Combined with estimates on multiplicities
of Pfaffian intersection from Section 4, this result allows to construct an algorithm which
produces a smooth stratification of a semi-Pfaffian set, to estimate its complexity, and to
bound formats of the resulting strata [18]. Similar results are true for sets in C

n defined by
Boolean combinations of atomic formulae of the kind f = 0 and f 6= 0, where f is a Pfaffian
function over C.

6.1 Definition A weak stratification of a semi-Pfaffian set X is a partition of X into a
disjoint union of smooth (i.e., nonsingular), not necessarily connected, possibly empty, semi-
Pfaffian subsets Xi called strata. A stratification is basic if all strata are basic semi-Pfaffian
sets which are effectively nonsingular, i.e., the system of equations and inequalities for each
stratum Xi of codimension k includes a set of k Pfaffian functions hi1, . . . , hik such that the
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restriction hij |Xi
≡ 0 for j = 1, . . . , k, and dhi1 ∧ · · · ∧ dhik 6= 0 at every point of Xi. Note

that we do not require the boundary of a stratum to coincide with a union of some other
strata, let alone any regularity conditions.

Consider a semi-Pfaffian set X defined by (2.2) having a format (r,N, α, β, n). Let

B := (α + β + 1)(r+1)O(n)
.

6.2 Theorem ([18]) There is an algorithm (without an oracle) which produces a finite basic
weak stratification of a semi-Pfaffian set X. The number of strata (some of which may be
empty) is Nn+rB, each having the format (r,NB, α,B, n). The complexity of the algorithm
does not exceed 3NNn+1B. If the oracle is allowed, the algorithm produces only non-empty
strata and its complexity does not exceed N n+rB.

Outline of a proof (inspired by [46, 13]). Let X = {x ∈ R
2 | f(x) = 0, g(x) > 0}

be a basic semi-Pfaffian set (curve) in R
2, and let zero be a regular value of f . Then the

sets X1 := {x ∈ X | (∂1f, ∂2f)(x) 6= 0} and X2 := {x ∈ X | (∂1f, ∂2f)(x) = 0} form a
stratification of X. If zero is a singular value of f , then to define a stratification we will need
to consider partial derivatives of f of higher orders, but, due to Corollary 4.7, not higher
than M(1, r, α, β). The proof of the theorem is a far-reaching generalization of this idea.

Assume that the use of the oracle is allowed. Note that Theorem 3.7 can be turned into
an algorithm (with oracle) for listing all consistent sign assignments for a given family of
Pfaffian functions. Thus, we can assume that X is a basic semi-Pfaffian set defined by a
system of equations and strict inequalities:

X := {x | f1(x) = · · · = fλ(x) = 0, g1(x) > 0, . . . , gµ(x) > 0}.

We now employ the notation for partial differential operators from Definition 4.6. Ad-
ditionally, let M1 := M(1, r, α, β), βk := β + (Mk − 1)((α − 1)k + β1 + · · · + βk−1) and
Mk+1 := M(k + 1, r, βk, β1, . . . , βk).

Consider a list of all partial derivatives ∂qn
n . . . ∂q1

1 of functions fj with q1 + · · · + qn ≤
M(0, r, α, β), ordered lexicographically in (qn, . . . , q1, j). Let X0 ⊂ X be a subset where all
these derivatives vanish. According to Corollary 4.7, all the functions fj are identically zero
in a neighbourhood of each x ∈ X0, hence X0, if nonempty, is a smooth open set in R

n

coinciding with X.

Suppose now that X0 = ∅, thus there can be found a function fj 6≡ 0. Then any x ∈ X
belongs to one and only one of the sets

Z1
j1,m1 ⊂ X, m1 := (m1

i1 , . . . ,m
1
1), m1

1 + · · · + m1
i1 ≤ M1, m1

i1 > 0,

at whose points the derivative h′
1 := ∂

m1
i1

i1
. . . ∂

m1
1

1 fj1 is different from 0, while all derivatives

in the lexicographically ordered list preceding h′
1 vanish. Let h1 := ∂

m1
i1
−1

i1
∂

m1
i1−1

i1
· · · ∂m1

1
1 fj1,

so that h′
1 = ∂i1h1, and consider a smooth manifold Y 1 := {x ∈ X | h1(x) = 0, h′

1(x) 6= 0} ⊃
Z1

j1,m1 of codimension 1. Denote by F 1 the set of all functions that appear in the equations

defining Z1
j1,m1 . Note that for any i < i1 all functions from F 1, including h1, do not depend

on xi, due to Corollary 4.7.
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We now consider partial derivatives

∂̂qn
n · · · ∂̂qi1+1

i1+1 := ∂qn

h1,i1,n · · · ∂
qi1+1

h1,i1,i1+1

of functions fν ∈ F 1, ν = (qi1 , . . . , q1, j), “along” the manifold Y 1 ∩ {xi = 0 | i < i1} with
qi1+1 + · · ·+qn ≤ M2, ordered lexicographically in (qn, . . . , qi1+1, ν). Let X1

j1,m1 ⊂ Y 1∩{xi =

0 | i < i1} be a subset of X where all these derivatives vanish. According to Corollary 4.7,
all the functions fν are identically zero on Y 1 ∩ {xi = 0 | i < i1} in a neighbourhood of each
x ∈ X1

j1,m1 , hence X1
j1,m1 , if nonempty, is an open submanifold of Y 1 ∩ {xi = 0 | i < i1}.

Since all the functions in the equations defining X 1
j1,m1 and Y 1 do not depend on xi, for

i < i1, this implies that X1
j1,m1 is a smooth manifold of codimension 1.

If x 6∈ X1
j1,m1 , then x belongs to one and only one of the sets

Z2
j1,j2,m1,m2 ⊂ Z1

j1,m1 , m2 = (m2
i2 , . . . ,m

1
1), m2

i1+1 + · · · + m2
i2 ≤ M2,

m2
i2 > 0, (m2

i1 , . . . ,m
2
1, j2) ≺ (m1

i1 , . . . ,m
1
1, j1),

where ≺ is the lexicographic order, at whose points the derivative h′
2 := ∂̂

m2
i2

i2
· · · ∂̂m2

i2
1 fj2

(where ∂̂i := ∂h1,i1,i) is different from 0, while all derivatives in the lexicographically ordered
list preceding h′

2 vanish. Let

h2 := ∂̂
m2

i2
−1

i2
∂

m2
i2−1

i2
· · · ∂m2

1
1 fj2 ,

so that
h′

2 = ∂̂i2h2 = ∂i1h1(x)∂i2h2(x) − ∂i2h1(x)∂i1h2(x),

and consider a smooth manifold

Y 2 := {x ∈ X | h1(x) = h2(x) = 0, h′
2(x) 6= 0} ⊃ Z2

j1,j2,m1,m2

of codimension 2.
The continuation of this procedure for k = 2, . . . , n leads to the consecutive definition of

the sets Xk
j1,...,jk,m1,...,mk , where

1 ≤ jt ≤ λ, 0 ≤ mt
1 + · · · + mt

i1 ≤ M1, . . . , 0 ≤ mt
it−1+1 + · · · + mt

it ≤ Mt, mt
it > 0,

(mt
is , . . . ,m

t
1, jt) ≺ (ms

is , . . . ,m
s
1, js) for 1 ≤ s ≤ t.

The same arguments as above show that the sets Xk
j1,...,jk,m1,...,mk form a stratification of X,

i.e., they are disjoint smooth manifolds, and their union is X. The number of strata, their
formats, and complexity of producing them can be estimated from the process of generating
the sets Xk

j1,...,jk,m1,...,mk . 2

7 Cylindrical decompositions of sub-Pfaffian sets

In [10] it was proved that the complement of any subanalytic set in a cube In is also subana-
lytic. This complement theorem plays a key role in real analytic geometry (see [4, 8]) and in
the model-theoretic study of o-minimality [9, 47].
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The complement theorem immediately follows from the existence of a cylindrical cell de-
composition of the ambient space compatible with a given subanalytic set. The existence was
proved in [13] by means of a quasi-constructive process of manipulation with symbols of real
analytic functions and their derivatives. In [19] the method from [13] was modified, so that
being applied to a sub-Pfaffian set it yields an algorithm producing a cylindrical cell decom-
position of this set. There is also an alternative algorithm for a cylindrical decomposition
with a slightly better complexity bound [36].

For the special case of semialgebraic sets similar complexity results are known for a
cylindrical cell decomposition problem [7, 48], and significantly better results are known for
the quantifier elimination problem (the latter is stronger than the complement theorem).

7.1 Definition A cylindrical cell is defined by induction as follows.

(1) A cylindrical 0-cell in R
n is an isolated point.

(2) A cylindrical 1-cell in R is an open interval (a, b) ⊂ R.

