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Localized Pattern Formation with a Large-Scale Mode: Slanted Snaking∗
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Abstract. Steady states of localized activity appear naturally in uniformly driven, dissipative systems as a result
of subcritical instabilities. In the usual setting of an infinite domain, branches of such localized states
bifurcate at the subcritical “pattern-forming” instability and intertwine in a manner often referred to
as “homoclinic snaking.” In this paper we consider an extension of this paradigm where, in addition
to the pattern-forming instability (with nonzero wavenumber), a large-scale neutral mode exists,
having zero growth rate at zero wavenumber. Such a situation naturally arises in the presence of a
conservation law; we give examples of physical systems in which this arises, in particular, thermal
convection in a horizontal fluid layer with a vertical magnetic field. We introduce a novel scaling
that allows the derivation of a nonlocal Ginzburg–Landau equation to describe the formation of
localized states. Our results show that the existence of the large-scale mode substantially enlarges
the region of parameter space where localized states exist and are stable.
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1. Introduction. Recent decades have seen a sustained level of interest in systems whose
response is spatially localized despite a spatially uniform applied forcing. One broad class
of systems which display such localized states of activity is both driven and strongly dis-
sipative, and displays “pattern-forming” (also called Turing) instabilities at which spatially
homogeneous solutions become unstable and spatial structure appears [11, 19, 25]. It is widely
appreciated that, while supercritical pattern-forming instabilities lead to spatially extended
(and almost periodic) structures, subcritical instabilities robustly lead to localized patterns
[21, 37, 8, 30, 5]. Localized steady-state pattern formation has been observed in a huge variety
of experiments and models for physical, chemical, and biological systems, for example, neural
dynamics [23], elastic buckling [20], and nonlinear optics [1, 35]. In other cases, for example,
vertically vibrated granular media [34], the localized pattern is oscillatory in nature. In many
problems the existence of the localized states can be heuristically explained by an energetic
argument: at a critical parameter value, often called the “Maxwell point,” the system has
no energetic preference between the “ground state,” corresponding to no pattern, and the
patterned state. Once a localized state has been formed there is a locking between the phase
of the pattern and the phase of the envelope which allows the localized state to persist over a
finite range of parameter values, as first remarked on by Pomeau [26].
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SLANTED SNAKING 187

Mathematically, much has been done to investigate canonical model problems displaying
subcritical pattern-forming instabilities and therefore localized patterns. One such model
equation is the one-dimensional Swift–Hohenberg equation

(1.1) wt = [r − (1 + ∂2
xx)

2]w + N(w)

(writing ∂2
xx as a convenient abbreviation for ∂2/∂x2), which has been studied in detail in the

particular cases N(w) = sw2 −w3 and N(w) = sw3 −w5, where s > 0 controls the subcritical
nature of the pattern-forming instability. These choices for N(w) are commonly referred
to as the “quadratic-cubic” and “cubic-quintic” cases, respectively. Careful investigations
of these localized states have been carried out by several authors including Sakaguchi and
Brand [30] and Burke and Knobloch [5]. Many different localized and front-like solutions
between steady states have been reported. For our present purposes, we note that the most
obvious consequence of a subcritical bifurcation is the existence of stable localized states in a
small subregion between the linear instability of the state w(x, t) ≡ 0 at r = 0 and the saddle-
node bifurcation at r = rsn < 0 on the primary branch of uniform amplitude pattern. The
width of this region is exponentially small in the small amplitude parameter ε employed in
the standard Ginzburg–Landau multiple-scales expansion near r = 0 [22]. Moreover, since the
usual “spatial dynamics” analysis assumes an infinitely wide domain −∞ < x < ∞, localized
states containing arbitrary numbers of pattern bumps are simultaneously stable over almost
all of this region.

Concentrating on the cubic-quintic case, a final widely appreciated, and well-understood,
point is that two distinct pairs of branches of localized states persist over the locking region.
One pair corresponds to locking at relative phases of φ = 0 and φ = π (these are related by
the w → −w symmetry present in the cubic-quintic case) and the other pair to the relative
phases φ = π/2 and φ = −π/2, similarly related by symmetry. The first pair corresponds to
localized states that are even about the midpoint, and the second pair corresponds to states
that are odd about the midpoint. This robust phase-locking is exactly the “locking” intuitively
understood by Pomeau.

Intriguingly, the spatial dynamics analysis shows that these branches of localized states,
that generically bifurcate from r = 0, exist in r < 0 down to saddle-node bifurcations slightly
below the Maxwell point. They then undergo a sequence of repeated and intertwined saddle-
node bifurcations on alternate sides of the Maxwell point; after each pair of saddle-node
bifurcations the localized state gains an extra pair of bumps. In a finite domain the branches
terminate in bifurcations from the uniform amplitude pattern located near r = 0 and near
the saddle-node bifurcation at r = rsn. In an infinite domain the process of saddle-node
bifurcations and gaining extra bumps continues ad infinitum. This sequence of repeated
saddle-node bifurcations in an infinite domain is known as “homoclinic snaking” since all
the states approach w = 0 as x → ±∞. A brief explanation of the “homoclinic snaking”
phenomenon is that at some parameter value r = rmx, rsn < rmx < 0, there exists a “Maxwell
point” where there exists a stationary front between the trivial solution w = 0 and the uniform
spatially periodic pattern. In the corresponding spatial dynamical system this heteroclinic
connection becomes a heteroclinic tangle when normal form symmetry is broken. Within the
heteroclinic tangle we can identify intersections of the stable and unstable manifolds of w = 0;



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

188 J. H. P. DAWES

these correspond to spatial homoclinic orbits that comprise the “homoclinic snaking” and
they can be shown to persist near r = rmx, rather than existing only exactly at r = rmx.

