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Abstract. We study finite bisimulations of dynamical systems in Rn defined
by Pfaffian maps. The pure existence of finite bisimulations for a more general
class of o-minimal systems was shown in [2, 3, 12]. In [9] the authors proved a
double exponential upper bound on the size of a bisimulation in terms of the
size of description of the dynamical system. In the present paper we improve
it to a single exponential upper bound, and show that this bound is tight, by
exhibiting a parameterized class of systems on which it is attained.

1. Introduction

By a Pfaffian dynamical system we mean a map γ : G1 × (−1, 1) → G2, where
G1 ⊂ Rn−1 and G2 ⊂ Rn are open domains and the graph of γ is a semi-Pfaffian
set (see Definition 2.12). Given a finite partition of G2 (consisting of some “areas of
interest” which the trajectories have to visit or avoid in a particular order), we aim
to study a combinatorial dynamical system, having a finite number of trajectories,
which is in a natural way isomorphic (“bisimilar”) to γ with respect to the partition.

A non-constructive existence proof of finite bisimulations for a more general class
of o-minimal dynamical systems was given in [2, 3, 12]. The next natural question
to investigate is how the sizes of such bisimulations can be bounded. In [9] we gave a
double exponential upper bound on the sizes of bisimulations of Pfaffian dynamical
systems. We used the cylindrical cell decomposition construction which is intrinsi-
cally double exponential. In the present paper we improve that bound to a single
exponential upper bound. Moreover we show that the bound is tight, by exhibiting
a parameterized class of polynomial dynamical systems on which the exponential
bound is attained. The main results of this paper were announced, without proofs,
in [10] which also contains a more detailed motivation from the computer science
viewpoint, as well as connections with the theory of hybrid systems.

This paper is organized as follows. In Section 2 we remind the definitions of
transition systems associated to dynamical systems, their bisimulations, Pfaffian
functions, semi-Pfaffian sets, and Pfaffian dynamical systems. In Section 3 we
construct the upper bound on sizes of finite bisimulations of Pfaffian dynamical
systems. In Section 4 we describe an example of a parameterized class of Pfaffian
systems on which the exponential bound is attained. We then conclude with future
work.

2. Basic notions and definitions

2.1. Transition systems and dynamical systems. One of the approaches to the
study of a dynamical system uses the partition of the state space into finitely many
equivalence classes, so that equivalent states exhibit similar properties. This special
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quotient of the original state space, called bisimulation, is reachability preserving,
i.e., checking the reachability on the quotient system is equivalent to checking it
on the original system. In this section we recall (following [2]) the notion of bisim-
ulations of transition systems, and basic results concerning finite bisimulations of
o-minimal dynamical systems.

The first group of definitions describe transition systems and bisimulations be-
tween the transition systems.

Definition 2.1. Let Q be an arbitrary set and → be a binary relation on Q. In the
context of dynamical systems theory we call Q the set of states, → the transition,
and T := (Q,→) the transition system.

Definition 2.2. Given two transition systems T1 := (Q1,→1) and T2 := (Q2,→2)
we define a simulation of T1 by T2 as a binary relation ∼⊂ Q1 ×Q2 such that:

• ∀q1 ∈ Q1∃q2 ∈ Q2 (q1 ∼ q2);
• ∀q1, q

′
1 ∈ Q1∀q2 ∈ Q2 ((q1 ∼ q2 ∧ q1 →1 q′1) ⇒ ∃q′2 (q′1 ∼ q′2 ∧ q2 →2 q′2)).

Definition 2.3. A bisimulation between two transition systems T1 := (Q1,→1) and
T2 := (Q2,→2) is a simulation ∼ ⊂ Q1 × Q2 of T1 by T2 such that the reciprocal
relation ∼−1:= {(q2, q1) ∈ Q2 ×Q1|q1 ∼ q2} is a simulation of T2 by T1.

Definition 2.4. A bisimulation between a transition system T and itself is called
bisimulation on T .

Definition 2.5. Let ∼ be a bisimulation on T = (Q,→) and also an equivalence
relation on Q. Let P be a partition of Q. We say that ∼ is a bisimulation with
respect to P if any P ∈ P is a union of some equivalence classes of ∼.

Normally, the partition P reflects regions of interest such as invariants and initial
conditions of the dynamical system.

In this paper we are concerned with estimating cardinality of bisimulations in
the sense of Definition 2.5. We now give some definitions concerning dynamical
systems.

Definition 2.6. Let G1 ⊂ Rn−1 and G2 ⊂ Rn be open domains. A dynamical
system is a map

γ : G1 × (−1, 1) → G2.

For a given x ∈ G1 the set

Γx = {y|∃t ∈ (−1, 1) (γ(x, t) = y)} ⊂ G2

is called the trajectory determined by x, and the graph

Γ̂x = {(t,y)| γ(x, t) = y} ⊂ (−1, 1)×G2

is called the integral curve determined by x.
A dynamical system is called o-minimal if it is definable in an o-minimal structure
over R.

Definition 2.7. The transition system Tγ = (Q,→) associated to the dynamical
system γ is defined as follows:

• Q := G2, and
• y1 → y2 for y1,y2 ∈ Q if and only if

∃x ∈ G1∃t1, t2 ∈ (−1, 1)((t1 ≤ t2) ∧ (γ(x, t1) = y1) ∧ (γ(x, t2) = y2)).
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We now introduce following [2], a technique of encoding trajectories of dynamical
systems by words. Let P := {P1, . . . , Ps} be a finite partition of γ(G1 × (−1, 1))
definable in the o-minimal structure. Fix x ∈ G1. Define the set Fx of points
and open intervals I in (−1, 1) which are maximal with respect to inclusion for the
property

∃i ∈ {1, . . . , s} ∀t ∈ I (γ(x, t) ∈ Pi).
Let the cardinality |Fx| = r and y1 < · · · < yr be the set of representatives of

Fx such that γ(x, yj) ∈ Pij
. Then define the word ω := Pi1 · · ·Pir

in the alphabet
P. Informally, ω is the list of names of elements of the partition in the order they
are visited by the trajectory Γx.

