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BETTI NUMBERS OF SEMIALGEBRAIC
AND SUB-PFAFFIAN SETS

A. GABRIELOV, N. VOROBJOV and T. ZELL

Abstract

Let X be a subset in [−1, 1]n0 ⊂ Rn0 defined by a formula

X = {x0|Q1x1Q2x2 . . . Qνxν((x0,x1, . . . ,xν) ∈ Xν)},
where Qi ∈ {∃,∀}, Qi 6= Qi+1, xi ∈ Rni , and Xν be either an open or a closed set in
[−1, 1]n0+...+nν being a difference between a finite CW -complex and its subcomplex. We ex-
press an upper bound on each Betti number of X via a sum of Betti numbers of some sets defined
by quantifier-free formulae involving Xν .

In important particular cases of semialgebraic and semi-Pfaffian sets defined by quantifier-free
formulae with polynomials and Pfaffian functions respectively, upper bounds on Betti numbers of
Xν are well known. Our results allow to extend the bounds to sets defined with quantifiers, in
particular to sub-Pfaffian sets.

Introduction

Well-known results of Petrovskii, Oleinik [16], [15], Milnor [13], and Thom [19]
provide an upper bound for the sum of Betti numbers of a semialgebraic set defined
by a Boolean combination of polynomial equations and inequalities. A refinement of
these results can be found in [1]. For semi-Pfaffian sets the analogous bounds were
obtained by Khovanskii [11] (see also [23]). In this paper we describe a reduction of
estimating Betti numbers of sets defined by formulae with quantifiers to a similar
problem for sets defined by a quantifier-free formulae.

More precisely, let X be a subset in [−1, 1]n0 ⊂ Rn0 defined by a formula

X = {x0|Q1x1Q2x2 . . . Qνxν((x0,x1, . . . ,xν) ∈ Xν)}, (0.1)

where Qi ∈ {∃, ∀}, Qi 6= Qi+1, xi ∈ Rni , and Xν be either an open or a closed set
in [−1, 1]n0+...+nν being a difference between a finite CW -complex and one of its
subcomplexes. For instance, if ν = 1 and Q1 = ∃, then X is the projection of Xν .

We express an upper bound on each Betti number of X via a sum of Betti num-
bers of some sets defined by quantifier-free formulae involving Xν . In conjunction
with Petrovskii-Oleinik-Thom-Milnor’s result this implies a new upper bound for
semialgebraic sets defined by formulae with quantifiers, which is significantly better
than a bound following from the cylindrical cell decomposition approach. In con-
junction with Khovanskii’s result our method produces an analogous upper bound
for restricted sub-Pfaffian sets defined by formulae with quantifiers. Apparently in
this case no general upper bounds were previously known.
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Throughout the paper each topological space is assumed to be a difference be-
tween a finite CW -complex and one of its subcomplexes.

Example 1. The closure X of the interior of a compact set Y ⊂ [−1, 1]n is
homotopy equivalent to

Xε,δ = {x| ∃y(‖x− y‖ ≤ δ) ∀z(‖y − z‖ < ε) (z ∈ Y )}
for small enough δ, ε > 0 such that δ À ε. Representing Xε,δ in the form (0.1), we
conclude that X is homotopy equivalent to Xε,δ = {x| ∃y ∀z X2}, where

X2 = {(x,y, z)| (‖x− y‖ ≤ δ ∧ (‖y − z‖ ≥ ε ∨ z ∈ Y ))}
is a closed set in [−1, 1]3n. Our results allow to bound from above Betti numbers
of X in terms of Betti numbers of X2.

1. A spectral sequence associated with a surjective map

Definition 1. A continuous map f : X → Y is locally split if for any y ∈ Y
there is an open neighbourhood U of y and a section s : U → X of f (i.e., s is
continuous and fs = Id). In particular, a projection of an open set in Rn on a
subspace of Rn is always locally split.

Definition 2. For two maps f1 : X1 → Y and f2 : X2 → Y , the fibered product
of X1 and X2 is defined as

X1 ×Y X2 := {(x1,x2) ∈ X1 ×X2| f1(x1) = f2(x2)}.

Theorem 1. Let f : X → Y be a surjective cellular map. Assume that f is
either closed or locally split. Then for any Abelian group G, there exists a spectral
sequence Er

p,q converging to H∗(Y, G) with

E1
p,q = Hq(Wp, G) (1.1)

where
Wp = X ×Y . . .×Y X︸ ︷︷ ︸

p+1 times

(1.2)

In particular,

dim Hk(Y,G) ≤
∑

p+q=k

dim Hq(Wp, G), (1.3)

for all k.

For a locally split map f , this theorem can be derived from [5], Corollary 1.3.
We present below a proof for a closed map f .

Remark 1. In the sequel we use Theorem 1 only for projections of either closed
or open sets in [−1, 1]n. If f is a projection of an open set, then (1.3) easily follows
from the analogous result for closed maps which will be proved below, without
references to [5]. Indeed, for an open set Z define its shrinking S(Z) as the closed set
Z\N(∂Z) where N denotes an open neighbourhood. For a small enough N(∂Z), the
set Z is homotopy equivalent to S(Z) (recall that Z is a difference between a finite
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CW–complex and a subcomplex). Let X be open and S(X) be its shrinking with
a sufficiently small N(∂X). It induces shrinkings S(Y ) = f(S(X)) and S(Wp) =
S(X)×S(Y ). . .×S(Y )S(X) which are homotopy equivalent to Y and Wp respectively.
The statement for open sets X and Y follows from the statement for closed sets
applied to f : S(X) → S(Y ).