In a large but finite domain (with periodic boundary conditions), it appears that localized
states persist and continue to exhibit intertwined wiggles around the Maxwell point [18]. In
a finite domain they are not truly “localized” since the domain is bounded, but they clearly
converge to the infinite domain solutions as the domain size L → ∞. A detailed discussion of
persistence and the evolution of the bifurcation structure with domain size will be presented
elsewhere.

In this paper we consider a class of pattern-forming systems that differs from (1.1) in a
fundamental way; a neutrally stable long-wavelength mode exists in addition to the pattern-
forming instability at wavenumber k = 1. Our broad motivation comes from three physical
situations: thermal convection in the presence of a vertical magnetic field [13, 10], vertically
vibrated granular media [17, 34], and thin films [16]. In all three cases the large-scale mode
arises due to the existence of a conserved quantity in the dynamics. In magnetoconvection
this is the total flux of magnetic field through the fluid layer; in the granular and thin film
cases the conserved quantity is the total mass. We remark that such a conserved quantity
makes sense only for finite experimental domains, and our analysis takes this into account.

The treatment of the large-scale mode in magnetoconvection differs in one respect from
the granular media and thin film cases; in the former problem the large-scale mode (the
horizontally averaged vertical component of the magnetic field) can take either sign; the
dynamics is unchanged by this, so the dynamical equations must also remain unchanged.
In the latter two cases the large-scale mode quantity is a scalar, density-like, quantity and
no sign-change symmetry exists. We focus in this paper on the symmetric case relevant to
magnetoconvection; the density-like case is very similar and we summarize a few calculations
in an appendix. As we will show, the presence of a large-scale mode stretches the snaking
behavior out over a substantial region of parameter space and enables localized states to exist
both below the saddle-node bifurcation on the subcritical uniform amplitude branch at r = rsn
and far above the point of linear instability of the trivial state.

Pattern formation in the presence of a long-wavelength neutral mode of this kind was
considered by Matthews and Cox [24], who carried out a weakly nonlinear analysis of a Swift–
Hohenberg-type equation modified by applying ∂2

xx to the right-hand side of (1.1) to produce
a dispersion relation that tended to zero (i.e., indicated neutral stability) as k → 0. These
authors considered the pattern amplitude to be O(ε) and the large-scale mode to deviate by
only an O(ε2) amount from the initially homogeneous state. While asymptotically correct,
these scalings are unable to capture solutions where the fluctuations in the large-scale mode are
large. As a result, numerical solutions often blow up, and higher-order stabilizing terms were
found to be required [10]. Similar difficulties were noted by Golovin, Davis, and Voorhees [16].

In this paper we present a modified multiple-scales analysis that uses the diffusivity of the
large-scale mode as the small parameter. We show that this enables the asymptotics for small-
amplitude patterns to nevertheless capture the effect of O(1) fluctuations in the large-scale
mode. In consequence, this asymptotic treatment avoids the singularities found by earlier
authors. The layout of the paper is as follows. Section 2 proposes the extension of (1.1) which
we study; details linking it directly to the governing equations for magnetoconvection are
deferred to Appendix A. Appendix B summarizes the multiple-scales derivation in the very
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σ

k2

Figure 1. Sketch of the growth rate σ(k2) for a reflection-symmetric pattern-forming instability at wave-
number k = 1, in the presence of a large-scale mode that is neutrally stable as k → 0.

similar case of a density-like large-scale mode, appropriate to the vibrated granular medium
and thin film cases. In section 3 we return to the Swift–Hohenberg ansatz and compare the
results of the multiple-scales approach with results from numerical continuation. Section 4
concludes the paper.

2. Ginzburg–Landau asymptotics. In this section we propose a model equation for pat-
tern formation coupled to a large-scale mode, appropriate for magnetoconvection. We assume
that the pattern-forming domain 0 ≤ x ≤ L is large, but, crucially, finite, and we carry out
a multiple-scales analysis to derive an amplitude equation similar to the Ginzburg–Landau
equation, but containing a nonlocal term, which captures the influence of the large-scale
mode. From the Ginzburg–Landau equation we deduce the existence of modulational insta-
bilities that lead to localized states and investigate scaling laws governing the location of the
bifurcation points.

2.1. Model equations. Suppose that a one-dimensional pattern-forming system is de-
scribed by the pattern amplitude w(x, t) and the large-scale mode B(x, t). We consider the
dispersion curves of the linearized growth rate as a function of perturbation wavenumber k to
take the form shown in Figure 1, with quadratic maxima at k = 0 and k = 1.

We further assume that the system is translationally invariant and reflection-symmetric
(i.e., x → −x). Hence a conservation law for B(x, t) contains only even numbers of derivatives.
In the absence of the large-scale mode we assume that the pattern-forming instability is
supercritical; this is appropriate for thermal convection. An additional symmetry requirement
is appropriate for magnetoconvection: that the dynamics is invariant under a change in the
sign of the large-scale mode B(x, t). Model equations constrained to have these properties are

wt = [r − (1 + ∂2
xx)

2]w − w3 −QB2w,(2.1)

Bt = εBxx +
c

ε
(Bw2)xx,(2.2)

where natural (and analytically tractable) forms of the coupling terms with coefficients Q and
c/ε have been taken. The factor of ε−1 in the second equation enables an asymptotic balance
between the nonlinear and the diffusion terms to occur when the pattern amplitude w(x, t) is
O(ε). As shown in Appendix B, this factor of ε−1 appears naturally in magnetoconvection.