(3) For n ≥ 2 and 0 ≤ k < n, a cylindrical (k+1)-cell in R
n is either a graph of a continuous

bounded function f : C → R, where C is a cylindrical (k + 1)-cell in R
n−1, or else a set

of the form

{(x1, . . . , xn) ∈ R
n | (x1, . . . , xn−1) ∈ C and f(x1, . . . , xn−1) < xn < g(x1, . . . , xn−1)},

where C is a cylindrical k-cell in R
n−1, and f, g : C → R are continuous bounded

functions such that f(x1, . . . , xn−1) < g(x1, . . . , xn−1) for all points (x1, . . . , xn−1) ∈ C.

The definition implies that any k-cell is homeomorphic to an open k-dimensional ball.

7.2 Definition A cylindrical cell decomposition D of a subset A ⊂ R
n is defined by induction

as follows.

(1) If n = 1, then D is a finite family of pair-wise disjoint cylindrical cells (i.e., isolated
points and intervals) whose union is A.

(2) If n ≥ 2, then D is a finite family of pair-wise disjoint cylindrical cells in R
n whose

union is A and there is a cylindrical cell decomposition of π(A) such that π(C) is its
cell for each C ∈ D, where π : R

n → R
n−1 is the projection map onto the coordinate

subspace of x1, . . . , xn−1.

7.3 Definition Let B ⊂ A ⊂ R
n and D a cylindrical cell decomposition of A. Then D is

compatible with B if for any C ∈ D we have either C ⊂ B or C ∩ B = ∅ (i.e., some subset
D′ ⊂ D is a cylindrical cell decomposition of B).

7.4 Theorem ([19]) Let X be a semi-Pfaffian set in an open domain G ⊂ R
m+n de-

fined by (2.2) with s = m + n, format (r,N, α, β,m + n), and contained in an open cube
Îm+n := (−1, 1)m+n such that the closure Im+n ⊂ G. Let π : R

m+n → R
n be the projection

function, Y := π(X), and d := dim(Y ). Then there is an algorithm (with oracle) producing
a cylindrical cell decomposition D of the image of În = π(Îm+n) under a linear coordinate
change such that D is compatible with the image of Y .
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Each cell is described as a projection of a semi-Pfaffian set in DNF, i.e., by a formula of
the type

π′

(
⋃

1≤i≤M

⋂

1≤j≤Mi

{hij ∗ij 0}
)

,

where hij are Pfaffian functions in n′ ≥ m + n variables, π′ : R
n′ → R

n is the projection
function, ∗ij ∈ {=, >}, and M,Mi (i = 1, . . . ,M) are certain integers.

The number of cells in the decomposition is less than

N := N (d!)2(m+2n)d(r+m+2n)d

(α + β)rO(d(m+dn))
,

the format of each cell is

(r,N , (α + β)rO(d(m+dn))
, (α + β)rO(d(m+dn))

,N ).

The complexity of the algorithm is

N (r+m+n)O(d)
(α + β)(r+m+n)O(d(m+dn))

.

7.5 Corollary Under the assumptions of Theorem 7.4 the complement Ỹ := În \ Y is a
sub-Pfaffian set. There is an algorithm for computing Ỹ having the same complexity as the
algorithm from Theorem 7.4. The complement Ỹ is represented by the algorithm as a union of
some cells of the cylindrical cell decomposition a linear image of În described in Theorem 7.4.

Outline of a proof of Theorem 7.4 Assume that the points in R
m+n are of the kind

(y, x) = (x1, . . . , xn, xn+1, . . . , xm+n) and π(y, x) = y.

Computing the dimension d = dim(Y )

The algorithm computes a weak stratification of X using Theorem 6.2. Each stratum Xλ =
{(y, x) ∈ R

m+n | f = 0, g > 0}, where f , g are vectors of Pfaffian functions and relations =, >
are understood component-wise, is effectively nonsingular (see Definition 6.1). In particular,
the dimension d′λ := dim(Xλ) is computed. To find dλ := dim(π(Xλ)), observe that by Sard’s
theorem, rank(∂f/∂x)(y, x) ≤ m−d′

λ +dλ for any (y, x) ∈ Xλ, while the equality is attained
for almost any (y, x) ∈ Xλ. Using the oracle, choose the maximal a such that

{(y, x) ∈ Xλ | rank(∂f/∂x)(y, x) = m − d′λ + a} 6= ∅,

then a = dλ and d = maxλ{dλ}.

An example

To illustrate the idea of the algorithm, consider

X = {x = (x1, x2, x3) | f := x2
1 +x2

2 +x2
3 −1/2 = 0}, Y = {y = (x1, x2) | x2

1 +x2
2 ≤ 1/2},

hence n = d = 2, m = 1.
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The algorithm consists of two recursive procedures which we call down and up. Starting
the first step of the down procedure observe that X is effectively non-singular. Let

X ′ : = {(x1, x2, x3) ∈ X | ∂f/∂x3 6= 0},
V ′ : = {(x1, x2, x3) ∈ X | ∂f/∂x3 = 0}

= {(x1, x2, x3) ∈ X | f̂1 := x3 = 0, f̂2 := x2
1 + x2

2 − 1/2 = 0}

be semi-Pfaffian sets of all regular and of all singular points, respectively, of the restriction of
the projection map π : (x1, x2, x3) 7→ (x1, x2) on X. Introduce the new notation: X2 := V ′,
Y2 := π(V ′), d2 := dim(Y2) = 1. We have described the first recursive step of down.

Now we start the second step with X2, Y2 playing the role of X, Y . Observe that X2

is effectively non-singular and all points are regular for the restriction π|X2 . Consider the
projection map ρ2 : (x1, x2) 7→ x1. Let

S2 : =

{
(x1, x2, x3) ∈ X2 | det

(
∂f̂1/∂x2 ∂f̂1/∂x3

∂f̂2/∂x2 ∂f̂2/∂x3

)
= 0

}

= {(x1, x2, x3) ∈ R
3 | x2

1 = 1/2, x2 = x3 = 0}

be the set of all critical points of ρ2π|X2 . Let Z2 := ρ2π(S2), then dim(Z2) = dim(Y2 ∩
ρ−1
2 (Z2)) = 1 < d = 2. Let X3 := S2, Y3 := Y2 ∩ ρ−1

2 (Z2), d3 := dim(Y3) = 0 We have
completed the second recursive step of down.

In the last (degenerate) recursive step, X3 is effectively non-singular and all points are
regular for the restriction π|X3 . For the projection map ρ3 : (x1, x2) 7→ 0, the set S3 of
all critical points of ρ3π|X3 is empty, thus the projection Z3 := ρ2π(S3) = ∅. The down
procedure is completed.

Now the algorithm starts the recursive up procedure. In the first recursive step consider
the sub-Pfaffian set Y3 constructed on the last step of down. Since Y3 consists of just two
points, (1/

√
2, 0) and (−1/

√
2, 0), the construction of a cylindrical cell decomposition D3 of

Î2 compatible with Y3 is trivial.
In the second recursive step consider sub-Pfaffian sets Y2 and Z2. The decomposition D3,

being cylindrical, induces a cell decomposition D ′
3 of Î1 = {x1 | − 1 < x1 < 1} into five cells:

• C1 := {x1 | − 1 < x1 < −1/
√

2},

• C2 := {x1 | x1 = −1/
√

2},

• C3 := {x1 | − 1/
√

2 < x1 < 1/
√

2},

• C4 := {x1 | x1 = 1/
√

2},

• C5 := {x1 | 1/
√

2 < x1 < 1}.

For any z ∈ C3 the cardinality of the fibre ρ−1
2 (z) ∩ Y2 is constant (= 2). Moreover, the

following five cells form a cylindrical cell decomposition of ρ−1
2 (C3) ∩ Î2 compatible with

ρ−1
2 (C3) ∩ Y :

• {(x1, x2) ∈ ρ−1
2 (C3) ∩ Î2| ∃(y1, y2) ∈ Y ∃(y′1, y

′
2) ∈ Y (y1 = y′1, y2 < y′2 < x2)}

• {(x1, x2) ∈ ρ−1
2 (C3) ∩ Î2| ∃(y1, y2) ∈ Y ∃(y′1, y

′
2) ∈ Y (y1 = y′1, y2 < y′2 = x2)}



Complexity of computations with Pfaffian and Noetherian functions 21

• {(x1, x2) ∈ ρ−1
2 (C3) ∩ Î2| ∃(y1, y2) ∈ Y ∃(y′1, y

′
2) ∈ Y (y1 = y′1, y2 < x2 < y′2)}

• {(x1, x2) ∈ ρ−1
2 (C3) ∩ Î2| ∃(y1, y2) ∈ Y ∃(y′1, y

′
2) ∈ Y (y1 = y′1, y2 = x2 < y′2)}

• {(x1, x2) ∈ ρ−1
2 (C3) ∩ Î2| ∃(y1, y2) ∈ Y ∃(y′1, y

′
2) ∈ Y (y1 = y′1, x2 < y2 < y′2)}.