Let y ∈ Γx. Then y ∈ Pij for some 1 ≤ j ≤ r, where Pij is a letter in ω. We
represent the location of y on trajectory Γx by the dotted word

ω̇ := Pi1 · · · Ṗij · · ·Pir .

In the sequel we will always assume that the dynamical system γ is injective. In
this case there is a unique dotted word associated to a given y ∈ γ(G1 × (−1, 1)).
Introduce sets of words Ω := {ω| x ∈ G1}, Ω̇ := {ω̇| x ∈ G1}. The following
statement is an easy consequence of o-minimality.

Lemma 2.8. [2] The set Ω is finite.

An obvious (purely combinatorial) corollary is that Ω̇ is also finite.

Definition 2.9. The transition system TΩ̇ is defined as follows:

• Q := Ω̇, and
• ω̇1 → ω̇2 for ω̇1, ω̇2 ∈ Q if and only if ω1 = ω2 and the dot on ω̇2 is on the

righter (or the same) position than the dot on ω̇1.

Theorem 2.10. [2] Let an o-minimal dynamical system γ be bijective, and the
partition P be definable in the o-minimal structure. Then there is a finite bisimu-
lation on Tγ with respect to P.

Proof. To prove the theorem one first shows that TΩ̇ is a bisimulation of Tγ , and
then considers the following equivalence relation ∼ on G2: y1 ∼ y2 iff for respec-
tive pre-images (x1, t1), (x2, t2), the locations of y1,y2 on trajectories Γx1 , Γx2 are
described by the same dotted word ω̇. Then ∼ is the required bisimulation (see
details in [2]). ¤
2.2. Pfaffian functions and related sets. In what follows, in order to give a
quantitative refinement of Theorem 2.10 we will restrict our considerations of o-
minimal dynamical systems to a particular case, the class of Pfaffian dynamical
systems. This section is a digest of the theory of Pfaffian functions and sets definable
with Pfaffian functions. The detailed exposition can be found in the survey [5].

Definition 2.11. A Pfaffian chain of order r ≥ 0 and degree α ≥ 1 in an open
domain G ⊂ Rn is a sequence of real analytic functions f1, . . . , fr in G satisfying
differential equations

(2.1)
∂fj

∂xi
= gij(x, f1(x), . . . , fj(x))

for 1 ≤ j ≤ r, 1 ≤ i ≤ n. Here gij(x, y1, . . . , yj) are polynomials in x =
(x1, . . . , xn), y1, . . . , yj of degrees not exceeding α. A function

f(x) = P (x, f1(x), . . . , fr(x)),
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where P (x, y1, . . . , yr) is a polynomial of a degree not exceeding β ≥ 1, is called a
Pfaffian function of order r and degree (α, β).

In order to illustrate the definition let us consider several examples of Pfaffian
functions.

(a) Pfaffian functions of order 0 and degree (1, β) are polynomials of degrees
not exceeding β.

(b) The exponential function f(x) = eax is a Pfaffian function of order 1 and
degree (1, 1) in R, due to the equation df(x) = af(x)dx. More generally, for
i = 1, 2, . . . , r, let Ei(x) := eEi−1(x), E0(x) = ax. Then Er(x) is a Pfaffian
function of order r and degree (r, 1), since dEr(x) = aE1(x) · · ·Er(x)dx.

(c) The function f(x) = 1/x is a Pfaffian function of order 1 and degree (2, 1)
in the domain {x ∈ R| x 6= 0}, due to the equation df(x) = −f2(x)dx.

(d) The logarithmic function f(x) = ln(|x|) is a Pfaffian function of order 2 and
degree (2, 1) in the domain {x ∈ R|x 6= 0}, due to equations df(x) = g(x)dx
and dg(x) = −g2(x)dx, where g(x) = 1/x.

(e) The polynomial f(x) = xm can be viewed as a Pfaffian function of order 2
and degree (2, 1) in the domain {x ∈ R| x 6= 0} (but not in R), due to the
equations df(x) = mf(x)g(x)dx and dg(x) = −g2(x)dx, where g(x) = 1/x.
In some cases a better way to deal with xm is to change the variable x = eu

reducing this case to (b).
(f) The function f(x) = tan(x) is a Pfaffian function of order 1 and degree

(2, 1) in the domain
⋂

k∈Z{x ∈ R| x 6= π/2 + kπ}, due to the equation
df(x) = (1 + f2(x))dx.

(g) The function f(x) = arctan(x) is a Pfaffian function in R of order 2 and
degree (3, 1), due to equations df(x) = g(x)dx and dg(x) = −2xg2(x)dx,
where g(x) = (x2 + 1)−1.

(h) The function cos(x) is a Pfaffian function of order 2 and degree (2, 1) in the
domain

⋂
k∈Z{x ∈ R| x 6= π + 2kπ}, due to equations cos(x) = 2f(x) − 1,

df(x) = −f(x)g(x)dx, and dg(x) = 1
2 (1+g2(x))dx, where f(x) = cos2(x/2)

and g(x) = tan(x/2). Also, since cos(x) is a polynomial of degree m of
cos(x/m), the function cos(x) is Pfaffian of order 2 and degree (2,m) in
the domain

⋂
k∈Z{x ∈ R| x 6= mπ + 2kmπ}. The same is true, of course,

for any shift of this domain by a multiple of π. However, cos(x) is not a
Pfaffian function in the whole real line.