Integrating (2.2) over the domain 0 ≤ x ≤ L and applying periodic boundary conditions

imply that 1
L

∫ L
0 B(x, t)dx ≡ 〈B〉 is constant in time; by rescaling B(x, t) we may take it to be
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unity. Essentially, this rescaling absorbs the original mean value 〈B〉 into the coupling param-
eter Q. Such a rescaling corresponds exactly to the usual nondimensionalization employed in
magnetoconvection, where Q is known as the Chandrasekhar number [7, 27].

We now restrict our attention to steady solutions, setting ∂t ≡ 0, and integrating (2.2)
twice to obtain

(2.3) B =
P

1 + cw2/ε2
,

where P is a constant of integration that corresponds to the value of the large-scale mode
away from the localized pattern. Using 〈B〉 = 1 we can now compute P as an integral over
the domain; P therefore becomes a nonlocal functional of the pattern amplitude w(x):

(2.4)
1

P
=

〈
1

1 + cw2/ε2

〉
.

Substituting into (2.1) and looking for steady states, we obtain the nonlocal Swift–Hohenberg
equation

(2.5) 0 = [r − (1 + ∂2
xx)

2]w − w3 − QP 2w

(1 + cw2/ε2)2
.

The study of bifurcations and solution stability in nonlocal equations is an area of substantial
current interest; see, for example, [4, 12] and the references therein. In this paper such
difficulties are largely bypassed since, although (2.5) is nonlocal, the linear stability analysis
of w(x) ≡ 0 remains a local problem. As a result, the usual approaches to small-amplitude
solutions of the Swift–Hohenberg equation can be applied, as we now show.

We now introduce the multiple-scales ansatz

(2.6) w(x, t) = εA(X) sinx + ε2w2 + ε3w3 + · · · ,

defining the long lengthscale X = εx. We rescale the parameters r = ε2μ and Q = ε2q since
we are focusing on small-amplitude patterns. The amplitude A(X) can be taken to be real
since the instability which generates localized states occurs in the pattern amplitude and not
in its phase. At third order in the expansion an amplitude equation for A(X) is obtained
by multiplying by sinx and integrating over the short lengthscale, denoting the average as
1
2π

∫ 2π
0 f(x)dx ≡ 〈f(x)〉x. We obtain

(2.7) 0 = μA + 4AXX − 3A3 − 2qP 2

〈
A sin2 x

(1 + cA2 sin2 x)2

〉
x

,

where P now becomes

1

P
=

1

εL

∫ εL

0

1

2π

∫ 2π

0

1

1 + cA2 sin2 x
dx dX

≡
〈 〈

1

1 + cA2 sin2 x

〉
x

〉
X

=

〈
1√

1 + cA2

〉
X

.(2.8)
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Carrying out the x-integral in (2.7), we obtain

(2.9) 0 = μA + 4AXX − 3A3 − qP 2A

(1 + cA2)3/2
.

It follows that the trivial state A(X) ≡ 0 (for which B = 1) undergoes a pitchfork bifurcation
at μ = q. The pitchfork bifurcation is supercritical for small q but becomes subcritical for
cq > 6, as can be checked by expanding both the nonlinear term and P for small A in (2.9).

2.2. Modulational instabilities. As is typical in subcritical bifurcations of this kind, sec-
ondary bifurcations occur close to μ = 0, and close to the saddle-node point on the uniform
branch, which results in localized states. Interestingly, for this problem these secondary mod-
ulational instabilities exist also for 2 < cq < 6 where the primary bifurcation is supercritical.
On the primary branch, where A = A0 constant, we find P =

√
1 + cA2

0, and hence from (2.9)

(2.10) q = (μ− 3A2
0)
√

1 + cA2
0,

which, on simplifying, yields

9cA6
0 + (9 − 6cμ)A4

0 + (cμ2 − 6μ)A2
0 + μ2 − q2 = 0.

To locate the bifurcation points indicating modulational instability we set A = A0(1+aeiKX).
Substituting this ansatz into (2.9) and linearizing in a, we obtain

0 = (μ− 4K2 − 9A2
0)a− (μ− 3A2

0)
1 − 2cA2

0

1 + cA2
0

a,

where we have used (2.10) to eliminate q. Simplifying further, we find that modulational
instability occurs when

15cA4
0 + (6 − 3cμ + 4cK2)A2

0 + 4K2 = 0.

In the limit of large domains, K = 2π/(εL) 	 1, we therefore expect instabilities when

(2.11) A2
0 =

4K2

3cμ− 6
+ O(K4) and A2

0 =
cμ− 2

5c
+ O(K2).

Clearly, no modulational instability is possible if cμ < 2. The first of the conditions in (2.11)
indicates that instability occurs at small A0, near the primary bifurcation at μ = q. The
second condition indicates that instability also occurs at large amplitudes.

The continuation software AUTO [14] was used to solve (2.9) as a boundary-value prob-
lem in a finite domain. Neumann boundary conditions AX = AXXX = 0 at X = 0, εL were
imposed to avoid numerical difficulties arising from the continuous translational symmetry
implied by periodic boundary conditions. Bifurcation diagrams for the supercritical and sub-
critical cases are shown in Figure 2. Of particular note in Figure 2(b) is that the branch of
localized states both extends further into μ < q than the uniform branch, i.e., μsn1 < μsn2 < q,
and also extends substantially into μ > q before rejoining the primary branch at large ampli-
tudes.
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Figure 2. Bifurcation diagrams in the (μ,max(A)) plane. Thick and thin lines denote stable and unstable
branches, respectively. A primary branch of uniform amplitude pattern bifurcates from A(X) ≡ 0 when μ = q.
We fix c = 1 and the domain size εL = 10π. � denotes bifurcation points from the uniform branch to the
branch of modulated states. (a) q = 3, for which the primary bifurcation is supercritical. (b) q = 10, for which
the primary bifurcation is subcritical. Note in both cases the existence of a secondary instability leading to a
branch of spatially localized states. Labels in (b) correspond to the different parts of Figure 3.