Similar cylindrical cell decompositions of ρ−1
2 (Ci)∩Î2 can be constructed for all other cells Ci,

but in fact such decompositions have already been produced as parts of the cell decomposition
D3. Combining all cell decomposition for ρ−1

2 (Ci) ∩ Î2 with D3 we get a cylindrical cell
decomposition of Î2 compatible with Y . This completes the up procedure and the whole
construction.

General algorithm: the down procedure

After computing d the algorithm uses one after another two recursive procedures, down and
up. We start with down by conducting a descending recursion on d. We will describe in some
detail only the first (typical) step of the recursion. For each stratum Xλ with dim(Xλ) ≥ d
the algorithm finds the semi-Pfaffian set X ′

λ of all regular and the semi-Pfaffian set V ′
λ of all

critical points of the projection map π|Xλ
. Note that X ′

λ and V ′
λ can be described by explicit

quantifier-free formulae and any of them may be empty. By Sard’s theorem, dim(π(V ′
λ)) < d.

For any y ∈ Y \ π(V ′
λ) the intersection π−1(y) ∩ X ′

λ is smooth.
Now the algorithm works with X ′

λ. The next step is to select in this smooth manifold a
semi-Pfaffian subset of dimension d having the same π-projection as X ′

λ. The algorithm finds
a function g : R

m+n → R and a semi-Pfaffian set V ′′
λ ⊂ X ′

λ such that dim(π(V ′′
λ )) < d, and

for any y ∈ Y \π(V ′
λ ∪V ′′

λ ) the critical points of g|π−1(y)∩X′

λ
are non-degenerate, in particular

isolated. The function g can be defined by an expression
(
∏

j

hj

)
(1 + (c, x)),

where c is a vector of integers, and the product of a zero number of factors is assumed to
be equal to 1 (see details in [19]). The set X ′′

λ such that for any y ∈ Y \ π(V ′
λ ∪ V ′′

λ ) the
intersection X ′′

λ ∩ π−1(y) is a finite set of all critical points of g|π−1(y)∩X′

λ
, can be described

by an explicit quantifier-free formula. If X ′′
λ 6= ∅, then dim(X ′′

λ) = d.
The algorithm computes a weak stratification of X ′′

λ using Theorem 6.2. For each stratum
of Xλµ the (maximal) dimension d the algorithm finds the semi-Pfaffian set X ′

λµ of all regular
and the semi-Pfaffian set V ′

λµ of all critical points of the projection map π|Xλµ
. These sets

can be described by explicit quantifier-free formulae. By Sard’s theorem, dim(π(V ′′
λµ)) < d.

Let Vλµ := V ′
λ ∪ V ′′

λ ∪ V ′
λµ, and let T be the union of all strata of X of dimension less than d.

If d = n, then define

Xnew :=
⋃

λµ

(∂X ′
λµ ∪ Vλµ) ∪ T,

Ynew :=
⋃

λ,µ

π(∂X ′
λµ ∪ Vλµ) ∪ π(T ),

where the frontier ∂X ′
λµ can be computed using Theorem 5.3. Observe that dim(Ynew) < d.

The algorithm goes to the next recursive step with Xnew and Ynew replacing X and Y ,
respectively.
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If d < n, then the algorithm continues the current recursive step. Consider the projection
function ρ : R

n → R
d, where R

n is equipped with coordinates y. The algorithm performs
a linear transformation of coordinates y such that in the new coordinates for each y in the
closure Ȳ the set ρ−1(ρ(y)) is finite2. In the sequel we assume that this condition is satisfied.

Consider the set Sλµ of all critical points of the restriction of the composition ρπ : R
m+n →

R
d to X ′

λµ. This set can be described by an explicit quantifier-free formula. Observe that
dim(ρπ(Sλµ)) < d by Sard’s theorem, hence dim(π(Sλµ)) < d by the choice of the linear
transformation.

The aim of the next action of the algorithm is to identify a subset in R
d of positive

codimension such that within each connected component of the complement of this set any
two points have 0-dimensional ρ-fibers with the same lexicographic order. Introduce the
following sets:

Wi,ε := {(y, ε) | y = (z1, . . . , zn−d, yn−d+1, . . . , yn) ∈ Y, ε ∈ R,

∃y′ = (z′1, . . . , z
′
n−d, yn−d+1, . . . , yn) ∈ Y, ρ(y′) = ρ(y),

z′1 = z1, . . . , z
′
i−1 = zi−1, z′i 6= zi, |z′i − zi| < ε} ⊂ R

n+1;

Wi := W i,ε ∩ {(y, ε) | ε = 0} ⊂ R
n;

W :=
⋃

1≤i≤n−d

Wi ⊂ R
n;

Z := ρπ

(
⋃

λ,µ

(∂X ′
λµ ∪ Vλµ ∪ Sλµ)

)
∪ ρ(W ) ∪ ρπ(T ) ⊂ R

d.

Then dim(Z) = dim(Y ∩ ρ−1(Z)) < d. Observe that W is a sub-Pfaffian set, more precisely,
there exists an integer nnew such that n + m ≤ nnew ≤ 2n + m, and a semi-Pfaffian set
U ⊂ R

nnew such that πnew(U) = W for the projection map πnew : R
nnew → R

n. There is an
explicit quantifier-free formulae defining U .

Let U ′ denote the semi-Pfaffian set defined in R
nnew by the same quantifier-free formula

as ⋃

λµ

(∂X ′
λµ ∪ Vλµ ∪ Sλµ) ∪ T ⊂ R

m+n.

Let Ynew := Y ∩ ρ−1(Z) = πnew(U ∪ U ′), Xnew := π−1
new(Y ∩ ρ−1(Z)) = U ∪ U ′. Observe

that Xnew is defined by an explicit quantifier-free formula with Pfaffian functions in nnew

variables. The algorithm determines dnew := dim(Ynew) = dim(Z) < d, using the method
described at the beginning of the proof.

This completes the description of the recursive step. In the last recursive step (let it have
number l ≤ d) the dimension dim(Ynew) = 0 and Z = ∅.

General algorithm: the up procedure

The algorithm then starts the up recursion procedure. An input data of the rth recursive
step consists of:

2According to the Koopman-Brown theorem such a transformation exists, for details on how to find it see
[19].
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• a pair Y,Z ⊂ R
n of sub-Pfaffian sets constructed in steps l−r and l−r+1, respectively,

of the “down” procedure, and

• a cylindrical cell decomposition D of În compatible with Y ∩ ρ−1(Z).

The decomposition D induces a cylindrical cell decomposition D ′ of ρ(În) = Îd compatible
with Z, namely, the elements of D′ are exactly the ρ-projections of the elements of D. By
the definition of Z, for any d-dimensional cell C ∈ D ′ and any z ∈ C, the cardinality of
ρ−1(z) ∩ Y is a constant, say L. Moreover, the union

⋃

1≤ν≤L+1

{y ∈ ρ−1(C) ∩ În | ∃y1 ∈ Y · · · ∃yL ∈ Y (yi 6= yj for all i, j, i 6= j,

y1 ≺ · · · ≺ yν−1 ≺ y ≺ yν ≺ · · · ≺ yL, ρ(y1) = · · · = ρ(yL) = ρ(y))},

where the relation u ≺ v for u = (u1, . . . , un), v = (v1, . . . , vn) ∈ R
n stands for the disjunction

∨

d+1≤i≤n+1

(u1 = v1, . . . , ui−1 = vi−1, ui < vi),

represents a cylindrical cell decomposition of ρ−1(C) ∩ În compatible with ρ−1(C) ∩ Y .3

Note that Corollary 3.3 provides an upper bound for L as an explicit function, say M,
of the format of Y . The algorithm finds L as the maximal l, 1 ≤ l ≤ M, such that the
statement

∃y1 ∈ ρ−1(C) · · · ∃yl ∈ ρ−1(C) (yi 6= yj for all i, j, i 6= j, ρ(y1) = · · · = ρ(yl))

is true. Then the algorithm computes the cell decomposition of ρ−1(C) ∩ În.

Combining the cylindrical cell decompositions for ρ−1(C) ∩ În for all d-dimensional cells
C of D′, with the cell decomposition D, the algorithm gets a cylindrical cell decomposition
of În compatible with Y . This finishes the description of the up procedure.

The formats of cells in the resulting cylindrical decomposition and the complexity of the
algorithm can be estimated from the description of the algorithm using the upper bounds
discussed in previous sections (see [19]). 2

8 Limit sets

In this section we remove the condition on semi-Pfaffian sets to be restricted.
For arbitrary (including non-restricted) semi-Pfaffian sets a “closure at infinity” opera-

tion was introduced in [6] and [47]. The main theorem from [6, 47] (see also [23, 29, 41])
implies that the sets constructed from semi-Pfaffian sets by a finite sequence of projections
on subspaces and closures at infinity constitute an o-minimal structure.