As we can see, apart from polynomials, the class of Pfaffian functions includes
real algebraic functions, exponentials, logarithms, trigonometric functions, their
compositions, and other major transcendental functions in appropriate domains
(see [5]). Now we introduce classes of sets definable with Pfaffian functions. In
the case of polynomials they reduce to semialgebraic sets whose quantitative and
algorithmic theory is treated in [1].

Definition 2.12. A set X ⊂ Rn is called semi-Pfaffian in an open domain G ⊂
Rn if it consists of points in G satisfying a Boolean combination of some atomic
equations and inequalities f = 0, g > 0, where f, g are Pfaffian functions having a
common Pfaffian chain defined in G. A semi-Pfaffian set X is restricted in G if its
topological closure lies in G.

Definition 2.13. A set X ⊂ Rn is called sub-Pfaffian in an open domain G ⊂ Rn

if it is an image of semi-Pfaffian set under a projection into a subspace.



BISIMULATIONS OF DYNAMICAL SYSTEMS 5

In the sequel we will be dealing with the following subclass of sub-Pfaffian sets.

Definition 2.14. Consider the closed cube [−1, 1]m+n in an open domain G ⊂
Rm+n and the projection map π : Rm+n → Rn. A subset Y ⊂ [−1, 1]n is called re-
stricted sub-Pfaffian if Y = π(X) for a restricted semi-Pfaffian set X ⊂ [−1, 1]m+n.

Note that a restricted sub-Pfaffian set need not be semi-Pfaffian.

Definition 2.15. Consider a semi-Pfaffian set

(2.2) X :=
⋃

1≤i≤M

{x ∈ Rs| fi1 = 0, · · · , fiIi
= 0, gi1 > 0, . . . , giJi

> 0} ⊂ G,

where fij , gij are Pfaffian functions with a common Pfaffian chain of order r and
degree (α, β), defined in an open domain G. Its format is a tuple (r,N, α, β, s),
where N ≥ ∑

1≤i≤M (Ii+Ji). If Y ⊂ Rn is a sub-Pfaffian subset such that Y = π(X)
and s = m + n, then its format is equal to the format of X.

We will refer to the representation of a semi-Pfaffian set in the form (2.2) as to
disjunctive normal form (DNF).

Remark 2.16. In this paper we are concerned with upper and lower bounds on
sizes of bisimulations as functions of the format. In the case of Pfaffian dynamical
systems these sizes and complexities also depend on the domain G. So far our
definitions have imposed no restrictions on the open set G, thus allowing it to be
arbitrarily complex and induce this complexity on the corresponding semi- and
sub-Pfaffian sets. To avoid this we will always assume in the context of Pfaffian
dynamical systems that G is simple, like Rn, or (−1, 1)n.

Theorem 2.17. [5, 15] Consider a semi-Pfaffian set X ⊂ G ⊂ Rn, where G is
an open domain, represented in DNF with format (r,N, α, β, n). Then the sum of
the Betti numbers (in particular, the number of connected components) of X does
not exceed

Nn2r(r−1)/2O(nβ + min{n, r}α)n+r.

Theorem 2.18. ([6], Section 5.2) Consider a sub-Pfaffian set Y = π(X) as de-
scribed in Definition 2.14. Let X be closed and represented in DNF with format
(r,N, α, β, n + m). Then the kth Betti number bk(Y ) does not exceed

k((k + 1)N)n+(k+1)m2(k+1)r((k+1)r−1)/2

·O((n + km)β + min{kr, n + km}α)n+(k+1)(m+r).

Let d > α + β. Relaxing the bound from Theorem 2.18, we get

bk(Y ) ≤ (kN)O(n+km)2O((kr)2)((n + km)d)O(n+km+kr).

2.3. Singular loci of semi-Pfaffian sets. Consider a semi-Pfaffian set

X :=
⋃

1≤i≤M

{x ∈ Rn| fi1 = 0, . . . , fiIi = 0, gi1 > 0, . . . , giJi > 0} ⊂ G,

where fij , gij are Pfaffian functions with a common Pfaffian chain, defined in an
open domain G. Let the format of X be (r,N, α, β, n), where N ≥ ∑

1≤i≤M (Ii+Ji).
Assume that X is a p-dimensional topological (not necessarily smooth) manifold.

We say that x is smooth if in the neighbourhood of x the set X is a C1-manifold,
and singular otherwise. Let Sx be a secant cone at a point x ∈ X, i.e., the limit of
all secant straight lines through pairs of points in X converging to x.
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Theorem 2.19. A point x ∈ X is singular if and only if the dimension of the
affine hull of Sx is larger than p.

Lemma 2.20. Sx is an affine space of dimension p if and only if x is smooth.

Proof. If x is smooth, then Sx coincides with the tangent space to X at x, and
therefore is a p-dimensional affine space.

Suppose now that Sx is an affine space of the dimension p. Let f : X → Sx be the
orthogonal projection. For a neighbourhood Ux of x in X (which is homeomorphic
to an open ball) the restriction f |Ux is injective. Indeed, suppose that for any
neighbourhood Ux there exist x1,x2 ∈ Ux such that x1 6= x2 and f(x1) = f(x2).
Then, the line through x1,x2 is orthogonal to Sx which contradicts the fact that
its limit is contained in Sx. It follows that f |Ux is a homeomorphism of open balls.