Definition 3. For a sequence (P0, . . . , Pp) of topological spaces, their join P0 ∗
. . .∗Pp can be defined as follows. Let ∆p = {s0 ≥ 0, . . . , sp ≥ 0, s0+. . .+sp = 1} be
the standard p-simplex. Then P0 ∗ . . .∗Pp is the quotient space of P0× . . .×Pp×∆p

over the following relation:

(x0, . . . , xp, s) ∼ (x′0, . . . , x
′
p, s) if s = (s0, . . . , sp) and xi = x′i whenever si 6= 0.

(1.4)
Given a continuous surjective map fi : Pi → Y for each i = 0, . . . , p, the fibered join
P0 ∗Y . . . ∗Y Pp is defined as the quotient space of P0 ×Y . . . ×Y Pp ×∆p over the
relation (1.4).

Definition 4. For a space Z, 1-st suspension of Z is defined as the suspension
(see [12]) of (Z t{point}). For an integer p > 0, the p-th iteration of this operation
will be called p-th suspension of Z.

Lemma 1. Let fi : Pi → Y , i = 0, . . . , p, be continuous surjective maps and
P = P0 ∗Y . . . ∗Y Pp their fibered join. There is a natural map F : P → Y induced
by the maps f0, . . . , fp. For a point y ∈ Y the fiber F−1y coincides with the join
f−1
0 y ∗ . . . ∗ f−1

p y of the fibers of fi.
There is a natural map π : P → ∆p. The fiber of π over an interior point of ∆p

is P0 ×Y . . .×Y Pp. For each i = 0, . . . , p, there is a natural embedding

φi : P (i) = P0 ∗Y . . . ∗Y Pi−1 ∗Y Pi+1 ∗Y . . . ∗Y Pp → P. (1.5)

Its image coincides with π−1({si = 0}), and the space P/ (
⋃

i φi(P (i))) is homotopy
equivalent to the p-th suspension of P0 ×Y . . .×Y Pp.

Proof. Directly follows from Definitions 3, 4.

Definition 5. Let f : X → Y be a surjective continuous map. Its join space
Jf (X) is the quotient space of the disjoint union of spaces

Jf
p (X) = X ∗Y . . . ∗Y X︸ ︷︷ ︸

p+1 times

, p = 0, 1, . . . , (1.6)

identifying Jf
p−1(X) with each of its images φi(J

f
p−1(X)) in Jf

p (X) for i = 0, . . . , p,
where φi is defined in (1.5). When Y is a point, we write Jp(X) instead of Jf

p (X)
and J(X) instead of Jf (X).

Lemma 2. Let φ : Jp(X) → J(X) be the natural map induced by the maps φi.
Then φ(Jp−1(X)) is contractible in φ(Jp(X)).

Proof. Let x be a point in X. For t ∈ [0, 1], the maps

gt(x, x1, . . . , xp, s) 7→ (x, x1, . . . , xp, (1− t + ts0, ts1, . . . , tsp))
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define a contraction of φ0(Jp−1(X)) to the point x ∈ X where X is identified with
its embedding in Jp(X) as π−1(1, 0, . . . , 0). It is easy to see that the maps gt are
compatible with the equivalence relations in Definition 5 and define a contraction
of φ(Jp−1(X)) to a point in φ(Jp(X)).

Lemma 3. The join space J(X) is homologically trivial.

Proof. Any cycle in J(X) belongs to φ(Jp(X)) for some p, while according to
Lemma 2 φ(Jp(X)) is contractible in J(X). Hence the cycle is homologous to 0.

Proof of Theorem 1. Let f be closed. Let F : Jf (X) → Y be the natural map
induced by f . Then F is also closed. Its fiber F−1y over a point y ∈ Y coincides
with the join space J(f−1y) which is homologically trivial according to Lemma 3.
It follows that ˜̄H

∗
(J(f−1y)) ∼= 0, where H̄∗ is the Alexander cohomology ([18], p.

308), since H̄∗(Z)) ∼= H∗(Z) for any locally contractible space Z ([18], p. 340), in
particular for a difference between CW -complex and a subcomplex.

Vietoris-Begle theorem ([18], p. 344) applied to F : Jf (X) → Y , implies

H̄∗(Jf (X), G) ∼= H̄∗(Y,G)

and therefore

H∗(Jf (X), G) ∼= H∗(Y, G).

By Lemma 1, the space Jf
p (X)/

(⋃
q<p Jf

q (X)
)

is homotopy equivalent to the p-th
suspension of Wp. Theorem 1 follows now from the spectral sequence associated
with filtration of Jf (X) by the spaces Jf

p (X).

Remark 2. For a map f with 0-dimensional fibers, a similar spectral sequence,
“image computing spectral sequence” was applied to problems in theory of singu-
larities and topology by Vassiliev [20], Goryunov-Mond [8], Goryunov [7], Houston
[10], and others. For proper maps an analogous “cohomological descent spectral
sequence” appears in [4].

Remark 3. A continuous map f : X → Y is called compact-covering if any
compact set in Y is an image of a compact set in X. This condition includes both
the closed and the locally split cases and may be more convenient for applications.
For a surjective cellular compact-covering f : X → Y Theorem 1 is also true. A
proof will appear elsewhere.

2. Alexander’s duality and Mayer-Vietoris inequality

Let

In
i :=

⋂

1≤j≤n

{−i ≤ xj ≤ i} ⊂ Rn.

