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ABSTRACT11

The development of computational tools is essential for the development of new technologies, including

experimental designs needed for behavioral neuroscience research. The computational tool developed in

this study is based on the convolutional neural networks and the You Only Look Once (YOLO) algorithm

for detecting and tracking mice in videos recorded during behavioral neuroscience experiments. The

task of mice detection consists of determining the location in the image where the animals are present,

for each frame acquired. In this work, we propose mice tracking using the YOLO algorithm, running on

an NVIDIA GeForce GTX 1060 GPU. We analyzed a set of data composed of 13622 images, made

up of behavioral videos of three important researches in this area. The training set used 50% of the

images, 25% for validation and 25% for the tests. The results show that the mean Average Precision

(mAP) reached by the developed system was 90.79% and 90.75% for the Full and Tiny versions of YOLO,

respectively. It has also been found that the use of the Tiny version is a good alternative for experimental

designs that require real-time response. Considering the high accuracy of the results, the developed

work allows the experimentalists to perform mice tracking in a reliable and non-evasive way, avoiding

common system errors that require delimitations of regions of interest (ROI) or even evasive luminous

identifiers such as LED for tracking the animals.
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INTRODUCTION27

In recent years, researchers in the field of computer vision have developed a large number of algorithms28

and techniques for intelligent image processing. Not long ago, some methods for identifying the objects29

in images overcame the human-level performance to categorize images. This was achieved by Microsoft30

in the ImageNet (Large Scale Visual Recognition Challenge, 2015) (Russakovsky et al., 2015), using31

Deep Neural Networks (DNN).32

Convolutional Neural Networks (CNNs or ConvNets) are a type of neural networks widely used in33

computer vision problems. Inspired by biological processes, CNNs are designed to obtain a large number34

of connection patterns, which in combination can similarly respond to stimuli, such as the visual cortex35

(Cichy et al., 2016). Among the applications currently are the recognition of patterns in video and images36

(Feichtenhofer et al., 2016), diagnosis and analysis of medical images (Rajpurkar et al., 2017; Esteva et al.,37

2017), object detection in images (Liu et al., 2016; Redmon et al., 2016) and surveillance monitoring38

systems (Rasti et al., 2016).39

Multidisciplinary research areas such as Neuroscience can benefit from the improvement of laboratory40

experiments to complex data analysis using modern machine learning techniques (Vu et al., 2018). In41

this way, it is possible to perform the detection and classification of brain patterns, correlations between42

behavioral tasks and electrophysiological recordings, social stress tests and animal interaction, among43

other experimental designs with rodents (Henriques-Alves and Queiroz, 2016; Frasch et al., 2017).44

Neuroscientists conduct a series of experiments in which the tracking of animals on video is essential45

for the research objectives (Menezes et al., 2018; Unger et al., 2017; Mathis et al., 2018). This tracking can46

be done in real time or even in an offline analysis after the experiment. Most of the software specialized47
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in rodent tracking have characteristics such as high acquisition cost and need facilitating environments48

for a good accuracy of the tracking algorithm, they are: different colors between animals, objects and49

the background, previous selection of a region of interest (ROI) to remove information that may confuse50

detection, use of a reference image of the environments before placing the animals for tracking, this51

allows comparison with subsequent images, controlled environment brightness, focus control and fixed52

distance between animals and the acquisition camera (Aitken et al., 2017; Romero-Ferrero et al., 2018).53

This work aims at the development of techniques for tracking mice with convolutional neural networks54

using the You Only Look Once (YOLO) algorithm. We used three different experimental data on55

behavioral tasks of mice, showing the ability of CNNs to perform mice tracking under adverse conditions,56

tasks that are often avoided during these types of experiments. The results obtained provide a fast and57

accurate alternative for mice tracking in complex scenarios, which include reflexes, obstruction of objects58

and even more than one animal.59

METHODS60

We use the C/C++ programming language and the YOLOv3 algorithm (Redmon and Farhadi, 2018) for61

object detection, in this case, for detecting mice in different datasets (Henriques-Alves and Queiroz, 2016;62

Jhuang et al., 2010; Burgos-Artizzu et al., 2012). The computational development was performed on a63

computer with CPU AMD Athlon II X2 B22 (2) @ 2.800GHz, RAM 4GB, GPU NVIDIA GeForce GTX64