Now let Lx be the (n − p)-dimensional affine subspace passing through x and
orthogonal to Sx. Consider the map F = (F1, . . . , Fn−p) : f(Ux) → Lx for which
Ux is the graph. Then each Fi is C1-differentiable by the definition (all partial
derivatives of Fi are 0 at x). Hence Ux is smooth as the graph of a smooth map. ¤

Lemma 2.21. For any x ∈ X the secant cone Sx contains a p-dimensional affine
space.

Proof. Let Rx be the union of all limits of tangent spaces to smooth points con-
verging to x. Clearly, Rx contains a p-dimensional affine space. On the other hand,
Rx ⊂ Sx. ¤

Proof of Theorem 2.19. By Lemmas 2.20, 2.21, x ∈ X is singular if and only if Sx

contains a p-dimensional affine space but not coincides with it. ¤

Theorem 2.22. The set Xsing of all singular points of X is sub-Pfaffian, repre-
sentable by an existential formula with the format (r, (NO(n)D)n+r, α,D, O(n2)),
where

D := 2O(nr2)(n(α + β))O(n(n+r)).

Proof. Define the secant bundle of X as

SX := {(x,v) ∈ X × Rn| (x,x,v) ∈ closure(S)},
where

S := {(x,y, λ(y − x)) ∈ X ×X × Rn| ((x 6= y) ∧ (λ ∈ R))}
is the set of all triples (x,y,v) in which v is a vector parallel to the line joining
two distinct points x,y ∈ X. A theorem of Gabrielov ([5], Theorem 5.2) implies
that the set SX is semi-Pfaffian, and its format can be bounded explicitly via the
format of X. According to Theorem 2.19, a point x0 ∈ X is singular if and only if
the affine hull of the secant cone

Sx0 := {v ∈ Rn| (x0,x0,v) ∈ closure(S)},
at x0 has the dimension larger than dim(X) = p. Thus,

Xsing = {x ∈ X| ∃(y1, . . . ,yp+1) (y1 ∈ Sx ∧ · · ·
· · · ∧ yp+1 ∈ Sx ∧ rank(y1 · · ·yp+1) = p + 1)}.

A straightforward estimate of the format of this formula completes the proof. ¤
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3. The upper bound on sizes of finite bisimulation of Pfaffian
dynamical systems

Our main results concern upper and lower bounds for finite bisimulations of
Pfaffian dynamical systems with respect to partitions defined by semi-Pfaffian sets.

Definition 3.1. A dynamical system

γ : G1 × (−1, 1) → G2,

where G1 ⊆ Rn−1 and G2 ⊆ Rn are open and γ is a map with a semi-Pfaffian
graph, is called a Pfaffian dynamical system.

Let γ : G1 × (−1, 1) → G2, where G1 = In−1 := (−1, 1)n−1 and G2 = In, be a
homeomorphism, defined by its graph

Γ̂ := {(x, t,y)| γ(x, t) = y}
which is a semi-Pfaffian set, and P be a partition of G2 into semi-Pfaffian sets.

First we consider an elementary example illustrating techniques which we will
use to show the single exponential upper bounds in the general case.

3.1. Example. Let G1 := (−1, 1), G2 := (−1, 1)2, and

γ : (x, t) 7→ (y1 = x, y2 = t).

(Note that this dynamical system corresponds to the system of differential equations
ẏ1 = 0, ẏ2 = 1). Consider the graph

Γ̂ := {(x, t, y1, y2)| x− y1 = 0, t− y2 = 0}
of the map γ. Note that Γ̂ is an intersection of 4-cube (−1, 1)4 with a 2-plane,
and therefore is a smooth manifold. In the general case the graph of a dynamical
system may not be smooth and we will need to separate smooth and singular parts
of it. For a fixed x ∈ G1 the set

Γ̂x := {(t, y1, y2)| x− y1 = 0, t− y2 = 0}
is the integral curve, and the set

Γx := {(y1, y2)| ∃t (x− y1 = 0, t− y2 = 0)}
is the trajectory of γ. Thus, in our example, the trajectories are open segments of
straight lines parallel to y2-axis.

Introduce the projection

π :
{

G1 × (−1, 1)×G2 → G1

(x, t, y1, y2) 7→ x.

Let πΓ̂ be the restriction of π to Γ̂. For a fixed x ∈ G1 the fiber π−1

Γ̂
(x) coincides

with Γ̂x.
Let the partition P of G2 consist of the disc {(y1, y2)| f := y2

1 + y2
2 − 1/4 ≤ 0}

labelled by the letter A and its complement in G2 labelled by B. The aim is
to determine the number of different words in the alphabet {A,B} encoding the
trajectories. Clearly, it is sufficient to consider only intersections of the trajectories
with open sets {(y1, y2)| f < 0} and {(y1, y2)| f > 0} (in the general case, the
transition to open sets is less trivial and the subject of Subsection 3.3).

Let Ŝ := {(x, t, y1, y2)| f(y1, y2) = 0}. Observe that Ŝ ∩ Γ̂ is a smooth curve.
Consider the partition P̂ of Γ̂ consisting of {(x, t, y1, y2)| f := y2

1 + y2
2 − 1/4 ≤ 0}
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labelled by letter A and its complement in Γ̂ labelled by B. Clearly, it is sufficient
to find the number of distinct words encoding the intersections of integral curves
with open sets {(x, t, y1, y2)| f < 0} ∩ Γ̂ and {(x, t, y1, y2)| f > 0} ∩ Γ̂.