Define the “thick boundary” ∂In
i := In

i+1 \ In
i . The following lemma is a version of

Alexander’s duality theorem.
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Lemma 4. (Alexander’s duality) If X ⊂ In
i is an open set in In

i , then for any
q ∈ Z, q ≤ n− 1,

Hq(In
i \X,R) ∼= H̃n−q−1(X ∪ ∂In

i ,R). (2.1)

If X ⊂ In
i is a closed set in In

i , then for any q ∈ Z, q ≤ n− 1,

Hq(In
i \X,R) ∼= H̃n−q−1(X ∪ closure(∂In

i ),R). (2.2)

Proof. For definiteness let X be closed. Compactifying Rn at infinity as Rn ∪
∞ ' Sn, we have, by Alexander’s duality [12],

H̃q(Sn \ (X ∪ closure(∂In
i ),R) ∼= H̃n−q−1((X ∪ closure(∂In

i ),R).

The first group is isomorphic to Hq(In
i \X,R) when q > 0, and to H̃0(In

i \X,R)+R ∼=
H0(In

i \X,R) when q = 0. Combining these two cases, we obtain (2.2).

Lemma 5. (Mayer-Vietoris inequality) Let X1, . . . , Xm ⊂ In
1 be all open or all

closed in In
1 . Then

bi

( ⋃

1≤j≤n

Xj

)
≤

∑

J⊂{1,...,n}
bi−|J|+1

(⋂

j∈J

Xj

)

and

bi

( ⋂

1≤j≤n

Xj

)
≤

∑

J⊂{1,...,n}
bi+|J|−1

(⋃

j∈J

Xj

)
,

where bi is the ith Betti number.

Proof. A well-known corollary to Mayer-Vietoris sequence.

3. Thom-Milnor’s and Khovanskii’s bounds

Necessary definitions regarding semi-Pfaffian and sub-Pfaffian sets can be found
in [11], [6]. In this paper we consider only restricted sub-Pfaffian sets.

To apply our results to semialgebraic sets and to restricted sub-Pfaffian sets,
defined by formulae with quantifiers, we need the following known upper bounds
on Betti numbers for sets defined by quantifier-free formulae.

Let X = {ϕ} ⊂ In
1 be a semialgebraic set, where ϕ is a Boolean combination

with no negations of s atomic formulae of the kind f > 0, f being polynomials in n
variables with coefficients in R, deg(f) < d. We will refer to the sequence (n, s, d)
as to format of ϕ. It follows from [19], [13], [1] that the sum of Betti numbers of
X is

b(X) ≤ O(sd)n. (3.1)

If X = {ϕ} is a compact semialgebraic set, where ϕ is a Boolean combination with
no negations of s atomic formulae of the kind either f ≥ 0 or f > 0, f being
polynomials in n variables, deg(f) < d, then a combination of results from [19],
[13], [1] and [14], [22] implies that that the sum of Betti numbers of X also satisfies
(3.1).

Now let X = {ϕ} ⊂ In
1 be a semi-Pfaffian set, where ϕ is a Boolean combination

with no negations of s atomic formulae of the kind f > 0, f being Pfaffian functions
in an open domain G ⊃ In

1 of order ρ, degree (α, β), having a common Pfaffian chain
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with coefficients in R. The sequence (n, s, α, β, ρ) is called format of ϕ. It follows
from [11], [23] that the sum of Betti numbers of X is

b(X) ≤ sn2ρ(ρ−1)/2O(nβ + min{n, ρ}α)n+ρ. (3.2)

Let X ⊂ In0
1 be a semialgebraic set defined by a formula

Q1x1Q2x2 . . . QνxνF (x0,x1, . . .xν), (3.3)

where Qi ∈ {∃,∀}, Qi 6= Qi+1, xi = (xi,1, . . . , xi,ni
) ∈ Ini

1 , and F is a quantifier-
free Boolean formula with no negations having s atoms of the kind f > 0, where
f ’s are polynomials with real coefficients of degrees less than d. The cylindrical
algebraic decomposition technique from [3], [21] allows to bound from above the
number of cells in a representation of X as a difference between a CW -complex
and its subcomplex. In particular,

b(X) ≤ (sd)2
O(n)

. (3.4)

A better upper bound can be obtained as follows. According to [2] (which refines
[9], [17]), there exists a Boolean combination

ψ(x0) =
∨

1≤i≤I

∧

1≤j≤Ji

(gi,j(x0) ∗i,j 0),

such that X = {ψ(x0)}. Here

∗i,j ∈ {=, <,>}, gi,j ∈ R[x0], deg(gi,j) < d
∏

i≥1 O(ni),

I < s(n0+1)
∏

i≥1(ni+1)d(n0+1)
∏

i≥1 O(ni),

Ji < s
∏

i≥1(ni+1)d
∏

i≥1 O(ni).

Applying (3.1) to X = {ψ(x0)}, we get

b(X0) ≤ sO(n2
0

∏
i≥1 ni)dO(n2

0)
∏

i≥1 O(ni) ≤ (sd)O(n2
0)

∏
i≥1 O(ni) (3.5)

4. Basic notation

Let X = X̃0 = In0
1 \X0 ⊂ In0

1 be a set defined by a formula (0.1). For example,
X could be a sub-Pfaffian or a semialgebraic set defined by (3.3), where F is a
quantifier-free Boolean formula with no negations. For definiteness assume that
Q1 = ∃ and X is open in In0

1 .
Define

Xi := {(x0, . . . ,xi)|Qi+1xi+1Qi+2xi+2 . . . Qνxν((x0,x1, . . . ,xν) ∈ Xν)}
for odd i and

Xi := In0+...+ni
1 \{(x0, . . . ,xi)|Qi+1xi+1Qi+2xi+2 . . . Qνxν((x0,x1, . . . ,xν) ∈ Xν)}

for even i. Then πi(Xi) = X̃i−1, where πi : Rn0+...+ni → Rn0+...+ni−1 and tilde
denotes the complement in I

n0+...+ni−1
1 .