Figure 3 shows solutions to (2.9) at the four points indicated on the localized branch in
Figure 2(b). Close to the ends of the branch the solution takes on the usual sech-like profile;
at the center it resembles a pair of tanh-like fronts between the trivial state A = 0 and a
nonzero constant value A0. Stable fronts are possible when the two states have the same
“energy”; in the standard description of localized states the energies are equal at a single
value of the driving parameter μ, known as the “Maxwell point.” In the present case we
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Figure 3. Localized solutions A(X) of (2.9) at the four points on the secondary branch of localized states
indicated on Figure 2(b). Parameter values: (a) μ = 9.523; (b) μ = 7.737; (c) μ = 12.373; (d) μ = 12.534.
Domain size εL = 10π, c = 1, q = 10. Note that the horizontal axis is rescaled to [0, 1] in the figures.

expect that the value A0 depends on the driving parameter μ but not on the domain size or
the overall magnitude q of the large-scale mode. These intuitions can be demonstrated with
a straightforward, but surprisingly accurate, calculation to estimate the relation between A0

and μ, as we now show.

Equation (2.9) has a first integral, obtained by multiplying by AX and integrating:

(2.12) E =
μ

2
A2 + 2A2

X − 3

4
A4 +

qP 2

c

1√
1 + cA2

.

Assuming that the localized solution resembles Figure 3(c) and is nearly piecewise constant,
we may neglect the AX term in (2.12); this turns out not to affect the accuracy of the following
calculation in any significant way, while considerably simplifying the computation. Supposing
that the solution is A = A0 
= 0 over a proportion �/L of the domain, and zero on the
remainder, from (2.8) we obtain P = P�, where

(2.13)
1

P�
= 1 +

�

L

(
1√

1 + cA2
0

− 1

)
.
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Figure 4. Bifurcation diagram in the (μ,max(A)) plane for q = 10, c = 1, εL = 10π, as in Figure 2(b).
Thick and thin lines denote stable and unstable branches, respectively. � denotes bifurcation points from the
uniform branch to the branch of modulated states. The “Maxwell curve” given by (2.15) is the dashed red curve.
The central part of the stable branch of localized states is indistinguishable from it.

Comparing the values of E above and below a front connecting the trivial and nontrivial states
in different parts of the domain, we obtain

E|A=0 =
qP 2

�

c
,

E|A=A0 =
μ

2
A2

0 −
3

4
A4

0 +
qP 2

�

c

1√
1 + cA2

0

,

and from (2.9) we also have

(2.14) qP 2
� = (μ− 3A2

0)(1 + cA2
0)

3/2.

Equating E|A=0 = E|A=A0 and eliminating qP 2
� using (2.14), we obtain the following relation

between μ and A0:

cA2
0

(
μ− 3

2
A2

0

)
= 2(μ− 3A2

0)(1 + cA2
0)

(√
1 + cA2

0 − 1

)
.

This can be simplified to the cubic polynomial in A2
0:

(2.15) 144c2A6
0 + (207c− 96c2μ)A4

0 + (72 + 16c2μ2 − 108cμ)A2
0 + 12μ(cμ− 2) = 0.

For μ = 12 we find that this analytic result predicts A0 = 1.7590818, compared to the numer-
ical value from (2.9), corresponding to Figure 3(c), of A0 = 1.759082. Moreover, instead of a
Maxwell point we have a “Maxwell curve” along which stable fronts, and therefore localized
states, exist; see Figure 4. It is worth remarking that (2.15) relates the amplitude A0 only to
the linear driving parameter μ and does not contain the coupling parameter q or the propor-
tion �/L of the domain that contains the localized pattern. As a result, the localized pattern
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amplitude depends only on μ. This is physically reasonable in the magnetoconvection case:
when the magnetic field has been expelled from one part of the fluid domain, the amplitude
of the thermal convection that results is due to the thermal driving alone.

Our final remark in this section is that on combining (2.13) and (2.14) we can relate q
and �/L, assuming that A0 is determined from μ using (2.15):

q = (μ− 3A2
0)(1 + cA2

0)
3/2

(
1 +

�

L

(
1√

1 + cA2
0

− 1

))2

.

Approximating this expression in the limit of “strong coupling and strong driving,” where
q ∼ μ � 3A2

0 � 1, it can be written in the form

q

μ
≈ A3

0

(
1 − �

L

)2

,

which is reminiscent of (4.5) in [13] and indicates that in the strong coupling and strong
driving regime it is some combination of q and μ that determines the width of the localized
state. Note that the amplitude A0 scales in some unspecified way with μ and q, and so this
relation does not indicate a simple power-law scaling exponent, as we discuss further in the
next section.