Consider the restriction πΓ̂Ŝ : Γ̂ → G1 of πΓ̂ to Ŝ ∩ Γ̂. Let C be the set
of all critical values of πΓ̂Ŝ . By setting to 0 the appropriate Jacobian we find
that the critical points of πΓ̂Ŝ are (1/2, 0, 1/2, 0) and (−1/2, 0,−1/2, 0), thus C =
{1/2,−1/2}.

Let R := G1 \ C. This set consists of three connected components:

{x ∈ (−1, 1)| x < −1/2},
{x ∈ (−1, 1)| − 1/2 < x < 1/2},

{x ∈ (−1, 1)| 1/2 < x}.
The following statement is obvious.

Proposition 3.2. If x, x′ belong to the same connected component R′ of R, then
Γ̂x and Γ̂x′ are labelled by the same word.

In the general case the analogy of Proposition 3.2 requires a careful proof. As
applied to our example, this proof has the following scheme.

(1) The restriction of πΓ̂Ŝ to π−1

Γ̂Ŝ
(R′) is a trivial covering, i.e., for any x′ ∈ R′

the pre-image π−1

Γ̂Ŝ
(R′) is homeomorphic to π−1

Γ̂Ŝ
(x′)× R′. In our example,

in the only non-trivial case of R′ = {x ∈ (−1, 1)| − 1/2 < x < 1/2}, we
have:

π−1

Γ̂Ŝ
(R′) = (Ŝ ∩ Γ̂) \ {(1/2, 0, 1/2, 0), (−1/2, 0,−1/2, 0)}

is an oval minus two points, which is homeomorphic to a Cartesian product
of a pair of points π−1

Γ̂Ŝ
(x′) by the interval R′. In other words, the connected

components of π−1

Γ̂Ŝ
(R′) are two open arcs of simple curves.

(2) These arcs are naturally ordered separating the difference π−1

Γ̂
(R′)\π−1

Γ̂Ŝ
(R′)

into ordered connected components. In the case of R′ = {x ∈ (−1, 1)| −
1/2 < x < 1/2} the components are (in order):

{(x, t, y1, y2) ∈ Γ̂| (−1/2 < x < 1/2) ∧ (f > 0) ∧ (y2 < 0)},
{(x, t, y1, y2) ∈ Γ̂| (−1/2 < x < 1/2) ∧ (f < 0)},

{(x, t, y1, y2) ∈ Γ̂| (−1/2 < x < 1/2) ∧ (f > 0) ∧ (y2 > 0)}.
For any x ∈ R′ the integral curve Γ̂x intersects these connected components
according to their order.

(3) Each connected component of π−1

Γ̂
(R′) \ π−1

Γ̂Ŝ
(R′) lies either in

{(x, t, y1, y2)| f < 0},
or in

{(x, t, y1, y2)| f > 0},
and, therefore can be naturally labelled by A or B respectively. Since the
connected components are ordered, the difference π−1

Γ̂
(R′) \ π−1

Γ̂Ŝ
(R′) itself

is labelled by a word (in the case of R′ = {x ∈ (−1, 1)| − 1/2 < x < 1/2}
by BAB). It follows that for any x ∈ R′ the integral curve Γ̂x is labelled
by this word, and the proposition is proved.
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Proposition 3.2 implies that the number of distinct realizable words does not
exceed the number of all connected components of R. In our example the latter is
3, which equals to the cardinality of the discrete set C plus 1. The general case
uses a far-reaching extension of such method of counting, Alexander’s duality [13].

The rest of this section is organized as follows. In Subsection 3.2 we show how to
reduce the problem of estimating the number of words realizable with respect to P
to the similar problem with respect to a family of open subsets of G2 such that the
complement to the union of these subsets is a smooth compact hypersurface in G2.
This will allow us to describe a finite subdivision of G1 into open subsets, within
each of which the integral curves are labelled by the same word, in terms of critical
points of the projection of a smooth hypersurface. This is done in Subsection 3.3.
Finally, in Subsection 3.4, we show a single exponential upper bound on the number
of all realizable words.

3.2. Sign sets. Let P be a partition of G2 = In into semi-Pfaffian sets. Each
element of the partition is described by a Boolean combination of Pfaffian equations
and inequalities defined in a domain D containing the closure of In. Let f1, . . . , fk

be all different functions involved in these Boolean combinations.

Definition 3.3. For a given finite set {f1, . . . , fk} of Pfaffian functions in D define
its sign sets as the non-empty semi-Pfaffian sets of the kind

{x ∈ In| fi1 = 0, · · · , fik1
= 0, fik1+1 > 0, . . . , fik2

> 0, fik2+1 < 0, . . . , fik
< 0},

where i1, . . . , ik1 , . . . , ik2 , . . . , ik is a permutation of 1, . . . , k.

Let Q be the partition of G2 into sign sets. Clearly, Q is a subpartition of P,
and it is sufficient to bound from above the number of words with respect to Q.

Choose an arbitrary point in each sign set, and let Λ be the finite set of all chosen
points. There exists ε > 0 such that for every x ∈ Λ and every i, 1 ≤ i ≤ k, the
inequality fi(x) > 0 implies fi(x) > ε, and fi(x) < 0 implies fi(x) < −ε. Introduce
the Pfaffian function

h :=
∏

1≤i≤k

(fi + ε)2(fi − ε)2 ·
∏

1≤j≤n

(1 + xj)(1− xj).

It is easy to prove (see [4], Proposition 2), that for two different sign sets σ1 and σ2,
the singletons {x1} = σ1 ∩ Λ, {x2} = σ2 ∩ Λ lie in different connected components
of {x ∈ In|h > 0} (by the choice of ε, neither x1 nor x2 belong to {x ∈ In|h = 0}).