For a set Imi
i × I

mi−1
i−1 × . . .× Im1

1 define ∂(Imi
i × I

mi−1
i−1 × . . .× Im1

1 ) as

(Imi
i+1 × I

mi−1
i × . . .× Im1

2 ) \ (Imi
i × I

mi−1
i−1 × . . .× Im1

1 )

for even i and as the closure of this difference for odd i.
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Let p1, . . . , pi be some positive integers to be specified later. Define

Bi
i := ∂(In0+(p1+1)n1

i−1 × I
(p2+1)n2
i−2 × . . .× I

(pi−1+1)ni−1
1 )× Ini

1 .

For any j, i < j ≤ ν define Bi
j := B̃i

j−1 × I
nj

1 , where tilde denotes the complement
in the appropriate cube.

Definition 6.
(i) Let Y ⊂ In0

v × I
(p1+1)n1
v × I

(p2+1)n2
v−1 × . . .× I

(pl−1+1)nl−1
v−l+2 × Inl+...+ni

1 , where
1 ≤ l ≤ i, v ≥ i, and let J ⊂ {(jl, . . . , ji)| 1 ≤ jk ≤ pk + 1, l ≤ k ≤ i}. Then
define

∏
l
i,JY as an intersection of sets

{(x0,x
(1)
1 , . . . ,x(p1+1)

1 , . . . ,x(1)
i , . . . ,x(pi+1)

i )|

x0 ∈ In0
v , x(m)

k ∈ Ink

v−k+1 (1 ≤ k ≤ l − 1),

x(m)
k ∈ Ink

1 (l ≤ k ≤ i), (x0,x
(1)
1 , . . . ,x(pl−1+1)

l−1 ,x(jl)
l , . . . ,x(ji)

i ) ∈ Y }
over all (jl, . . . , ji) ∈ J .

(ii) Let Y ⊂ In0
v × I

(p1+1)n1
v × I

(p2+1)n2
v−1 × . . . × I

(pl−1+1)nl−1
v−l+2 × I

nl+...+ni+ni+1
1 .

Define
∏ l,i+1

i,J Y as an intersection of sets

{(x0,x
(1)
1 , . . . ,x(p1+1)

1 , . . . ,x(1)
i , . . . ,x(pi+1)

i ,xi+1)|

x0 ∈ In0
v , x(m)

k ∈ Ink

v−k+1(1 ≤ k ≤ l−1), x(m)
k ∈ Ink

1 (l ≤ k ≤ i), xi+1 ∈ I
ni+1
1 ,

(x0,x
(1)
1 , . . . ,x(pl−1+1)

l−1 ,x(jl)
l , . . . ,x(ji)

i ,xi+1) ∈ Y }
over all (jl, . . . , ji) ∈ J .

(iii) If l = i and J = {j| 1 ≤ j ≤ pi + 1} we use the notation
∏

i
iY for

∏
i
i,JY .

Lemma 6. Let

Y ⊂ In0
v × I(p1+1)n1

v × I
(p2+1)n2
v−1 × . . .× I

(pl−1+1)nl−1
v−l+2 × I

nl+...+ni+ni+1
1 .

Then for any J ⊂ {j|1 ≤ j ≤ pi+1+1}, J ′ ⊂ {(jl, . . . , ji)|1 ≤ jk ≤ pk+1, l ≤ k ≤ i}
we have ∏

i+1
i+1,J

∏
l,i+1
i,J ′ Y =

∏
l
i+1,J ′×JY.

Proof. Straightforward.

Definition 7. Let Y , l, i, J be as in Definition 6. Define
⊔

l
i,JY and

⊔ l,i+1
i,J Y

similar to
∏

l
i,JY and

∏ l,i+1
i,J Y respectively, replacing in Definition 6 “intersection”

by “union”.

Lemma 7. (De Morgan law)
⊔

l
i,JY =

(∏
l
i,J Ỹ

)̃
;

⊔
l,i+1
i,J Y =

(∏
l,i+1
i,J Ỹ

)̃
,

where tildes denote complements in the appropriate cubes.
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Proof. Straightforward.

Definition 8. Let ti = n0 + n1(p1 + 1) + . . . + ni(pi + 1). Define projection
maps

πi : Rn0+...+ni → Rn0+...+ni−1

(x0, . . . ,xi) 7→ (x0, . . . ,xi−1),

and for j < i,
πi,j : Rtj+nj+1+...+ni → Rtj+nj+1+...+ni−1

(x0,x
(1)
1 , . . . ,x(pj+1)

j ,xj+1, . . . ,xi) 7→ (x0,x
(1)
1 , . . . ,x(pj+1)

j ,xj+1, . . . ,xi−1).

Lemma 8. Let

Y ⊂ In0
v × I(p1+1)n1

v × I
(p2+1)n2
v−1 × . . .× I

(pl−1+1)nl−1
v−l+2 × I

nl+...+ni+ni+1
1 .

Then ⊔
l
i,Jπi+1,l−1(Y ) = πi+1,i

(⊔
l,i+1
i,J Y

)
.

Proof. Straightforward.

5. Case of a single quantifier block

According to Theorem 1,

bq0(X) = bq0(X̃0) ≤
∑

p1+q1=q0

bq1

(∏
1
1,J1

1
X1

)
, (5.1)

where J1
1 = {1, . . . , p1 + 1}.