2.3. Scaling laws in the nonlocal Ginzburg–Landau equation. The location and shape
of the primary and secondary branches evolve continuously between Figures 2(a) and 2(b) as q
is increased, first by the introduction of saddle-node points on the secondary branch, and then
by the subcriticality of the primary branch. Figure 5 displays the bifurcation structure in the
(μ, q) plane; for q � 10 the bifurcation points appear to scale as power-laws with increasing
q, and the region of existence of stable localized states increases in size rapidly. Figure 5 (in
which c = 1) shows that the localized states exist subcritically (i.e., for μ − q < 0) even for
q < 6, where the primary bifurcation is still supercritical.

The scaling law for the saddle-node bifurcation sn2 on the uniform amplitude branch can
be located by eliminating A2

0 between the second condition of (2.11) and (2.10). This yields
the curve

(2.16)

(
cq

5
√

5

2

)2

= (3 + cμ)3,

which agrees closely with numerical calculations and is shown as the red dot-dashed curve in
Figure 5(b). At large q, (2.16) agrees exactly with the numerical results in Figure 5(a).

Fitting the same functional form to the saddle-node curves sn1 and sn3 results in the
scaling laws sn1: q ≈ 0.0927(μ + 3.55)1.987, sn3: q ≈ 0.298(μ + 27.9)0.986 to three significant
figures. These exponents are intriguing, and, while they fit the data extremely well at large q,
they differ significantly from ratios of small integers. It is possible that they can be deduced
using the properties of solutions of (2.9) involving the snoidal and cnoidal special functions.
At small q we note that there is systematic deviation from power-law scalings.
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Figure 5. (a) Bifurcation diagram in the (μ, q) plane showing the power-law behavior of the bifurcation
curves at large q. c = 1, domain size εL = 10π. (b) Enlargement of (a) for small q, plotted in the (μ − q, q)
plane for clarity. sn1 and sn3 refer to saddle-node bifurcations on the branch of localized states. sn2 is the
saddle-node on the primary, uniform amplitude branch. t refers to the linear instability point μ = q. m labels
the modulational instability of the primary branch above the saddle-node point, with the red dot-dashed line
indicating the analytic result (2.16).
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3. Numerical results for slanted snaking. Returning to the Swift–Hohenberg model
(2.1)–(2.2), we find, corresponding to the Ginzburg–Landau analysis, that the modulational
instability leads to branches of localized states for which the periodic pattern is locked to the
modulating envelope. As for the standard snaking scenario, two distinct pairs of branches
persist—one pair where the phase difference between pattern and envelope is 0 or π and one
pair where it is ±π/2. The numerical procedure, again using AUTO [14], was as follows.

Starting at the trivial solution w(x) ≡ 0, either “Dirichlet” w(0) = wxx(0) = w(L) =
wxx(L) = 0 or “Neumann” wx(0) = wxxx(0) = wx(L) = wxxx(L) = 0 boundary conditions
were used to avoid the neutral eigenvalue associated with the translational invariance when
locating the linear instability at r = Q and switch easily onto the uniform amplitude pattern
branch. By continuation along the uniform amplitude branch we located the first modulational
instability (indicated by the lower solid square symbol in Figure 6), and AUTO was able to
switch onto the modulated branch. We now replace the Dirichlet or Neumann boundary
conditions in the numerics with periodic ones, supplemented with a global integral constraint
to fix the overall phase of the solution and ensure that there is no drift in the direction of
the neutrally stable translation mode. The implementation of the integral constraint followed
Rademacher, Sandstede, and Scheel [29]; it was found to be numerically very robust. This
approach also accurately detects the “cross-link” or “ladder” branches [5, 22] of asymmetric
localized states that complete the bifurcation structure. As in the standard homoclinic snaking
scenario, these cross-link branches are never stable; they are omitted from Figure 6 to aid
clarity.

Two continuations, one beginning with Dirichlet boundary conditions and one with Neu-
mann boundary conditions, were carried out. The full snaking bifurcation diagram is obtained
by superimposing the results. This procedure provides an additional check on the numerical
accuracy. Figure 6 indicates that, as expected, these branches are intertwined (around the
“Maxwell curve”) and stretch both below and above the bifurcation points from the uniform
amplitude branch. We call this behavior “slanted snaking.” Figure 7 illustrates the evolution
of the localized states along the snaking branches.

Another feature of Figure 6 not captured by the Ginzburg–Landau reduction is that
the wavelength along the branch of localized states in Figure 6 decreases as r increases;
in consequence the branches of localized states terminate on a different uniform amplitude
primary branch, in this case one with wavelength L/8. This aspect of the bifurcation diagram
is brought out clearly in Figure 8, where the vertical axis is max(w) rather than the L2 norm.

Decreasing r from, say, r = 3.5 on the localized branch therefore results in a stepwise de-
crease in the number of bumps of localized pattern, as the successive saddle-node bifurcations
are passed. As ε decreases the localization becomes increasingly pronounced.

Alternatively we may consider the driving parameter r to be fixed and consider the effect
of increasing the strength of the coupling Q between the large-scale field and the pattern mode.
For the Ginzburg–Landau system this corresponds to a vertical section through Figure 5(a);
the same stepwise series of saddle-node bifurcations is seen in (2.1)–(2.2) when Q is decreased
at fixed r. Figure 9 (for which r = 1) illustrates the location of the lowest two saddle-
node bifurcations on the snaking branch as ε is decreased. Localized states are born in a
modulational instability close to Q = 1 and exist in Q > 1 up to the curve sn1 on which they
undergo the first saddle-node bifurcation on the snaking curve. The branch then turns around
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Figure 6. Slanted snaking in (2.1)–(2.2), c = Q = 1, domain size L = 20π. (a) Branches 10 and 8
denote uniform spatial patterns with wavelengths L/10 and L/8, respectively. Snaking branches bifurcate from
the 10 branch near r = 1 (at the solid square) and extend down to r = 0.21. They then continue up to r ≈ 3.8
(not shown) before returning to terminate on the 8 branch, indicated by a solid square. (b) Enlargement of (a)
showing the characteristic intertwining of the two snaking branches. Thick and thin lines indicate stable and
unstable solutions, respectively. Labels a–d refer to Figure 7.