Introduce the Pfaffian function f := h− δ, where 0 < δ ∈ R. It is easy to prove
that there exists a small enough δ0 such that for each δ < δ0:

• the set {x ∈ In| f = 0} is a smooth compact hypersurface;
• for two different sign sets σ1 and σ2, the singletons {x1} = σ1 ∩ Λ, {x2} =

σ2 ∩ Λ lie in different connected components of {x ∈ In| f > 0}.
This defines an injective map ϕ from Q to the set of all connected components of
{x ∈ In| f > 0}. For each σ ∈ Q label the connected component ϕ(σ) by the same
letter as σ. Introduce a new letter χ. Each connected component of {x ∈ In|f > 0},
which is not in ϕ(Q), is labelled by χ.

Definition 3.4. Define the labelling of trajectories Γx with respect to {f > 0} as
follows. When Γx passes through ϕ(σ) for some σ ∈ Q, the letter corresponding
to σ is added to the word; when Γx passes through the connected component of
{x ∈ In| f > 0} 6∈ ϕ(Q), the letter χ is added to the word.
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Lemma 3.5. For every word w, realizable with respect to Q, there is a word w′,
realizable with respect to {x ∈ In| f > 0}, such that w can be obtained from w′ by
deleting all occurrences of the letter χ.

Proof. Consider a finite set G of trajectories which realize all realizable words with
respect to Q. For each trajectory Γx ∈ G and any σ ∈ Q choose a point in Γx ∩ σ
such that Γx ∩ σ 6= ∅, and let Λx be the set of all chosen points. Let εx, δx be the
corresponding constants, and introduce ε := minΓx∈G εx, δ := minΓx∈G δx. Define
the function f with constants ε, δ. Now the lemma follows from Definition 3.4. ¤

Corollary 3.6. The number of words realizable with respect to Q does not exceed
the number of words realizable with respect to {x ∈ In| f > 0}.
3.3. General case. Let γ : G1 × (−1, 1) → G2, where G1 = In−1 and G2 = In,
be a homeomorphism, defined by its graph

Γ̂ := {(x, t,y)| γ(x, t) = y}
which is a semi-Pfaffian set. Note that Γ̂ is homeomorphic to In.

Assume that Γ̂ := {(x, t,y) ∈ R2n| F (x, t,y)}, where F (x, t,y) is a Boolean
formula in DNF with atomic Pfaffian functions fi, gj defined in a domain containing
the closure of I2n. Let V be the singular locus of Γ̂, and U := Γ̂\V . It follows that
dim(V ) < n, dim(U) = n, and U is a smooth (C1-) manifold.

For each x ∈ G1 consider the integral curve

Γ̂x := {(t,y)| γ(x, t) = y} = {(t,y)| F (x, t,y)}
and the trajectory

Γx := {y| ∃t (γ(x, t) = y)} = {y| ∃t (F (x, t,y))}.
Observe that both Γ̂x and Γx are homeomorphic to the interval (−1, 1), and that
Γ̂x can be naturally identified with the fiber over x of the projection πΓ̂ : Γ̂ → G1.

Let S := {y ∈ G2| f = 0} ⊂ G2, where f = h− δ is as defined in Subsection 3.2.
Recall that S is a smooth compact hypersurface in G2. Let the connected com-
ponents of G2 \ S = {y ∈ G2| f2 > 0} be labelled by different letters of a finite
alphabet. Then a trajectory Γx, x ∈ G1, is labelled by a finite word in this alphabet
(assuming the trajectory is directed). We want to estimate from above the number
of distinct realizable words. Clearly, it is sufficient to consider integral curves Γ̂x

and smooth hypersurfaces

Ŝ := {(x, t,y) ∈ G1 × (−1, 1)×G2| f(y) = 0}.
Lemma 3.7. The intersection U ∩ Ŝ is smooth and dim(V ∩ Ŝ) < n−1 for δ small
enough.

Proof. Consider the restriction hU of h on U . By Sard’s theorem (in o-minimal
version [11]), any small enough δ > 0 is a regular value of hU . Hence by the
implicit function theorem the intersection U ∩ Ŝ, which is the fiber of hU over δ, is
smooth. ¤

It follows that U ∩ Ŝ is a smooth submanifold of positive codimension of both
manifolds: U and Ŝ. Let L := πΓ̂(V ∩ Ŝ). Lemma 3.7 implies that dim(L) < n− 1.
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Let K be the set of all x ∈ G1 such that π−1
U (x)∩ Ŝ contains a singular point of

π−1
U (x). Then, by the implicit function theorem, K is a subset of all critical values

of the projection πU : U → G1. It follows by Sard’s theorem that dim(K) < n− 1.
Let πUŜ be the restriction of πU to U ∩ Ŝ. Denote by C the set of all critical

values of πUŜ . By Sard’s theorem, dim(C) < n−1. Observe that for any x ∈ C \K

the fiber π−1
U (x) is tangent to Ŝ at some point (x, t,y). Let R := G1 \ (K ∪L∪C).

Then for any x ∈ R the fiber π−1

Γ̂
(x) intersects Ŝ transversally.

Proposition 3.8. If x1, x2 belong to the same connected component R′ of R, then
Γ̂x1 and Γ̂x2 are labelled by the same word.