In [16], Gabrielov introduced the “relative closure” operation for a one-parameter family
of semi-Pfaffian sets, and the concept of a “limit set” as a finite union of relative closures
of semi-Pfaffian families. Every semi-Pfaffian set is a limit set. The main results of [16]
state that limit sets constitute an effectively o-minimal structure, i.e., any first-order formula

3A more detailed description of this decomposition can be found in [19].
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with limit sets defines a limit set which admits an upper complexity bound in terms of the
complexity of the formula. In [21] an explicit complexity bound was obtained for the number
of connected components of a limit set. We now proceed to a more detailed description of
these results.

8.1 Exponential  Lojasiewicz inequality

We start with another version of the  Lojasiewicz inequality. Unlike the inequality from
Corollary 4.4, it describes the rate of growth of a Pfaffian function not only in a neighbourhood
of a point in the domain G but also in a neighbourhood of a point on the boundary of G.
The price paid for this extension is a much weaker lower bound.

Let cl(Z) denote the topological closure of a set Z. Introduce fr(Z) := cl(Z) \ Z.4 We
assume that the closure points of X at infinity are included in cl(Z) and fr(Z). To avoid
the separate treatment of infinity, we assume that R

n is embedded in a projective space and
all constructions are performed in an affine chart such that Z is relatively compact in that
chart. To achieve this it may be necessary to subdivide Z into smaller pieces, each of them
relatively compact in its own chart.

8.1 Theorem (Exponential  Lojasiewicz inequality [16, 22, 27, 28]) Let X be a semi-
Pfaffian set in a domain G ⊂ R

n defined by a formula with Pfaffian functions of order r, and
let f(x) be a Pfaffian function in R

n. Suppose that 0 ∈ cl(X ∩ {x ∈ R
n | f(x) > 0}). Then

0 ∈ cl({x ∈ X | f(x) ≥ 1/Er(‖x‖−q)}),

for some integer q > 0. Here Er is the iterated exponential function from Example 2.3 (b).

A proof of this theorem can be found in [16], it uses an iterated exponential upper bound
from [40] on the asymptotic growth of a function in a Hardy field .

8.2 Relative closure and limit sets

Let the space R
n × R have coordinates (x, λ). For a set X ⊂ R

n × R we define: X+ :=
X ∩ {λ > 0}, Xλ := X ∩ {λ = const}, and X̌ := cl(X+) ∩ {λ = 0}. The coordinate λ is
considered as a parameter, and X is considered as a family of sets Xλ in R

n.

8.2 Definition (Semi-Pfaffian family) A semi-Pfaffian set X in DNF in a domain G is called
a semi-Pfaffian family if for any ε > 0 the intersection X ∩ {λ > ε} is restricted in G. The
format of X is defined as the format of a semi-Pfaffian set Xλ for a small λ > 0.

8.3 Lemma Let X be a semi-Pfaffian family. Then cl(X)+ and fr(X)+ are semi-Pfaffian
families. The formats of these families admit upper bounds in terms of the format of X.

Proof The set cl(X)+ is contained in G since X ∩ {λ > ε} is restricted in G for any ε > 0.
Hence, also fr(X)+ ⊂ G. According to Theorem 5.2, the sets cl(X)+ and fr(X)+ are semi-
Pfaffian in G. The sets cl(X)+ ∩ {λ > ε} and fr(X)+ ∩ {λ > ε} are restricted in G for any
ε > 0, since this is true for X.

4For a semi-Pfaffian set Z in a domain G the topological closure cl(Z) may be different from the closure
Z̄ = cl(Z) ∩ G, and fr(Z) may be different from ∂Z (see Definition 5.1).
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The statement on formats follows from Theorem 5.2, since cl(X)λ = cl(Xλ) and fr(X)λ =
fr(Xλ) for a generic λ > 0. These equalities can be derived from the existence of a weak
stratification (Theorem 6.2), Sard’s theorem, and the finiteness properties of semi-Pfaffian
sets. 2

8.4 Definition (Semi-Pfaffian couple) Two semi-Pfaffian families X and Y with a common
domain G ⊂ R

n ×R form a semi-Pfaffian couple (X,Y ) in G if the set Y is relatively closed
in {λ > 0} (i.e., cl(Y )+ = Y+) and contains fr(X)+. The format of a couple (X,Y ) is defined
as the component-wise maximum of the formats of X and Y .

8.5 Definition (Relative closure) Let (X,Y ) be a semi-Pfaffian couple in G ⊂ R
n ×R. The

relative closure of (X,Y ) is defined as

(X,Y )0 := X̌ \ Y̌ ⊂ Ǧ ⊂ R
n.

The format of (X,Y )0 is defined as the format of the couple (X,Y ).

8.6 Definition (Limit set) A limit set in Ω ⊂ R
n is a finite union of relative closures

(Xi, Yi)0 of semi-Pfaffian couples (Xi, Yi) in Gi ⊂ R
n × R, such that Ǧi = Ω for all i. The

format of a limit set is defined as (K, r,N, α, β, s), where (r,N, α, β, s) is the component-wise
maximum of the formats of couples (Xi, Yi), and K is the number of these couples.

8.7 Example Any (not necessarily restricted) semi-Pfaffian set is a limit set. If is sufficient
to show that a basic set

X := {x ∈ G | f1(x) = · · · = fI(x) = 0, g1(x) > 0, . . . , gJ (x) > 0}

in a domain G := {x ∈ R
n | h1(x) > 0, . . . , h`(x) > 0} (see Remark 2.12) is the relative

closure of a semi-Pfaffian couple. Let g := g1 · · · gJ , h := h1 · · · h`. Define sets

W := {(x, λ) ∈ X × (0, 1] | h(x) > λ, ‖x‖ < λ−1};

Y1 := {(x, λ) ∈ G × (0, 1] | f1(x) = · · · = fI(x) = 0, g(x) = 0, h(x) ≥ λ, ‖x‖ ≤ λ−1};

Y2 := {(x, λ) ∈ G × (0, 1] | f1(x) = · · · = fI(x) = 0, h(x) = λ, ‖x‖ ≤ λ−1};

Y3 := {(x, λ) ∈ G × (0, 1] | f1(x) = · · · = fI(x) = 0, h(x) ≥ λ, ‖x‖ = λ−1}.

Observe that (W,Y1 ∪ Y2 ∪ Y3) is a semi-Pfaffian couple. Its relative closure is X.

8.3 Boolean and projection operations over limit sets

8.8 Lemma Let (X,Y ) be a semi-Pfaffian couple in a domain G ⊂ R
n × R. Then the

complement Ǧ \ (X,Y )0 of (X,Y )0 in Ǧ is a limit set with the format admitting an upper
bound in terms of the format of (X,Y ).

Proof Let G = {(x, λ) ∈ R
n × R | h1(x, λ) > 0, . . . , h`(x, λ) > 0} (see Remark 2.12) and

introduce h := h1 · · · h`. Then h is positive in G and vanishes on fr(G). Let

G′ := {(x, λ) ∈ G | λ > 0, h(x, λ) ≥ 1/Er(λ−q)},
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where r is the order of Pfaffian functions in the formula defining X and q is a positive integer.
Let Z := G \ X and Z ′ := Z ∩ G′. It is clear that Z ′ is a semi-Pfaffian family in G (while
Z may not be). It follows from the exponential  Lojasiewicz inequality (Theorem 8.1) that
Ž = Ž ′ for large q. We now prove that

Ǧ \ (X,Y )0 = (Z ′, cl(X)+)0 ∪ (Y, ∅)0. (8.1)

Indeed, by the definition of the relative closure, the right-hand side of (8.1) coincides with

(Ž ′ \ X̌) ∪ Y̌ = (Ž \ X̌) ∪ Y̌ .

Since (X,Y )0 ∩ (Ž \ X̌) = ∅ and (X,Y )0 ∩ Y̌ = ∅, the left-hand side of (8.1) contains its
right-hand side. Let now x ∈ Ǧ \ (X,Y )0. Note that x ∈ X̌ ∪ Ž. If x ∈ X̌ , then x ∈ Y̌ , else
x ∈ Ž \ X̌. Thus, the right-hand side of (8.1) contains its left-hand side.

The right-hand side of (8.1) is a limit set. The proof of the statement about its format is
straightforward. 2

8.9 Lemma Let (X,Y ) and (X ′, Y ′) be two semi-Pfaffian couples in domains G ⊂ R
n × R

and G′ ⊂ R
n×R respectively. Then (X,Y )0∩(X ′, Y ′)0 is a limit set with the format admitting

an upper bound in terms of formats of (X,Y ) and (X ′, Y ′).

A proof of this lemma, technically similar to the proof of Lemma 8.8 above, can be found
in [16].