and continues as Q decreases, up to the second solid line at which the second saddle-node
bifurcation on the snaking curve takes place. Subsequent pairs of saddle-node bifurcations are
not shown; numerical results indicate that the next pair, and possibly others, rather curiously
follows the same power-law scaling with ε as the first pair. As ε increases, the region of
stable localized states shrinks until it disappears for ε > 0.46. For comparison, Figure 9 also
shows the location of the saddle-node bifurcation of the uniform amplitude pattern sn2. The
power-law for the curve sn2 follows that derived in (2.16) for the location of the modulational
instability near the saddle-node bifurcation sn2: the scaling q2 ∝ μ3 for large q and μ implies
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Figure 7. Localized states at four saddle-node bifurcation points in Figure 6(b). (a) and (c) lie on the
φ = π/2 (odd) branch; (b) and (d) lie on the φ = 0 (even) branch. c = Q = 1; L = 20π. Note that the domain
has been rescaled to [0, 1].

(Q/ε2)2 ∝ (r/ε2)3, i.e., Q ∝ ε−1r3/2. This scaling agrees with Figure 9.

For sn1 we found in the Ginzburg–Landau approximation (shown in Figure 5) that
q ∝ μ1.987 for large q, μ. This implies Q/ε2 ∝ (r/ε2)1.987, which yields Q ∝ ε−1.974. For
comparison, Figure 9 indicates the different scaling Q ∝ ε−2.03. This difference is too large
to be explained purely in terms of numerical errors. We believe that the difference is due to
the “beyond-all-orders” terms that determine the width of the homoclinic snaking wiggles in
Figure 6 and that are neglected in the multiple-scales analysis of section 2.

For completeness we note that the lower solid line in Figure 9 follows the power-law
Q ∝ ε−1.31, which has no counterpart in the multiple-scales asymptotics of section 2; clearly
the width of the snake, and therefore this power law exponent also, is influenced by the
beyond-all-orders asymptotic scalings.

4. Discussion. In this paper we have examined a very simple model equation for the
influence of a neutrally stable long-wavelength mode on steady-state pattern formation. Such
a situation is motivated by several physical problems, and we have fixed on model equations
containing symmetries appropriate to the onset of thermal convection in an imposed vertical
magnetic field, a long-studied problem in the literature [7, 6, 27].
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Figure 8. Bifurcation behavior in (2.1)–(2.2) for c = Q = 1 and domain size L = 20π. The bifurcation
curves are as for Figure 6; plotting max(w) against r shows more clearly the excursion of the secondary branch
up to r ≈ 3.8, and the termination of the snaking branches (now superimposed) on the 8 branch. Solid squares
denote the bifurcations from uniform periodic patterns to localized patterns. Thick and thin lines denote stable
and unstable branches, respectively. Red and black lines denote localized and spatially periodic solution branches,
respectively.

We introduce a new approach to the usual weakly nonlinear multiple-scales analysis, taking
the diffusivity of the large-scale mode as the small parameter while allowing order unity
fluctuations in amplitude. We then carry out the multiple-scales expansion to third order
and deduce a nonlocal Ginzburg–Landau equation that describes the dynamics. It is found
that the subcriticality induced by the large-scale mode distorts the usual homoclinic snaking
picture and allows localized states to exist over a much larger region of parameter space than is
possible in its absence. We refer to this distortion of homoclinic snaking as “slanted snaking.”
As a result, the existence of a large-scale mode provides a far more robust physical mechanism
for the stabilization of localized solutions than the “locking” or “pinning” mechanism that
explains their existence in an exponentially small wedge of parameter space in the standard
picture.

In other respects the localized states qualitatively resemble standard homoclinic snaking.
For example, the secondary branches of asymmetric localized states, found by Burke and
Knobloch [5] (called “ladders” in that paper), which link the two snaking branches exist
also in this problem, although for clarity we have omitted them from the figures. For the
parameter values we investigate in detail (ε = 0.1, Q = 1), it is interesting that the lowest
saddle-node point on the snake does not correspond to a single isolated period of the pattern.
This indicates that our coupling terms, of a simple kind that admit analytic investigation, do
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Figure 9. Scaling of the saddle-node bifurcations on the primary and secondary branches of solutions to
(2.1)–(2.2) in the (ε,Q) plane for fixed r = c = 1 and domain size L = 20π. The trivial solution w(x, t) ≡ 0 is
stable for Q > 1. A single localized cell exists between Q = 1 and the saddle-node curve sn1; it is stable between
the two solid curves. Uniform amplitude states exist (subcritically) below the dashed line sn2.

not force the pattern to be quite as localized as convection cells appear to be in simulations
of the full fluid equations [2, 13]. It is quite possible that more complicated coupled terms,
involving extra derivatives of either B(x, t) or w(x, t), deform the snake still further, allowing
only a single convection cell to persist at small r or, equivalently, large Q. Possible forms for
these coupling terms are discussed further in Appendix A.