Let ν = 1, then (3.3) turns into ∃x1F (x0,x1), where X1 = {F (x0,x1)} and
F (x0,x1) is a Boolean combination with no negations of s atomic formulae of the
kind f > 0.

5.1. Polynomial case

Suppose that X1 is semialgebraic, with f ’s being polynomials of degrees deg(f) <
d. For any k ≤ dim(X), we bound the Betti number bk(X) from above in the
following way. Observe that

∏
1
1,J1

1
X1 is an open set in I

n0+(p1+1)n1
1 definable by

a Boolean combination with no negations of (p1 + 1)s atomic formulae of the kind
g > 0, deg(g) < d in t1 = n0 + (p1 + 1)n1 variables.

According to (3.1), for any q1 ≤ dim(X),

bq1

(∏
1
1,J1

1
X1

)
≤ O(p1sd)n0+(p1+1)n1 .

Then due to (5.1), for any k ≤ dim(X) ≤ n0,

bk(X) ≤
∑

p1+q1=k

O(p1sd)n0+(p1+1)n1 ≤ (ksd)O(n0+kn1).

5.2. Pfaffian case

Suppose that X1 ⊂ In
1 is sub-Pfaffian, with f ’s being Pfaffian functions in an open

domain G ⊃ In
1 of order ρ, degree (α, β), having a common Pfaffian chain. Observe
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that
∏

1
1,J1

1
X1 is an open set definable by a Boolean combination with no negations

of (p1 + 1)s atomic formulae of the kind g > 0, where g are Pfaffian functions
in an open domain contained in I

n0+(p1+1)n1
1 of degrees (α, β), order (p1 + 1)ρ in

n0 + (p1 + 1)n1 variables, having a common Pfaffian chain. According to (3.2), for
any q1 ≤ dim(X),

bq1

(∏
1
1,J1

1
X1

)
≤ ((p1 + 1)s)n0+(p1+1)n12(p1+1)ρ((p1+1)ρ−1)/2·

·O((n0 + p1n1)β + min{p1ρ, n0 + p1n1}α)n0+(p1+1)(n1+ρ).

Then due to (5.1), for any k ≤ dim(X) ≤ n0,

bk(X) ≤
∑

p1+q1=k

bq1

(∏
1
1,J1

1
X1

)
≤

k((k + 1)s)n0+(k+1)n12(k+1)ρ((k+1)ρ−1)/2·
·O((n0 + kn1)β + min{kρ, n0 + kn1}α)n0+(k+1)(n1+ρ).

Let d > α + β. Relaxing the obtained bound, we get

bk(X) ≤ (ks)O(n0+kn1)2(O(kρ))2((n0 + kn1)d)O(n0+kn1+kρ).

6. Cases of two and three quantifier blocks

In this section we obtain a generalization of (5.1) to the case of two and three
blocks of quantifiers, as a preparation for cumbersome general formulae in the next
section. The case of three quantifier blocks is considered separately also because of
a technical difficulty that appears first in that case (see the discussion after (6.1)).

Recall that
πi : Rn0+...+ni → Rn0+...+ni−1 ,

for j < i,
πi,j : Rtj+nj+1+...+ni → Rtj+nj+1+...+ni−1 .

Let ν = 3, then the original formula becomes ∃x1∀x2∃x3((x0,x1,x2,x3) ∈ X3).
Thereby,

X1 = {∀x2∃x3((x0,x1,x2,x3) ∈ X3)}, X̃2 = {∃x3((x0,x1,x2,x3) ∈ X3)},
X = X̃0 is open in In0

1 .
According to Theorem 1,

bq0(X̃0) ≤
∑

p1+q1=q0

bq1

(∏
1
1,J1

1
X1

)
.

Applying in succession Lemma 7 (De Morgan law), Lemma 4 (Alexander’s duality),
definitions of π2 and π2,1, and Lemma 8 we get

bq1

(∏
1
1,J1

1
X1

)
= bq1

((⊔
1
1,J1

1
X̃1

)̃)
≤

≤ bt1−q1−1

(⊔
1
1,J1

1
X̃1 ∪ ∂It1

1

)
= bt1−q1−1

(⊔
1
1,J1

1
π2(X2) ∪ π2,1(∂It1

1 × In2
1 )

)
=

= bt1−q1−1

(
π2,1

(⊔
1,2
1,J1

1
X2 ∪ ∂It1

1 × In2
1

))
.
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Due to Theorem 1, the last expression does not exceed
∑

p2+q2=t1−q1−1

bq2

(∏
2
2

(⊔
1,2
1,J1

1
X2 ∪ ∂It1

1 × In2
1

))
=

=
∑

p2+q2=t1−q1−1

bq2

(∏
2
2

(⊔
1,2
1,J1

1
X2 ∪B2

2

))
.

In a case of sub-Pfaffian or semialgebraic X it is now possible to estimate

bq2

(∏
2
2

(⊔
1,2
1,J1

1
X2 ∪B2

2

))

via the format of X2. This completes the description of the case of two quantifier
blocks. We now proceed to the case of three blocks.

Due to Lemma 7 (De Morgan law) and Lemma 4 (Alexander’s duality),

bq2

(∏
2
2

(⊔
1,2
1,J1

1
X2 ∪B2

2

))
= bq2

((⊔
2
2

(∏
1,2
1,J1

1
X̃2 ∩ B̃2

2

))̃)
= (6.1)

= bt2−q2−1

(⊔
2
2

(∏
1,2
1,J1

1
X̃2 ∩ B̃2

2

)
∪ ∂(It1

2 × I
n2(p2+1)
1 )

)
.