Proof. We prove the proposition in four steps.
(1) The restriction of πUŜ on π−1

UŜ
(R′) is proper as well as a submersion, and

therefore, by the inverse function theorem (see, e.g., [7]), is a locally trivial covering.
Thus, for any fixed x′ ∈ R′ the pre-image π−1

UŜ
(Wx′) of a neighborhood Wx′ of

x′ in R′ is homeomorphic to π−1

UŜ
(x′) × Wx′ . In particular, all fibers π−1

UŜ
(x) for

x ∈ Wx′ are homeomorphic. It follows that each connected component of π−1

UŜ
(Wx′)

is diffeomorphic to Wx′ , and therefore its complement in π−1

Γ̂
(Wx′) consists of two

connected components.
(2) We claim that there exists a linear order 1, 2, . . . , i, . . . , s on the set of all

connected components of π−1

UŜ
(Wx′) such that component i in that order splits

π−1

Γ̂
(Wx′) \ i into two connected components one of which contains components

1, . . . , i − 1 and the other contains components i + 1, i + 2, . . . , s. We say that
i separates these two sets of components. We prove the claim by induction on
s, the base case of s = 1 being trivial. Suppose that there is a required linear
order 1, 2, . . . , s − 1 for s − 1 components of π−1

UŜ
(Wx′), where s ≥ 2. Then the

sth component, which we denote by A, either is separated from 1, 2, . . . , s − 2 by
s − 1, or is separated from 2, . . . , s − 1 by 1, or lies in a connected component of
π−1

Γ̂
(Wx′)\ (i∪ i+1) between the components i and i+1 for some 1 ≤ i ≤ s−2. In

the first case label component A by s, in the second case label A by 1 and add 1 to
the label of each the of the remaining components. In the last case notice that the
smooth curve π−1

U (x′) intersects i, i + 1 and A transversally, and, according to (1),
each intersection consists of a single point. It follows that A separates components
i and i + 1. Add 1 to the label of each the of the components i + 1, . . . , s− 1 and
label A by i + 1. The claim is proved.

Observe that the linear order on the set of all connected components of π−1

UŜ
(Wx′)

induces the linear order on the set of all connected components of π−1

Γ̂
(Wx′) \

π−1

UŜ
(Wx′).

(3) Each connected component of π−1

Γ̂
(Wx′) \π−1

UŜ
(Wx′) lies in a connected com-

ponent of {f > 0} and therefore is labelled by a letter. In view of the linear
order, the set of all connected components of π−1

Γ̂
(Wx′) \ π−1

UŜ
(Wx′) is labelled by

a word, say w. Then for any x1,x2 ∈ Wx′ the integral curves Γ̂x1 = π−1

Γ̂
(x1) and

Γ̂x2 = π−1

Γ̂
(x2) are labelled by w.

(4) Since R′ is path-connected, there is a compact connected linear curve L ⊂ R′.
As we proved in (1)–(3), for each point x′ ∈ L there is an open neighborhood Wx′

of x′ in R′ such that for any x1,x2 ∈ Wx′ the integral curves Γ̂x1 , Γ̂x2 are labelled
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by the same word w. By compactness of L, there is a finite family of open sets
Wx′ ∩L in L which is a covering of L. It follows that if now x1, x2 ∈ R′, then Γ̂x1

and Γ̂x2 are labelled by w. ¤

3.4. Upper bound. Proposition 3.8 implies that to bound from above the number
of all realizable words we need to estimate the number of connected components of
R = G1 \ (K ∪ L ∪ C).

We first write out an existential formula L(x) for L using Theorem 2.22. Then
we construct an existential formula for K ∪ C. For each x ∈ G1 \ L introduce the
secant bundle

SΓ̂x := {(t,y,v) ∈ Γ̂x × Rn+1| (t,y, t,y,v) ∈ closure(S)},
where

S := {(x, t,y, t′,y′, λ((t,y)−(t′,y′)) ∈ Γ̂x×Γ̂x×Rn+1|((t,y) 6= (t′,y′))∧(λ ∈ R))}.
According to Lemma 2.19, for x ∈ G1 \ L the singular points of Γ̂x belonging to Ŝ
are defined by the formula

K(x) := ∃ z1, z2 (z1 ∈ S(t,y) ∧ z2 ∈ S(t,y) ∧ rank(z1, z2) = 2 ∧ f(y) = 0).

Hence, K ∪ L = {x| K(x) ∨ L(x)}.
Observe that for x ∈ G1 \ (L∪K) a point (t,y) is a tangent point of Γ̂x to Ŝ iff

∃v ∈ Rn+1(((t,y,v) ∈ SΓ̂x) ∧ (〈v, grad(t,y)Ŝ〉 = 0) ∧ ((t,y) ∈ Γ̂x ∩ Ŝ)).

Denoting the latter formula by C, we get

K ∪ L ∪ C = {x ∈ G1| K(x) ∨ L(x) ∨ C(x)},
thus K ∪ L ∪ C is defined by an existential formula.

If functions in formula F (x, t,y) and the function f are Pfaffian, then, according
to Theorem 2.18, the bound on the Betti number bn−1(K ∪ L ∪ C) is expressible
via the format of K(x) ∨ L(x) ∨ C(x). By Alexander’s duality ([6], Lemmas 4, 5
and [13]), the number of connected components of G1 \ (K ∪ L ∪ C),

(3.1) b0(G1 \ (K ∪ L ∪ C)) ≤ bn−1(K ∪ L ∪ C).

Assume that formula F (x, t,y) and the formula defining partition P (as the union
of elements of the partition) both have format (r,N, α, β, 2n). According to Theo-
rem 2.22, the sub-Pfaffian set K∪L∪C has the format (r, (NO(n)D)n+r, α, D,O(n2)),
where

(3.2) D := 2O(nr2)(n(α + β))O(n(n+r)).