8.10 Theorem Limit sets form a Boolean algebra. The format of a limit set defined by a
Boolean combination of limit sets X1, . . . , X` admits an upper bound in terms of the complexity
of the formula and the formats of X1, . . . , X`.

Proof This immediately follows from Lemmas 8.8 and 8.9. 2

8.11 Theorem Let (X,Y ) be a semi-Pfaffian couple in a domain G ⊂ R
m+n × R, and let

π : R
m+n → R

n be the projection map. Then π((X,Y )0) is a limit set in π(Ǧ) ⊂ R
n, and its

format admits an upper bound in terms of the format of (X,Y ).

A proof of this theorem can be found in [16] and is difficult.

8.12 Remark Theorems 8.10 and 8.11 imply that limit sets form an o-minimal structure [9].
Moreover, it is an effectively o-minimal structure, i.e., the formats of the results of Boolean
and projection operations over limit sets admit upper bounds in terms of the formats of these
sets. However, no explicit expressions for the bounds have yet been obtained. This is a
promising direction for future research.

8.4 Connected components of limit sets

We now establish an explicit upper bound on the number of connected components of the
relative closure of a semi-Pfaffian couple (X,Y ).

Note that if Y = ∅, then fr(X)+ = ∅, i.e., Xλ is compact for any λ > 0. In this case
the relative closure (X,Y )0 = X̌ is also compact, and therefore the number of its connected
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components does not exceed the number of the connected components of Xλ, for all sufficiently
small λ > 0. An upper bound for Xλ follows from Theorem 3.4.

Suppose now that Y 6= ∅. For x ∈ R
n and λ > 0, let Ψλ(x) := miny∈Yλ

‖x − y‖2 be the
(squared) distance from x to Yλ, let Ψ(x) := miny∈Y̌ ‖x − y‖2 be the distance from x to Y̌ .

Note that these two functions are well defined (minima exist) since Yλ and Y̌ are both closed.
Let Zλ be the set of local maxima of Ψλ(x) on Xλ.

8.13 Lemma The number of connected components of (X,Y )0 does not exceed the number
of connected components of Zλ for all sufficiently small λ > 0.

Proof Let C be a connected component of (X,Y )0. By the definition of relative closure,
if x ∈ C, then x 6∈ Y̌ . Thus, Ψ(x) > 0. Since fr(C) ⊂ Y̌ , the function Ψ vanishes on
fr(C). It follows that Ψ has a local maximum, say x0, in C. There exists xλ ∈ Xλ such
that ‖xλ − x0‖ → 0 as λ ↘ 0. It follows that limλ↘0 Ψλ(xλ) = Ψ(x0) > 0. In particular,
there exists a constant ε > 0 such that Ψλ(xλ) > ε for all sufficiently small λ > 0. Let
Wλ,ε := {x ∈ Xλ | Ψλ(x) > ε} and let Cλ be the connected component of Wλ,ε which
contains xλ. Since Ψλ(x) > ε for any x ∈ Cλ, the sets Cλ are “close” to C for sufficiently
small λ > 0, i.e., cl(

⋃
λ>0 Cλ)∩{(x, λ) | λ = 0} is the connected subset of (X,Y )0 containing

x0, hence a subset of C. From the definition of Cλ, there exists a local maximum zλ of Ψλ

on Cλ, and a connected component Vλ of Zλ containing zλ lies in Cλ. It follows that Vλ is
“close” to C for all sufficiently small λ > 0. This implies the lemma. 2

8.14 Theorem Let (X,Y ) be a semi-Pfaffian couple. The number of connected components
of (X,Y )0 is finite and admits an explicit upper bound in terms of the format of (X,Y ).

Proof According to Lemma 8.13, it is sufficient to bound from above the number of con-
nected components of Zλ. Since Zλ is a restricted sub-Pfaffian set, the number of its con-
nected components is finite. Moreover, due to Theorem 7.4, Zλ admits a cylindrical cell
decomposition with the number of cells explicitly bounded from above in terms of the format
of (X,Y ). The number of connected components of Zλ does not exceed the number of cells
in the decomposition, which implies the second statement of the theorem. 2

The upper bound (via a cylindrical cell decomposition) which can be extracted from the
proof of Theorem 8.14 is doubly exponential in the number n of variables, and is not best
possible. A better bound can be obtained by applying the results of Section 3.5 to a formula
with quantifiers describing Zλ. In [21] a much more specialized method was used to prove
the following, currently the best, upper bound.

8.15 Theorem ([21]) Let the format of a semi-Pfaffian couple (X,Y ) be (r,N, α, β, n).
Then the number of connected components of (X,Y )0 does not exceed

N22O(n2r2)(n(α + β))O(n2+nr).

A proof of the theorem and a slightly more precise bound (not using the O-notation) can
be found in [21]. Further results on upper bounds for higher Betti numbers of limit sets were
recently obtained in [50].
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9 Noetherian functions

Noetherian functions are analytic functions in G ⊂ K
n defined by equations similar to (2.1)

but without triangularity condition. Given a Noetherian chain, i.e., a sequence of functions
f1(x), . . . , fr(x) analytic in G, such that

dfj(x) =
∑

1≤i≤n

gij(x, f1(x), . . . , fr(x)) dxi for all j, (9.1)

with gij polynomials in n + r variables of degree at most α, a Noetherian function of order r
and degree (α, β) is a function φ(x) = P (x, f1(x), . . . , fr(x)), where P (x, y) is a polynomial
of degree β in n + r variables.

Alternatively, a Noetherian chain can be defined as an integral manifold Λ = {(z1 =
f1(x), . . . , zr = fr(x))} of a n-dimensional distribution in K

n+r:

dyj =

n∑

i=1

gij(x, y) dxi, for j = 1, . . . , r, (9.2)

and a Noetherian function as a restriction of P (x, y) to Λ.

All Noetherian functions defined by the same chain constitute a subring R of the ring of
analytic functions in G, finitely generated over the polynomial ring K[x] and closed under
differentiation, i.e., for any φ ∈ R, all partial derivatives ∂φ/∂xi are in R. Conversely, any
such ring is a ring of Noetherian functions. Any set of its generators can be taken as a
Noetherian chain. The name “Noetherian function” introduced by Tougeron [43] refers to
the Noetherian property of that ring.

For the univariate case x = t ∈ K, Noetherian functions are simply polynomials restricted
to a solution yj = fj(t) of a system dyj/dt = gj(t, y1, . . . , yr) of ordinary differential equations
with polynomial coefficients.

The simplest example of a Noetherian chain, f1 = sin t, f2 = cos t, in R shows that the
global finiteness properties of Pfaffian functions do not hold for Noetherian functions. In
the early eighties, Khovanskii conjectured that Noetherian functions (also in the complex
domain) satisfy local finiteness properties. Assume 0 ∈ G, and consider a germ X0 at 0 of a
set X defined by equations and inequalities between Noetherian functions (a semi-Noetherian
set), or an intersection Xδ of the set X with a ball of radius δ centered at 0. Khovanskii’s
conjecture states that the topological and geometric complexity of X0 (or of Xδ, for a small
δ > 0) can be bounded from above by an explicit function of its format (see (2.11)).

Considerable progress towards proving this conjecture was made in [17]:

9.1 Theorem Let φ1, . . . , φn be Noetherian functions of order r and degree (α, β) in G ⊂ C
n,

with the same Noetherian chain. Then the multiplicity of any isolated solution of the system
of equations φ1 = · · · = φn = 0 does not exceed the maximum of the following two numbers:

1

2
Q((r + 1)(α − 1)[2α(n + r + 2) − 2r − 2]2r+2 + 2α(n + 2) − 2)2(r+n),

1

2
Q(2(Q + n)n(β + Q(α − 1)))2(r+n), where Q = en

(
e(n + r)√

n

)lnn+1 ( n

e2

)n
.

(9.3)
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9.2 Remark One can show (see [43]) that, for any given integers n, r, α, and β, there
exists an integer M(n, r, α, β) such that the multiplicity µ of any isolated intersection φ1 =
· · · = φn = 0, where φj(y) = Pj(y, f1(y), . . . , fr(y)) are Noetherian functions in G ⊂ C

n of
degree at most β, with a Noetherian chain f1, . . . , fr of order r and degree α, does not exceed
M(n, r, α, β).