From this point we could have proceeded in a “natural” way similar to the just
considered case of two blocks, namely, replacing in the previous expression the set
X̃2 by π3(X3), then carrying the projection operator to the left to obtain an expres-
sion of the kind bt2−q2−1(π3,2(. . .)), and after that applying Theorem 1. However,
carrying the projection operator through the symbol

∏ 1,2
1,J1

1
(which corresponds to

an intersection of some cylindrical sets) would require an introduction of p1n2 new
variables. This would result in a significantly higher upper bound for bq0(X). In-
stead we reduce intersections to unions, then carrying the projection operator to
the left does not require new variables.

More precisely, by Lemma 5 (Mayer-Vietoris inequality) expression (6.1) does
not exceed ∑

1≤k2≤p2+1

∑

Ĵ2
2⊂{1,...,p2+1}, |Ĵ2

2 |=k2

bt2−q2−k2

(∏
2
2,Ĵ2

2

(∏
1,2
1,J1

1
X̃2 ∩ B̃2

2

)
∪ ∂(It1

2 × I
n2(p2+1)
1 )

)
.

(We estimate a Betti number of the union of cylindrical sets from the definition of
the symbol

⊔
2
2 by a sum of Betti numbers of intersections of various combinations

of these sets.)
By Lemma 6,

bt2−q2−k2

(∏
2
2,Ĵ2

2

(∏
1,2
1,J1

1
X̃2 ∩ B̃2

2

)
∪ ∂(It1

2 × I
n2(p2+1)
1 )

)
=

= bt2−q2−k2

(∏
1
2,J1

1×Ĵ2
2
X̃2 ∩

∏
2
2,J2

1×Ĵ2
2
B̃2

2 ∪ ∂(It1
2 × I

n2(p2+1)
1 )

)
,

with J2
1 = {1}. By Lemma 5 (Mayer-Vietoris inequality) the last expression does

not exceed ∑

1≤s2≤q2+k2+1

∑

J1
2⊂J1

1×Ĵ2
2 , J2

2⊂J2
1×Ĵ2

2 , |J1
2 |+|J2

2 |=s2

bt2−q2−k2+s2−1

(⊔
1
2,J1

2
X̃2 ∪

⊔
2
2,J2

2
B̃2

2 ∪ ∂(It1
2 × I

n2(p2+1)
1 )

)
,
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taking into the account that

dim
(⊔

1
2,J1

2
X̃2 ∪

⊔
2
2,J2

2
B̃2

2 ∪ ∂(It1
2 × I

n2(p2+1)
1 )

)
≤ t2

and therefore

bt2−q2−k2+s2−1

(⊔
1
2,J1

2
X̃2 ∪

⊔
2
2,J2

2
B̃2

2 ∪ ∂(It1
2 × I

n2(p2+1)
1 )

)
= 0

for s2 > q2 + k2 + 1.
We have

bt2−q2−k2+s2−1

(⊔
1
2,J1

2
X̃2 ∪

⊔
2
2,J2

2
B̃2

2 ∪ ∂(It1
2 × I

n2(p2+1)
1 )

)
=

= bt2−q2−k2+s2−1

(⊔
1
2,J1

2
π3(X3)∪

⊔
2
2,J2

2
π3,1(B2

3)∪π3,2(∂(It1
2 ×I

n2(p2+1)
1 )×In3

1 )
)

=

= bt2−q2−k2+s2−1

(
π3,2

(⊔
1,3
2,J1

2
X3 ∪

⊔
2,3
2,J2

2
B2

3 ∪B3
3

))
.

Due to Theorem 1 the last expression does not exceed
∑

p3+q3=t2−q2−k2+s2−1

bq3

(∏
3
3

(⊔
1,3
2,J1

2
X3 ∪

⊔
2,3
2,J2

2
B2

3 ∪B3
3

))
.

In case of a sub-Pfaffian or a semialgebraic X it is now possible to estimate

bq3

(∏
3
3

(⊔
1,3
2,J1

2
X3 ∪

⊔
2,3
2,J2

2
B2

3 ∪B3
3

))

via the format of X3.

7. Arbitrary number of quantifiers

Theorem 2. For any i the Betti number bq0(X) does not exceed
∑

p1+q1=q0

∑
p2+q2=t1−q1−1

∑

1≤k2≤p2+1

∑

Ĵ2
2⊂{1,...,p2+1}, |Ĵ2

2 |=k2

(7.1)

∑

1≤s2≤q2+k2+1

∑

J1
2⊂J1

1×Ĵ2
2 , J2

2⊂J2
1×Ĵ2

2 , |J1
2 |+|J2

2 |=s2

∑

p3+q3=t2−k2+s2−1

. . .

. . .
∑

1≤ki−1≤pi−1+1

∑

Ĵi−1
i−1⊂{1,...,pi−1+1}, |Ĵi−1

i−1 |=ki−1

∑

1≤si−1≤qi−1+ki−1+1

∑

J1
i−1⊂J1

i−2×Ĵi−1
i−1 ,..., Ji−1

i−1⊂Ji−1
i−2×Ĵi−1

i−1 , |J1
i−1|+...+|Ji−1

i−1 |=si−1

∑

pi+qi=ti−1−qi−1−ki−1+si−1−1

bqi

(∏
i
i

(⊔
1,i
i−1,J1

i−1
Xi ∪

⋃

2≤r≤i−1

⊔
r,i
i−1,Jr

i−1
Br

i ∪Bi
i

))
.