Overall, these results provide a convincing explanation of the link between homoclinic
snaking and the stepwise reduction in the number of cells in the localized states with increasing
Q as found first by Blanchflower [3] and reproduced in [13] (see Figure 8 therein). Various
features of the full magnetoconvection problem, such as the destabilization of localized steady
states by an oscillatory instability in the quiescent region, are, of course, not reproduced by
this model. But steady-state features are well reproduced, for example, the evidence, from
Figure 9(a) of [13], that the two curves of saddle-node bifurcations that bound the region of
the existence of a single-roll localized state scale in different ways with the small parameter
ε ≡ ζ. This is certainly true for the solid lines in Figure 9.

The exponents of the power-law scalings that we present, in both the multiple-scales
analysis and the full Swift–Hohenberg model, seem to be strongly dependent on the exact
form of the nonlinear coupling terms. A detailed investigation of such dependencies and
possible explanations through the properties of analytic solutions in terms of Jacobi elliptic
functions are left for future work.

The corresponding calculation for systems for which the large-scale mode is a density is
very similar to the analysis presented in detail here. Indeed, the only change required to the
model equations is to take the coupling term to be QBw in (2.1). Brief details of the resulting
calculations are contained in Appendix B. A further extension is to examine systems where it
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appears that the large-scale mode promotes localized activity but the short-scale dynamics is
not “pattern-forming.” A clear example of this is the vertically and horizontally shaken granu-
lar layer experiments of Götzendorfer et al. [17]. In these experiments the vertical excitation of
a granular layer does not result in uniform excitation of the material, but rather in a patch of
highly energetic particles, while the remainder of the domain remains inactive. Götzendorfer
et al. refer to this, slightly fancifully perhaps, as the “sublimation” of the “solid” phase of the
material into a “gaseous” form. The general mechanism is, however, physically clear: there is
a balance between the (rapid) flux of particles from the active part of the layer into the quiet
part as energetic particles are propelled upward and outward, and the natural (slow) trickling
of particles from the quiet part back into the active one. These two processes correspond,
respectively, to the two terms on the right-hand side of (B.2). Moreover, when the layer height
locally exceeds a critical value, the vertical excitation cannot excite particles directly in that
part of the bed; this effect is captured by the damping term Qρw in (B.1). Model equations
capturing exactly these effects were written down by Tsimring and Aranson [32].

There are close connections between this work and that of Matthews and Cox and others
[24, 9, 10, 16, 36]; these authors studied systems essentially equivalent to (2.1)–(2.2) obtained
by applying ∂2

xx to the right-hand side of the standard Swift–Hohenberg equation (1.1), in-
cluding both quadratic and cubic nonlinearities in N(w). In these papers the weakly nonlinear
analysis proceeds by looking for small distortions of the large-scale mode, i.e., a small parame-
ter δ and a long lengthscale X = δx are introduced, before expanding w = δa(X) sinx+O(δ2)
and B = 1 + δ2b(X) + O(δ3). The resulting amplitude equations for a(X) and b(X) enable
the detection of secondary modulational instabilities, as happens here, even in the case that
the initial pattern-forming instability is supercritical, which is analogous to Figure 2(a). How-
ever, these scalings implicitly restrict our attention only to cases of small disturbances to the
distribution of the large-scale mode; the present analysis can, in this sense, go further.

Other physical systems that show related phenomena, and which we intend to examine
in future work, include the numerical results of Tsitverblit and Kit [33] on natural double-
diffusive convection (see, for example, their Figure 1, which appears to show snaking behavior
that does not have the saddle-node points aligned to only two values of the bifurcation parame-
ter). Moreover, model equations for dielectric gas discharge (due to Purwins and collaborators
[31, 28]) and for optical cavity lasers [15] have been proposed which include integral terms.
These integral terms appear to play the same role in enhancing localization in these systems
as the nonlinear diffusion equation for the large-scale mode does in this paper.

Appendix A. Magnetoconvection. In this appendix we briefly sketch the derivation of
an evolution equation for the large-scale mode in the magnetoconvection case, starting from
the governing equations. This justifies the form of our model equation (2.2).

For thermal convection in a vertical magnetic field, the appropriate governing equations
for the fluid velocity u(x, y, z, t), the temperature perturbation θ(x, y, z, t), and the magnetic
field B(x, y, z, t) are the momentum, temperature, and induction equations:

∂tu + u · ∇u = −∇p + σRθẑ + σζQB · ∇B + σ∇2u,

∂tθ + u · ∇θ = w + ∇2θ,

∂tB = ∇× (u × B) + ζ∇2B.
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For simplicity we restrict our attention to two-dimensional solutions, ignoring the y coordinate;
the extension of these calculations to three dimensions would appear to be straightforward.
The temperature variable θ(x, z, t) is the perturbation to the conduction profile T = 1 − z.
The velocity and magnetic fields are solenoidal: ∇ · u = ∇ · B = 0. Note that B is the full
magnetic field—not the perturbation to an initially vertical field of strength unity.

The dimensionless groups are the Rayleigh number R, Chandrasekhar number Q, Prandtl
number σ = ν/κ, and magnetic Prandtl number ζ = η/κ.