To prove this, recall first that the condition µ ≥ M , for any analytic functions φ1, . . . , φn,
can be formulated as a system of polynomial equations on the values of the functions φj and
their partial derivatives of order not exceeding M . For Noetherian functions, the values of
their partial derivatives can be expressed as polynomials of the variables yi, the values of φj,
and the coefficients of the polynomials gij and Pj in their definition. Consider now the ring S

of polynomials in all these variables. The condition µ ≥ M is represented by an ideal IM in
S. As IM is an increasing sequence and S is a Noetherian ring, the sequence IM stabilizes at
some M = M(n, r, α, β). This means that any intersection with multiplicity µ ≥ M(n, r, α, β)
has infinite multiplicity. Theorem 9.1 can be interpreted as an explicit upper bound for the
number M(n, r, α, β)

A sketch of the proof of Theorem 9.1 is given below, based on several preliminary results.
First, we give a brief introduction to integration over Euler characteristics (see [44]). Next,
we consider the univariate case n = 1. The univariate result implies, in particular, an upper
bound on the vanishing order of a multivariate Noetherian function. As an application of
the univariate result, we derive an upper bound for the degree of nonholonomy of a system
of polynomial vector fields. In the multivariate case, we have to take care of possible non-
integrability of the distribution (9.2). Finally, we need a lower bound on the codimension of
the set of intersections of high multiplicity.

9.1 Integration over Euler characteristics

Assume that we are working in a category of “tame” sets (such as semialgebraic or global
subanalytic sets). This means that our category is closed under Boolean operations and pro-
jections, and each set is homotopy equivalent to a finite simplicial complex. In the language of
model theory, this is called an o-minimal structure (see [9] for the definitions and properties
of sets definable in an o-minimal structure). In particular, the Betti numbers bi(X) and the
Euler characteristic χ(X) =

∑
i(−1)ibi(X) are finite for any set X. The key properties of

the Euler characteristic of compact sets are its additivity and multiplicativity:

χ(X ∪ Y ) + χ(X ∩ Y ) = χ(X) + χ(Y ) (9.4)

χ(X × Y ) = χ(X) χ(Y ). (9.5)

These properties allow one to extend χ as an additive and multiplicative function to all (not
necessarily compact) sets. Of course, χ(X) for a non-compact set may be different from the
topological Euler characteristic. For example, if Bn is a closed ball in R

n and X = Bn \Sn−1

is an open ball, then χ(X) = χ(Bn) − χ(Sn−1) is (−1)n.

A constructible function f(x) in K
n is a function with finitely many values yi such that

all its level sets Xi = {x : f(x) = yi} are “tame”. Its integral over Euler characteristic over
U ⊂ K

n is defined as ∫

U
f(x) dχ :=

∑

i

yi χ(Xi ∩ U). (9.6)
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The properties (9.4) and (9.5) imply finite additivity and the Fubini theorem for this integral:

9.3 Theorem For two constructible functions, f and g,
∫

U
f(x) dχ +

∫

U
g(x) dχ =

∫

U
(f(x) + g(x)) dχ.

9.4 Theorem Let f(x, y) be a constructible function in K
n+m. For U ⊂ K

n and V ⊂ K
m,

the function

g(x) =

∫

V
f(x, y)|x=const dχ

is constructible and ∫

U
g(x) dχ =

∫

U×V
f(x, y) dχ.

9.2 Univariate case

When n = 1, Noetherian chains are trajectories of vector fields with polynomial coefficients,
and Noetherian functions are polynomials restricted to trajectories of such vector fields.

Let t ∈ C, y = (y1, . . . , yr) ∈ C
r, and let γ = {y = y(t)} be a germ of a trajectory

through 0 ∈ C
r+1 of a vector field ξ = g0(t, y)∂/∂t +

∑
i gi(t, y)∂/∂yi, where gi are germs of

analytic functions at 0 ∈ C
r+1, g0(0) 6= 0. Let P (t, y) be a germ of an analytic function at

0 ∈ C
r+1, and let φ(t) = P (t, y(t)) be the restriction of P (t, y) to γ. Suppose that φ(t) 6≡ 0,

and let µ be the order of a zero of φ at t = 0. Let S(t, y, ε) be a one-parameter deformation
of P , i.e., a germ of an analytic function at 0 ∈ C

r+2 such that S(t, y, 0) = P (t, y). We write
Sε(t, y) for S(t, y, ε)|ε=const considered as a function in C

r+1.

9.5 Definition For a positive integer q, the Milnor fiber Zq(ξ, S) of the deformation S
with respect to a vector field ξ is the intersection of a ball ‖(t, y)‖ ≤ δ in C

r+1 with a set
Sε = ξSε = · · · = ξq−1Sε = 0, for a small positive δ and a complex nonzero ε much smaller
than δ.

One can show (see [26]) that the homotopy type of Zq(ξ, S) does not depend on ε and δ,
as long as |ε| � δ � 1. Unless P has an isolated singularity, this homotopy type does depend
on the deformation S.

9.6 Theorem Let S be a one-parameter deformation of an analytic function P . For a
positive integer q, let Zq = Zq(ξ, S) be the Milnor fibers of S with respect to an analytic
vector field ξ, and let χ(Zq) be the Euler characteristic of Zq. Suppose that P restricted to a
trajectory of ξ through 0 has a zero of order µ < ∞ at 0. Let Q := max{q : Zq 6= ∅}. Then

µ =

Q∑

q=1

χ(Zq). (9.7)

Proof One can assume, after a change of coordinates in (Cr+1, 0), that ξ = ∂/∂t. It follows
from [26] that the homotopy type of Zq does not depend on the coordinate system. Let π be
the projection C

r+1 → C
r along the t-axis. Let Bη = {‖y‖ ≤ η} be a ball of radius η in C

r.
We can replace the ball {‖(t, y)‖ ≤ δ} in Definition 9.5 by Dδ,η = {|t| ≤ δ, y ∈ Bη}, where
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0 < η � δ, so that the projection π : {P = 0}∩Dδ,η → Bη is a finite µ-fold ramified covering
(counting the multiplicities). This also would not change the homotopy type of Zq, as long
as |ε| � η.

For y ∈ Bη, each set π−1(y) ∩ Zq is finite, and its Euler characteristic ζq(y) equals the
number of points in it (not counting multiplicities). From Theorem 9.4,

∫

Bη

ζq(y) dχ = χ(Zq). (9.8)

Note that each point (t, y) ∈ {Sε = 0} ∩ Dδ,η belongs to exactly k sets Z1, . . . , Zk, where k

equals the multiplicity of t in π−1(y) ∩ {Sε = 0}. Hence
∑Q

q=1 ζq(y) ≡ µ does not depend on
y. From (9.8) and Theorem 9.3,

Q∑

q=1

χ(Zq) =

∫

Bη

Q∑

q=1

ζq(y) dχ =

∫

Bη

µdχ = µχ(Bη) = µ.

2

The following is a special case of Thom’s transversality theorem (see Lemma 1 in [15]).

9.7 Lemma Let ξ = g0(t, y)∂/∂t +
∑r

i=1 gi(t, y)∂/∂yi be a germ at 0 ∈ K
r+1 of an analytic

vector field, g0(0) 6= 0, and P (t, y) a germ of an analytic function. Let c = (c0, . . . , cr) ∈ K
r+1

and

Sc(t, y, ε) = P (t, y) + ε

r∑

i=0

cit
i. (9.9)

For a generic c, the sets Zq = Zq(ξ, Sc) are nonsingular of codimension q for q = 1, . . . , r +1,
and empty for q > r + 1.

9.8 Corollary Let ξ and P be as in Lemma 9.7, and let µ < ∞ be the multiplicity of P on
the trajectory of ξ through 0. Let Zq = Zq(ξ, Sc) be the Milnor fibers of (9.9) with respect to
ξ. For a generic c,

µ = χ(Z1) + · · · + χ(Zr+1). (9.10)

9.9 Theorem Let ξ = g0(t, y)∂/∂t +
∑

i gi(t, y)∂/∂yi, where gi are polynomials of degree
not exceeding α ≥ 1, g0(0) 6= 0, and let P be a polynomial of degree not exceeding β ≥ r. Let
µ < ∞ be the multiplicity of P on the trajectory of ξ through 0. Then µ does not exceed

1

2

r∑

k=0

[2β + 2k(α − 1)]2r+2. (9.11)

Proof This follows from (9.10) and from an estimate [33] of the Euler characteristic of a set
Zq defined by polynomial equations of degree not exceeding β + (q − 1)(α − 1). 2

9.10 Corollary Let φ 6≡ 0 be a Noetherian function of order r and degree (α, β) in a neigh-
borhood of 0 ⊂ K

n. Then the vanishing order of φ at 0 does not exceed (9.11).

Proof This follows from Theorem 9.9 after restricting φ to a generic line through 0. 2
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9.3 Degree of nonholonomy of a system of vector fields

9.11 Definition Let Ξ be a system of analytic vector fields ξi in G ⊂ K
n. Let L1(Ξ) be

the space of all linear combinations of ξi with coefficients in K. For k ≥ 2, define Lk(Ξ) :=
Lk−1(Ξ) + [L1(Ξ),Lk−1(Ξ)]. Then L(Ξ) :=

⋃
k Lk(Ξ) is the Lie algebra generated by the

vector fields ξi. For z ∈ K
n, let dk(z) be the dimension of the subspace generated by the

values at z of the vector fields from Lk(Ξ), and let d(Ξ, z) := maxk dk(z) be the dimension of
the subspace generated by the values at z of the vector fields from L(Ξ). In particular, when
d(Ξ, z) = n, the system Ξ is called totally nonholonomic (controllable). The minimal k such
that dk(z) = d(Ξ, z) is called the degree of nonholonomy of Ξ at z. It is easy to check that
the values dk, and the degree of nonholonomy, do not change if we allow linear combinations
of vector fields with analytic (instead of constant) coefficients.