Proof. Induction on i. Suppose (7.1) is true. Due to Lemma 7 (De Morgan law)
and Lemma 4 (Alexander’s duality),

bqi

(∏
i
i

(⊔
1,i
i−1,J1

i−1
Xi ∪

⋃

2≤r≤i−1

⊔
r,i
i−1,Jr

i−1
Br

i ∪Bi
i

))
=
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= bqi

((⊔
i
i

(∏
1,i
i−1,J1

i−1
X̃i ∩

⋂

2≤r≤i−1

∏
r,i
i−1,Jr

i−1
B̃r

i ∩ B̃i
i

))̃)
≤

≤ bti−qi−1

(⊔
i
i

(∏
1,i
i−1,J1

i−1
X̃i ∩

⋂

2≤r≤i−1

∏
r,i
i−1,Jr

i−1
B̃r

i ∩ B̃i
i

)
∪

∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)
.

By Lemma 5 (Mayer-Vietoris inequality) the last expression does not exceed
∑

1≤ki≤pi+1

∑

Ĵi
i⊂{1,...,pi+1}, |Ĵi

i |=ki

bti−qi−ki

(∏
i
i,Ĵi

i

(∏
1,i
i−1,J1

i−1
X̃i ∩

⋂

2≤r≤i−1

∏
r,i
i−1,Jr

i−1
B̃r

i ∩ B̃i
i

)
∪

∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)
,

where, by Lemma 6,

bti−qi−ki

(∏
i
i,Ĵi

i

(∏
1,i
i−1,J1

i−1
X̃i ∩

⋂

2≤r≤i−1

∏
r,i
i−1,Jr

i−1
B̃r

i ∩ B̃i
i

)
∪

∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)

=

= bti−qi−ki

(∏
1
i,J1

i−1×Ĵi
i

X̃i ∩
⋂

2≤r≤i

∏
r
i,Jr

i−1×Ĵi
i

B̃r
i ∪

∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)
,

where J i
i−1 = {1}. By Lemma 5 (Mayer-Vietoris inequality) the last expression

does not exceed
∑

1≤si≤qi+ki+1

∑

J1
i ⊂J1

i−1×Ĵi
i , ..., Ji

i⊂Ji
i−1×Ĵi

i , |J1
i |+...+|Ji

i |=si

bti−qi−ki+si−1

(⊔
1
i,J1

i
X̃i ∪

⋃

2≤r≤i

⊔
r
i,Jr

i
B̃r

i ∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)
.

We have

bti−qi−ki+si−1

(⊔
1
i,J1

i
X̃i ∪

⋃

2≤r≤i

⊔
r
i,Jr

i
B̃r

i ∪ ∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )
)

=

= bti−qi−ki+si−1

(⊔
1
i,J1

i
πi+1(Xi+1) ∪

⋃

2≤r≤i

⊔
r
i,Jr

i
πi+1,r−1(Br

i+1) ∪

∪ πi+1,i(∂(In0+(p1+1)n1
i × . . .× I

(pi+1)ni

1 )× I
ni+1
1 )

)
=

= bti−qi−ki+si−1

(
πi+1,i

(⊔
1,i+1
i,J1

i
Xi+1 ∪

⋃

2≤r≤i

⊔
r,i+1
i,Jr

i
Br

i+1 ∪Bi+1
i+1

))
.
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Due to Theorem 1 the last expression does not exceed
∑

pi+1+qi+1=ti−qi−ki+si−1

bqi+1

(∏
i+1
i+1

(⊔
1,i+1
i,J1

i
Xi+1 ∪

⋃

2≤r≤i

⊔
r,i+1
i,Jr

i
Br

i+1 ∪Bi+1
i+1

))
.

8. Upper bounds for sub-Pfaffian sets

We first estimate from above the number of additive terms in (7.1). These terms
can be partitioned into i− 1 groups of the kind

∑

1≤kj≤pj+1

∑

Ĵj
j⊂{1,...,pj+1}, |Ĵj

j |=kj

∑

1≤sj≤qj+kj+1

∑

J1
j⊂J1

j−1×Ĵj
j ,..., Jj

j⊂Jj
j−1×Ĵj

j , |J1
j |+...+|Jj

j |=sj

∑

pj+1+qj+1=tj−qj−kj+sj−1

,

where 1 ≤ j ≤ i− 1.
The number of terms in ∑

1≤kj≤pj+1

∑

Ĵj
j⊂{1,...,pj+1}, |Ĵj

j |=kj

is 2pj+1. The number of terms in∑

1≤sj≤qj+kj+1

∑

J1
j⊂J1

j−1×Ĵj
j ,..., Jj

j⊂Jj
j−1×Ĵj

j , |J1
j |+...+|Jj

j |=sj

does not exceed 2j(qj+kj+1). The number of terms in∑

pj+1+qj+1=tj−qj−kj+sj−1

does not exceed tj + 1.
It follows that the total number of terms in jth group does not exceed

2pj+1+j(qj+kj+1)(tj + 1) ≤ 2O(jtj−1).

Since tj = n0+n1(p1+1)+. . .+nj(pj+1), pl ≤ tl−1, and therefore tj ≤ 2jn0n1 . . . nj ,
the number of terms in jth group does not exceed 2O(j2jn0n1...nj−1). It follows that
the total number of terms in (7.1) does not exceed 2O(i22in0n1...ni−2).

We now find an upper bound for

bqν

(∏
ν
ν

(⊔
1,ν
ν−1,J1

ν−1
Xν ∪

⋃

2≤r≤ν−1

⊔
r,ν
ν−1,Jr

ν−1
Br

ν ∪Bν
ν

))
.