We suppose that the boundaries are stress-free and are held at fixed temperatures, and we
constrain the field to be vertical there. These boundary conditions allow a simple analytical
treatment. The linear theory for the onset of thermal convection in a vertical field is well
known [7, 27, 10, 13]. We look for small-amplitude solutions in one horizontal dimension,
taking ζ as our small parameter (i.e., ε = ζ). We propose the solution ansatz

u = (u1 cosπz, 0, w1 sinπz),

θ = θ1 sinπz,

B = (Bx sinπz, 0, Bz cosπz + B0),

where u1, w1, Bx, Bz, and B0 are functions of x and t only. Computing ẑ · ∇ × (u × B) we
obtain equations for the z independent terms and, separately, those that depend on cosπz:

∂tB0 =
1

2
(w1Bx − u1Bz)

′ + ζB′′
0 ,(A.1)

∂tBz = −(u1B0)
′ + ζ(B′′

z − π2Bz),(A.2)

where primes ′ denote ∂x. We assume that the quantities u1, w1, Bx, Bz all vary on a short
spatial scale with wavenumber k, so that we may, at leading order, replace ∂2

xx → −k2, where
it acts on these variables. As a result the solenoidal conditions ∇ ·u = 0 and ∇ ·B = 0 imply
u1 = π/k2∂xw1 and Bx = −π/k2Bz, which allows us to eliminate u1 and Bx from (A.1)–(A.2).
We obtain

∂tB0 = − π

2k2
(w1Bz)

′′ + ζB′′
0 ,(A.3)

∂tBz = − π

k2
(w′

1B0)
′ + ζ(B′′

z − π2Bz).(A.4)

Since the linear eigenfunction for the onset of weakly nonlinear convection involves u1, w1, Bx,
and Bz, it is clear also that Bz does not evolve independently of w1. Looking for steady states
of (A.4), we expect, therefore, that Bz = −π/(k2β2ζ)(w′

1B0)
′ near onset, where β2 = k2 +π2.

Substituting this into (A.3) yields an evolution equation for the large-scale field B0(x, t),
coupling it to the weakly nonlinear convection pattern amplitude w1(x, t):

∂tB0 =
π2

2k4β2ζ

(
w1(w

′
1B0)

′)′′ + ζB′′
0 .

This is of the same form as (2.2), setting c = π2/(2k4β2), except for two extra derivatives in
the first term. Since near onset w1 involves only the single lengthscale 2π/k, and B0 ≈ 1, it
is clear that these derivatives will not qualitatively change the behavior. However, it is quite
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possible that they will alter the exponents of various scaling laws, for example, those shown
in Figure 9. A similar evaluation of the ẑ component of the B · ∇B term, and subsequent
use of the above approximations of Bx and Bz in terms of B0 and w1, yield, heuristically, the
term that couples the large-scale mode back to the vertical velocity:

∂tw1 = · · · + σQπ2

k2β2

(
B′

0

k2
+ B0

)
(w′

1B0)
′.

Appendix B. A density-like large-scale mode. Suppose that a one-dimensional pattern-
forming system is described by the pattern amplitude w(x, t) and a density-like large-scale
mode ρ(x, t), for example, the local layer height in a granular medium or thin film. In this
case the symmetry ρ → −ρ is absent, and the corresponding model equations are

wt = [r − (1 + ∂2
xx)

2]w − w3 −Qρw,(B.1)

ρt = ερxx +
c

ε
(ρw2)xx.(B.2)

As before, we set 1
L

∫ L
0 ρ(x, t)dx ≡ 〈ρ〉 = 1. We restrict our attention to steady solutions,

setting ∂t ≡ 0, and integrate (B.2) twice to obtain

(B.3) ρ =
P

1 + cw2/ε2
, where

1

P
≡

〈
1

1 + cw2/ε2

〉
x

.

Substituting this into (B.1) and looking for steady states, we find

0 = [r − (1 + ∂2
xx)

2]w − w3 − QPw

1 + cw2/ε2
.

We now introduce the multiple-scales ansatz w(x, t) = εA(X) sinx + ε2w2 + ε3w3 + · · · ,
introducing the long lengthscale X = εx. We rescale the parameters r = ε2μ and Q = ε2q
in the standard way. At third order in the expansion an amplitude equation for A(X) is
obtained by multiplying by sinx and integrating over the short lengthscale, denoting the
average 1

2π

∫ 2π
0 · dx ≡ 〈 · 〉. This yields

(B.4) 0 = μA + 4AXX − 3A3 − 2qP

〈
A sin2 x

1 + cA2 sin2 x

〉
x

,

where the constant P is defined as before:

1

P
=

1

εL

∫ εL

0

1

2π

∫ 2π

0

1

1 + cA2 sin2 x
dx dX ≡

〈 〈
1

1 + cA2 sin2 x

〉
x

〉
X

=

〈
1√

1 + cA2

〉
X

.

Carrying out the x-integral in (B.4), we obtain

(B.5) 0 = μA + 4AXX − 3A3 − 2qP (
√

1 + cA2 − 1)

cA
√

1 + cA2
.
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Consideration of the last term in the limit A → 0 indicates that there is no singularity at
small A and that the trivial solution A = 0 is linearly unstable when μ > q.

It can be seen that (B.5) has a first integral,

E =
μ

2
+ 2(AX)2 − 3

4
A4 − 2qP

c

[
logA + tanh−1

(
1√

1 + cA2

)]
,

in which, after some manipulation, the last term on the right-hand side can be rewritten to
give

E =
μ

2
+ 2(AX)2 − 3

4
A4 − qP

c
logF (A),

where F (A) = A2 + 2
c

[
1 +

(
cA2 + 1

)1/2]
. We may also eliminate qP to yield the expression

corresponding to (2.15) that describes the amplitude of a localized state as a function of μ:

(μ− 3A2
0)
√

1 + cA2
0

[
1

2
logF (A0) − log

2√
c

]
=

(
μ

2
− 3A2

0

4

)(√
1 + cA2

0 − 1

)
.

Despite the more complicated functional form, this curve is qualitatively very similar to that
defined by (2.15) and provides an analytic estimate of the “Maxwell curve” in this case.
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