It is shown in [12] that an upper bound for the multiplicity of a zero of a polynomial on a
trajectory of a polynomial vector field implies an upper bound on the degree of nonholonomy
of a system of polynomial vector fields. In particular, the upper bound in Theorem 9.9 implies
the following upper bound for the degree of nonholonomy:

9.12 Theorem Let Ξ := {ξi} be a system of vector fields in K
n with polynomial coefficients

of degree not exceeding p ≥ 1. For z ∈ K
n, let d = d(Ξ, z) > 1. Then the degree of

nonholonomy of Ξ at z does not exceed

Fd +
Fd−1

2

n−1∑

k=0

[2p(Fd+2 − 1) + 2k(pFd − 1)]2n (9.12)

where Fi are the Fibonacci numbers.

Proof According to Proposition 1 of [12], there exist vector fields χ0, . . . , χd−1 such that
(a) χ0 and χ1 are some of ξi, and χ0(z) 6= 0; (b) for k > 1, χk is either one of ξi or a linear
combination of brackets [χi, fχj] where i, j < k and f is a linear function; (c) for a generic
small ε = (ε1, . . . , εd−2), Q = χ0 ∧ · · · ∧ χd−1 does not vanish identically on a trajectory γ
of χε = χ0 + ε1χ1 + · · · + εd−2χd−2 through z. Taking into account that [χ, χ] = 0 for any
vector field χ, the arguments in the proof of Proposition 1 of [12] can be modified to replace
(b) by (b′) for k > 1, χk is either one of ξi or a linear combination of brackets [χi, fχj],
where j < i < k and f is a linear function. In particular, each χk is a vector field with
polynomial coefficients of degree not exceeding pFk+1, where Fi are the Fibonacci numbers:
F1 = 1, F2 = 1, Fi+1 = Fi + Fi−1.

Let x1, . . . , xn be linear coordinates in K
n. Then

Q =
∑

i1<···<id

Qi1...id

∂

∂xi1

∧ · · · ∧ ∂

∂xid

,

where Qi1...id are polynomials of degrees not exceeding β = p(F1 + · · · + Fd) = p(Fd+2 − 1).
Due to (c), some of these polynomials do not vanish identically on the trajectory γ of a vector
field χε with polynomial coefficients of degree not exceeding α = pFd. Due to Theorem 9.9,
the multiplicity µ of a zero of such a polynomial restricted to γ does not exceed

1

2

n−1∑

k=0

[2β + 2k(α − 1)]2n =
1

2

n−1∑

k=0

[2p(Fd+2 − 1) + 2k(pFd − 1)]2n.
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Each derivation of Q along χε decreases this multiplicity by 1. Hence the result of µ consecu-
tive derivations of Q along χε does not vanish at z. From (b′), each χk is a linear combination
with polynomial coefficients of brackets of ξi of order at most Fk+1, and χε is a combination
of brackets of ξi of order at most Fd−1. Taking into account a formula for a derivation along
χε:

∂χε(χ0 ∧ · · · ∧ χd−1) =
d−1∑

i=0

χ0 ∧ · · · ∧ [χε, χi] ∧ · · · ∧ χd−1,

we see that the result of µ derivations of Q along χε is a linear combination, with polynomial
coefficients, of wedge-products of vector fields which are brackets of ξi of order not exceeding
Fd + Fd−1µ, which is equal to (9.12). Since the result of µ derivations of Q along χε does
not vanish at z, there exist d = d(Ξ, z) brackets of ξi of order not exceeding (9.12) which are
linearly independent at z. 2

9.4 Multivariate case: integrability

For a system (9.1) of partial differential equations in K
n, when n > 1, analytic solutions

f1(x), . . . , fr(x) do not exist, in general, due to non-integrability. When such solutions do
exist, their union is an analytic set (Lemma 9.13 below). When the coefficients gij are
polynomials, this set is algebraic.

9.13 Lemma Let x ∈ K
n, y ∈ K

r, and let gij(x, y) be analytic functions in U ⊂ K
n+r, for

i = 1, . . . , n and j = 1, . . . , r. The union of all integral manifolds of (9.2) is an analytic
subset of U .

Proof The statement can be proved locally, in a neighborhood of a point (x, y) ∈ U . Let
ξi, i = 1, . . . , n, be the following vector fields tangent to the distribution (9.2):

ξi =
∂

∂xi
+

r∑

j=1

gij(x, y)
∂

∂yj
. (9.13)

For a nonzero c = (c1, . . . , cn) ∈ K
n, let ξc = c1ξ1 + · · · + cnξn, and let γc be a germ of

a trajectory of ξc through (x, y). Let Λ be the union of all γc. Then Λ is a germ of an
n-dimensional manifold.

If there exists an integral manifold of (9.2) through (x, y), it contains all trajectories γc

and its germ at (x, y) coincides with Λ. Since all vector fields ξi are tangent to Λ, any bracket
[ξj , ξk] at each point of Λ belongs to the subspace generated by ξi.

Due to Lemmas 4 and 5 in [12], the converse is also true: if any bracket [ξj, ξk] at each
point of Λ belongs to the subspace generated by ξi, then Λ is an integral manifold of (9.2).

Let Qjk = [ξj , ξk] ∧ ξ1 · · · ∧ ξn. If Λ is an integral manifold of (9.2) then all Qjk vanish
identically on γc. In particular,

ξν
c Qjk(x, y), (9.14)

the value at (x, y) of the ν-th derivative of Qjk along ξc, is zero for each j, k, and ν. In the
opposite case, when Qjk does not vanish identically on γc for some j, k, and c, there exists a
nonzero derivative (9.14).
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Hence, (x, y) belongs to an integral manifold of (9.2) if and only if all derivatives (9.14)
vanish. As these derivatives are analytic in (x, y), their common zeros constitute an analytic
set. 2

9.14 Proposition Let gij in (9.2) be polynomials of degree not exceeding α ≥ 1, and let Y
be the union of all integral manifolds of (9.2). Then Y can be defined by a system of algebraic
equations of degree not exceeding

dY (n, r, α) =
1

2
(r + 1)(α − 1)[2α(n + r + 2) − 2r − 2]2r+2 + 2α(n + 2) − 2. (9.15)

Proof From the proof of Lemma 9.13, the set Y is defined by zeros of derivatives (9.14) of
Qij along ξc, for all i, j, and c. Here ξc is a linear combination of the vector fields ξi defined
in (9.13), and Qjk = [ξj , ξk] ∧ ξ1 · · · ∧ ξn.

As the coefficients of ξi are polynomials of degree not exceeding α, the coefficients of Qjk

are polynomials of degree not exceeding B = α(n + 2) − 1. If (x, y) does not belong to Y ,
some of these coefficients do not vanish identically on the trajectory γc of ξc through (x, y).
Due to Theorem 9.9, the multiplicity of zero at (x, y) of these coefficients restricted to γc

cannot exceed

N =
1

2

r∑

k=0

[2B + 2k(α − 1)]2r+2 =
1

2

r∑

k=0

[2α(n + k + 2) − 2k − 2]2r+2.

This means that Y can be defined by zeros of derivatives (9.14) with ν ≤ N . But these
derivatives are polynomials in (x, y) of degree at most B + N(α − 1). Hence Y is defined by
a system of algebraic equations of degree at most

α − 1

2

r∑

k=0

[2α(n + k + 2) − 2k − 2]2r+2 + α(n + 2) − 1.

As α ≥ 1, this does not exceed the right hand side of (9.15). 2

9.5 Multivariate case: Milnor fibers

Let gij(x, y) be germs of analytic functions at 0 ∈ C
n+r, and let {y = f(x)} be a germ of an

integral manifold of (9.2) through 0. Let P (x, y) = (P1(x, y), . . . , Pn(x, y)) be a germ of an
analytic vector-function at 0, and let φi(x) = Pi(x, f(x)). Let S(x, y, ε) be a one-parameter
deformation of P (x, y), i.e., a germ of an analytic vector-function at 0 ∈ C

n+r+1 such that
S(x, y, 0) = P (x, y). For a fixed ε, we write Sε(x, y) for S(x, y, ε) considered as a function
in C

n+r.

Let Y be the union of all integral manifolds of (9.2). Due to Lemma 9.13, Y is a germ of
an analytic set. For (x, y) ∈ Y , let µε(x, y) be the multiplicity of the intersection S1,ε|Λ =
· · · = Sn,ε|Λ = 0 at (x, y), where Λ is an integral manifold of (9.2) through (x, y). Let Wq

be the set of those (x, y, ε) where (x, y) ∈ Y and µε(x, y) ≥ q.