Assume that Xν = {F (x0,x1, . . . ,xν)}, where F is a quantifier-free Boolean for-
mula with no negations having s atoms of the kind f > 0, f ’s are polynomials or
Pfaffian functions of degrees less than d or (α, β) respectively. In Pfaffian case, let
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functions f be defined in an open domain G by the same Pfaffian chain of order ρ.
We assume without loss of generality that In0+...+nν

ν ⊂ G.
The set

⊔ 1,ν
ν−1,J1

ν−1
Xν ⊂ Rtν−1+nν is defined by a Boolean formula with no nega-

tions having |J1
ν−1|s ≤ sν−1s ≤ (2tν−2 + 1)s atoms of degrees less than d (for

polynomials) or less than (α, β) (for Pfaffian functions) and at most 2tν−1 + 2nν

linear atoms (defining I
tν−1+nν

1 ).
For any 2 ≤ r ≤ ν the set Br

r ⊂ Rtr−1+nr is defined by a Boolean formula with
no negations having 4tr−1 + 2nr linear atomic inequalities. Therefore, all sets of
the kind Br

j for j ≥ r are defined by Boolean formulae with no negations having
4tr−1+2(nr+. . .+nj) linear inequalities. In particular, the set Br

ν ⊂ Rtr−1+nr+...+nν

is defined by 4tr−1 + 2(nr + . . . + nν) linear atomic inequalities.
For any 2 ≤ r ≤ ν − 1 the set

⊔ r,ν
ν−1,Jr

ν−1
Br

ν ⊂ Rtν−1+nν is defined by a Boolean
formula with no negations having at most

(4tr−1 + 2(nr + . . . + nν))|Jr
ν−1|+ 2tν−1 + 2nν ≤

≤ (4tr−1 + 2(nr + . . . + nν))sν−1 + 2tν−1 + 2nν ≤
≤ (4tr−1 + 2(nr + . . . + nν))(2tν−2 + 1) + 2tν−1 + 2nν

linear atoms.
It follows that the set

⋃
2≤r≤ν−1

⊔ r,ν
ν−1,Jr

ν−1
Br

ν ⊂ Rtν−1+nν is defined by a Boolean
formula with no negations having at most

((4tν−1 + 2(n2 + . . . + nν))(2tν−2 + 1) + 2tν−1 + 2nν)(ν − 2)

linear atoms.
The set ∏

ν
ν

(⊔
1,ν
ν−1,J1

ν−1
Xν ∪

⋃

2≤r≤ν−1

⊔
r,ν
ν−1,Jr

ν−1
Br

ν ∪Bν
ν

)
⊂ Rtν (8.1)

is defined by a Boolean formula with no negations having at most

((2tν−2+1)s+2tν−1+2nν+((4tν−1+2(n2+. . .+nν))(2tν−2+1)+2tν−1+2nν)(ν−2))·
·(tν−1 + 1) ≤ st

O(1)
ν−1

atoms of degrees less than d for polynomials or less than (α, β) for Pfaffian functions.
Similar calculation shows that, in the Pfaffian case, the set (8.1) is defined by

Pfaffian functions having the order at most ρ(2tν−2 +1)(tν−1 +1) ≤ O(ρtν−2tν−1).

8.1. Polynomial case

Let functions f in formula F be polynomials of degrees deg(f) < d. Then, ac-
cording to (3.1),

bqν

(∏
ν
ν

(⊔
1,ν
ν−1,J1

ν−1
Xν ∪

⋃

2≤r≤ν−1

⊔
r,ν
ν−1,Jr

ν−1
Br

ν ∪Bν
ν

))
≤

≤ O(ds)tν t
O(tν)
ν−1 ≤ (2νdsn0n1 . . . nν−1)O(2νn0n1...nν).

Using (7.1) in case i = ν, we get

bq0(X) ≤ (2ν2
dsn0n1 . . . nν−1)O(2νn0n1...nν)

(compare with (3.4) and (3.5)).
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8.2. Pfaffian case

Let f be Pfaffian functions in an open domain G ⊃ In
1 of order ρ, degree (α, β),

having a common Pfaffian chain. Then, according to (3.2),

bqν

(∏
ν
ν

(⊔
1,ν
ν−1,J1

ν−1
Xν ∪

⋃

2≤r≤ν−1

⊔
r,ν
ν−1,Jr

ν−1
Br

ν ∪Bν
ν

))
≤

≤ 2O(ρ2t2ν−2t2ν−1)(stν−1)O(tν)O(tνβ + min{tν , ρ}α)O(tν+ρtν−2tν−1) ≤

≤ 2O(ρ224νn4
0n4

1...n4
ν−2n2

ν−1)sO(2νn0n1...nν)·

·(2νn0n1 . . . nν(α + β))O(2νn0n1...nν+ρ22νn2
0n2

1...n2
ν−2nν−1).

Using (7.1) in case i = ν, we get

bq0(X) ≤ 2O(ν2νn0n1...nν+ρ224νn4
0n4

1...n4
ν−2n2

ν−1)sO(2νn0n1...nν)·

·(n0n1 . . . nν(α + β))O(2νn0n1...nν+ρ22νn2
0n2

1...n2
ν−2nν−1).

Introducing the notations:

uν := 2νn0n1 . . . nν , vν := 22νn2
0n

2
1 . . . n2

ν−2nν−1,

we can rewrite this bound in a more compact form

bq0(X) ≤ 2O(νuν+ρ2v2
ν)sO(uν)(uν(α + β))O(uν+ρvν).

Acknowledgements. Authors are very grateful to D. Dugger, D.B. Fuchs, and
V.A. Vassiliev for useful discussions.
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