Then, by Theorem 2.18,

(3.3) bn−1(K ∪ L ∪ C) ≤ NO(n4)2O(n4r2(n+r))(n(α + β))O(n4(n+r)2),

which is also the upper bound on |Ω|. The cardinality of the set Ω̇ of all dotted
words does not exceed |Ω| multiplied by the upper bound on the length ` of a
word x ∈ G1. The latter equals to the number of the connected components of the
intersection Γ̂x ∩ (Γ̂ \ Ŝ). By Theorem 2.17,

` ≤ NO(n)2r2
(n(α + β))O(n+r).

It follows that |Ω̇| = |Ω|` is bounded from above by the right-hand side of (3.3).
We proved the following theorem.
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Theorem 3.9. Let Tγ = (G2,→) be the transition system associated to the dy-
namical system γ. Then there is a bisimulation on Tγ with respect to P consisting
of at most

NO(n4)2O(n4r2(n+r))(n(α + β))O(n4(n+r)2)

equivalence classes, where D is defined in (3.2).

Relaxing the bound from Theorem 3.9, we get that the number of equivalence
classes in a finite bisimulation does not exceed

NO(n4)(n(α + β))O(n6r3).

Remark 3.10. The best upper bound known until now ([9]) was double exponential:

N (r+n)O(n)
(α + β)(r+n)O(n3)

4. Lower bound

We construct a parametric example of a semi-algebraic dynamical system G1 ×
(−1, 1) → G2 together with a semi-algebraic partition of G2 such that the format of
both of them is (d, n) (degrees, number of variables) while the number of different
realizable words (size of a bisimulation) is dΩ(n).

Let g(y) be a polynomial of degree d such that |g(y)| < 1 for every y ∈ (−1, 1)
and for every c ∈ (− 1

2 , 1
2 ) the polynomial g(y)− c has d simple roots in (−1, 1).

First we illustrate the idea of the example by describing the case n = 2. Let the
dynamical system be given by G1 := (−1, 1), G2 := (−1, 1)2, γ : (x, t) 7→ (t,x).
The partition P consists of two sets A and B = G2 \A where

A := {(y1, y2)| g(y1) = 0, y1 + y2 > 0}.
Notice that there are exactly d + 1 distinct words encoding all trajectories of the
defined dynamical system. These words are formed by alternating letters starting
and ending with B, i.e., B, BAB, BABAB, . . .

For arbitrary n, let G1 := (−1, 1), G2 := (−1, 1)n. Define a curve

∆ := {(y1, . . . , yn−1) ∈ (−1, 1)n−1| y2 = g(y1), . . . , yn−1 = g(yn−2)}.
Observe that ∆ is connected in (−1, 1)n−1, being the graph of the map

f : (−1, 1) → (−1, 1)n−1,

y1 7→ (g(y1), . . . , g(g(· · · g(y1) · · · ))),
and smooth.

Consider the polynomial h(yn−1) := (yn−1− b1)(yn−1− b2) · · · (yn−1− bd) where
all bi ∈ (− 1

2 , 1
2 ) and bi 6= bj for i 6= j. Then ∆ ∩ {h = 0} consists of dn−1 points.

Define
A := {(y1, . . . , yn)| (y1, . . . , yn−1) ∈ ∆, h(yn−1) = 0, L > 0},

where L(y1, . . . , yn) is a generic linear homogeneous polynomial such that {L = 0}
intersects all dn−1 parallel straight lines of

{(y1, . . . , yn)| (y1, . . . , yn−1) ∈ ∆, h(yn−1) = 0}.
Notice that the projection of this intersection on the yn-coordinate consists of dn−1

distinct points.
Finally, define the dynamical system γ and the partition P as follows. To x ∈ G1

and t ∈ (−1, 1) the map γ assigns the point (f(t),x) ∈ G2. The partition P consists
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of A and B = G2 \ A. Clearly, there are exactly dn−1 + 1 pairwise distinct words
encoding all trajectories.

We can now modify the example so that G1 becomes homeomorphic to In−1, and
G2 becomes homeomorphic to In. Observe that there is a small enough ε > 0 such
that for any sequence 0 < ε1, . . . , εn−2 ≤ ε and any sequence ∗1, . . . , ∗n−2 ∈ {+,−},
the algebraic set

∆′ := {(y1, . . . , yn−1) ∈ (−1, 1)n−1|y2 = g(y1) ∗1 ε1, . . . , yn−1 = g(yn−2) ∗n−2 εn−2}
is a smooth connected curve. These curves are disjoint and their union is

∆
′′

:=
⋂

1≤i≤n−2{(y1, . . . , yn−1) ∈ (−1, 1)n−1| − ε < yi+1 − g(yi) < ε}.
Let G1 := (−ε, ε)n−2 × (−1, 1), G2 = ∆

′′ × (−1, 1)
and γ : G1 × (−1, 1) → G2, such that

(∗1ε1, . . . , ∗n−2εn−2, x, t) 7→ (g(t) ∗1 ε1, . . . , g(g(· · · g(t) · · · )) ∗n−2 εn−2, x).

Note that γ is a diffeomorphism. It is obvious that the modified γ still has at least
dΩ(n) trajectories with pairwise distinct word codes with respect to the partition
P.

5. Future work

In [9] the authors proposed an algorithm (a Blum-Schub-Smale type machine
with an oracle for deciding non-emptiness of semi-Pfaffian sets) for computing a
finite bisimulation. That algorithm is based on the cylindrical cell decomposition
technique and, accordingly, has a double exponential upper complexity bound. It
seems feasible to construct a bisimulation algorithm with single exponential com-
plexity using the approach employed in the present paper. Once a bisimulation
is computed, it can be used in efficient algorithms for fundamental computational
problems such as deciding reachability or motion planning in definable dynamical
systems.
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