9.15 Lemma Wq is an analytic set.
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Proof One can choose a system of coordinates (x, z) in the neighborhood of 0 ∈ C
n+r so

that each integral manifold of (9.2) is defined by z = const.
Due to Lemma 5.5 in [1], the condition µε(x0, z0) ≥ q depends only on the Taylor expan-

sion Ši in x of Si at (x0, z0, ε) of order q − 1. The coefficients of Ši are

∂|ν|Si

∂xν
(x0, z0, ε). (9.16)

Let K =
(q+n−1

n

)
be the number of monomials in n variables of degree less than q. For

fixed z0 and ε, consider Ši as a vector in C
K . For any multi-index ν = (ν1, . . . , νn), with

|ν| = ν1 + · · · + νn < q, consider (x−x0)νŠi as a vector in C
K , disregarding terms of order q

and higher in x− x0. The condition µε(x0, z0) ≥ q means that rank of the set of Kn vectors
(x−x0)ν Ši in C

K is at most K − q. This implies the vanishing of all (K − q + 1)-minors of a
(K × Kn)-matrix composed of these vectors. As the elements of this matrix are the partial
derivatives (9.16), which are analytic in (x0, z0, ε), this, in combination with the equations
for Y , provides a system of analytic equations for Wq. 2

9.16 Definition For a positive integer q, the Milnor fiber Zq of the deformation S with
respect to the distribution (9.2) is the intersection of Wq with a closed ball {‖(x, y)‖ ≤ δ}
in the space {ε = const} ⊂ C

n+r+1, for a small positive δ and a complex nonzero ε much
smaller than δ. According to [26], the homotopy type of Zq does not depend on ε and δ. Let
χ(Zq) be the Euler characteristic of Zq.

9.17 Theorem Let P = (P1(x, y), . . . , Pn(x, y)) be a germ of an analytic function at 0 in
C

n+r. Let f = (f1(x), . . . , fr(x)) be a germ of an analytic function at 0 ∈ C
n satisfying (9.1)

and let φi(x) = Pi(x, f(x)). Suppose that the intersection φ1(x) = · · · = φn(x) = 0 is isolated
at x = 0, with multiplicity µ. Let S = S(x, y, ε) be a one-parameter deformation of P , let Zq

be the Milnor fibers of S with respect to the distribution (9.2), and let Q = max{q : Zq 6= ∅}.
Then

µ =

Q∑

q=1

χ(Zq). (9.17)

Proof The arguments, based on integration over Euler characteristic, essentially repeat
those in the proof of Theorem 9.6, except everything should be restricted to the set Y of all
integral manifolds of (9.2).

Let us choose a system of coordinates (x, z) in C
n+r, as in the proof of Lemma 9.15, so

that each integral manifold of (9.2) through (x0, z0) ∈ Y is defined by z = z0. Let π be
projection C

n+r → C
r. Let Bη = {‖z‖ ≤ η} be a ball of radius η in C

r. We can replace
the ball {‖(x, y)‖ ≤ δ} in Definition 9.16 by Dδ,η = {‖x‖ ≤ δ, z ∈ Bη}, where 0 < η � δ,
so that the projection π : {P = 0} ∩ Dδ,η → Bη is a finite covering. This would not change
the homotopy type of Zq, as long as |ε| � η. Then π : {Dδ,η = 0} ∩ Y → Bη ∩ π(Y ) is a
finite µ-fold ramified covering (counting the multiplicities). Let ζq(z) = χ(π−1(z) ∩ Zq) be

the number of preimages of a point z in Zq, not counting multiplicities. Then
∑Q

q=1 ζq(z) ≡ µ
does not depend on z. We have

∫

Bη∩π(Y )
ζq dχ = χ(Zq), and

∫

Bη∩π(Y )

Q∑

q=1

ζq dχ =

∫

Bη∩π(Y )
µdχ = µ.
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The last equality holds because Bη ∩ π(Y ) is a compact contractible set, hence its Euler
characteristic equals 1. 2

9.18 Proposition Let gij in the expression (9.2) be polynomials of degree not exceeding α,
and let Si(x, y, ε) be polynomials of degree at most β in (x, y), with coefficients analytic in ε.
Then each Milnor fiber Zq of S with respect to (9.2) can be defined by polynomial equations
of degree not exceeding maximum of (9.15) and

d(n, q, α, β) = (K − q + 1)[β + (q − 1)(α − 1)], where K =

(
q + n − 1

n

)
. (9.18)

Proof Let us fix a small nonzero ε. According to the arguments in the proof of Lemma 9.15,
the condition (x0, y0) ∈ Zq is equivalent to the vanishing of all (K−q +1)-minors of a matrix
composed of the partial derivatives (9.16) of Sε of order ν < q, in a system of coordinates
(x, z) where the integral manifolds of (9.2) are rectified.

Let us define a germ of the integral manifold Λ of (9.2) through (x0, y0) by a function
f(x) = (f1(x), . . . , fr(x)) satisfying (9.1). The equations (9.1) allow one to represent a partial
derivative (9.16) as a polynomial in (x0, y0) of degree not exceeding β + ν(α− 1). Hence the
elements of our matrix are polynomials in (x0, y0) of degree not exceeding β + (q− 1)(α− 1),
and its (K−q +1)-minors are polynomials in (x0, y0) of degree not exceeding (K−q +1)[β +
(q−1)(α−1). These polynomials, in combination with the equations for Y , provide a system
of equations for Zq. 2

9.19 Corollary Under conditions of Proposition 9.18, the absolute value of the Euler char-
acteristic of Zq does not exceed

1

2
max(2dY (n, r, α), 2d(n, q, α, β))2(n+r) , (9.19)

where dY (n, r, α) and d(n, q, α, β) are defined in (9.15) and (9.18), respectively.

Proof This follows from an estimate [33] of the Euler characteristic of the set Zq defined by
polynomial equations of degree not exceeding maximum of (9.15) and (9.18). 2

9.6 Proof of Theorem 9.1

To complete the proof of Theorem 9.1, we need to find a low-degree deformation S of a
polynomial P such that the Milnor fibers Zq with large q would be empty, i.e., to derive an
upper bound on the value of Q in Theorem 9.17. Such an upper bound can be derived from
the following theorem (see Theorem 7 in [17]):

9.20 Theorem Let ν = (ν1, . . . , νn) be a sequence of nonnegative integers, |ν| = ν1+· · ·+νn,
and xν = xν1

1 · · · xνn
n . For a nonnegative integer r, an analytic map P = (P1, . . . , Pn) : C

n →
C

n, and a vector c = (c1, . . . , cn) where cj = cj,ν, |ν| ≤ r, let

P c = (P c
1 , . . . , P c

n) where P c
j (x) = Pj(x) +

∑

ν:|ν|≤r

cν,jx
ν . (9.20)
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The set of those (x, c) where the multiplicity of P c at x exceeds

Q(n, r) =

(
n + r

1 + · · · + 1/n

)1+···+1/n n∏

k=1

(
(k − 1)!

k

)1/k

. (9.21)

has codimension greater than n + r.

9.21 Corollary Let Py(x) = (Py,1(x), . . . , Py,n(x)) be a generic family of analytic maps
C

n → C
n depending on parameters y ∈ C

r. Then the multiplicity of Py, at any point x ∈ C
n

and for any y, is less than (9.21).

Consider now a deformation S(x, y, ε) of the polynomial P (x, y) defined by

Sj(x, y, ε) = Pj(x, y) + ε
∑

ν:|ν|≤r

cν,jx
ν ,

where cν,j are generic complex numbers. From Theorem 9.20, the Milnor fibers Zq of this
deformation are empty for q ≥ Q(n, r), where Q(n, r) is defined in (9.20).

According to (9.17),

µ =

Q(n,r)∑

q=1

χ(Zq) ≤ Q(n, r) max
q≤Q(n,r)

|χ(Zq)|. (9.22)

From (9.19), the right hand side of (9.22) does not exceed

1

2
Q(n, r) max(2dY (n, r, α), 2d(n,Q(n, r), α, β))2(m+n) ,

where dY and d are defined in (9.15) and (9.18), respectively. The value of d(n, q, α, β) in
(9.18) does not exceed

(q + n − 1)n(β + (q − 1)(α − 1)) < (q + n)n(β + q(α − 1)).

The statement of Theorem 9.1 follows now from the following estimate for Q(n, r) (see Propo-
sition 1 in [17]):

9.22 Proposition The value of Q(n, r) in (9.20) does not exceed

en

(
e(n + r)√

n

)lnn+1 ( n

e2

)n
.
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torial Topology, Princeton University Press, Princeton, 1965, 255–265.
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