1060 6GB, OS Ubuntu 18.04 LTS, CUDA 9.1, CuDNN 7.1.65

Computational Development66

All steps required in this work are described in the UML activity diagram shown in Figure 1.67

• Step 1: Creation of a dataset from images used in mice behavioral experiments. Selection of the68

ground truth boxes for future comparison with the box predictor and obtaining the confidence score69

using the intersection over union (IOU).70

• Step 2: Selection of the Yolov3 algorithm in the Full or Tiny version for mice tracking.71

• Step 3: The Convolutional Neural Network performs the training, validation, and testing for mice72

tracking in the dataset images.73

CNN(Yolov3)

Mice Tracking

Training/Validation Test

Input

Dataset

Ground-Truth Boxes

Step 1

Output

Step 2 Step 3

Image Acquisition

Full Yolo Tiny Yolo

Figure 1. UML activity diagram of the developed system for video tracking and classification.

Image Dataset74

To validate the computational development proposed in this work, a dataset was built with images from75

three researches that involve behavioral experiments with mice:76

• Ethological Evaluation (Henriques-Alves and Queiroz, 2016): This research presents new metrics77

for chronic stress models of social defeat in mice. The authors built their image dataset and kindly78

provided a sample for our research.79

• Automated home-cage (Jhuang et al., 2010): In this study, a trainable computer vision system was80

introduced that allows the automated analysis of complex mouse behaviors, they are: eat, drink,81

groom, hang, micromovement, rear, rest, and walk. This dataset has two parts - Full: with more82

than 10.6 hours of continuous video of various behaviors, and Clipped: with 4200 small videos83

with specific behaviors.84
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• Caltech Resident-Intruder Mouse dataset (CRIM13)(Burgos-Artizzu et al., 2012): It has videos85

recorded with superior and synchronized lateral visualization of pairs of mice involved in social86

behavior in thirteen different actions. Each video has a duration of ∼ 10 min, totaling 88 hours of87

video.88

Table 1 describes the sample size selected from each of the datasets used in this paper. For the89

Ethological Evaluation (Henriques-Alves and Queiroz, 2016), 3707 frames were used, captured in a top90

view of the arena of social interaction experiments among mice. For the Automated home-cage (Jhuang91

et al., 2010), a sample of 3073 frames was selected from a side view of behavioral experiments: eat, drink,92

groom, hang, micromovement, rear, rest, and walk. For the Crim (Burgos-Artizzu et al., 2012), a sample93

of 6842 frames was selected, 3492 of a side view and 3350 of a top view for the following experiments:94

approach, circle, sniff, walk away. The sampling rate for selection of the frames in all cases was ∼ 1.5 s,95

avoiding similar images in the composition of the dataset.96

Table 1. Information about the datasets used

Dataset Images Resolution

Ethological Evaluation (Henriques-Alves and Queiroz, 2016) 3707 640×480

Automated home-cage (Jhuang et al., 2010) 3073 320×240

Crim (Burgos-Artizzu et al., 2012) 6842 656×490

Total 13622

We randomly selected the number of images used for training 50%, validation 25% and tests 25%, as97

described in Table 2 on the composite dataset for this work.98

Table 2. Composite dataset

Dataset Training Validation Test

Images 6811 3405 3406

MICE TRACKING USING CNN99

In Neuroscience, mice models of social stress (Henriques-Alves and Queiroz, 2016) are often used100

and require fast and accurate decision-making from the experimentalist to identify the correct response101

depending on the stimulus or the situation in which the animal is subjected. The essential element of102

such models has been a robust tracking algorithm. However, these algorithms are mainly limited by103

the computational cost, which hinders their usage in real-time and therefore limits the applicability for104

laboratory tests.105

Commercial systems for video tracking of laboratory animals are often restricted to track the body106

or nose position, leading to inaccurate estimates of the head orientation or requiring manual artifices107

(Menezes et al., 2018; Kretschmer et al., 2012). Thus, large-scale studies emphasize the need for108

automated high-throughput systems providing a reproducible behavioral assessment of freely-moving109

mice with only a minimum level of manual intervention (Unger et al., 2017).110

In this context, this work focuses on the development of a computational tool designed with deep111

convolutional networks, the Darknet framework (Redmon and Farhadi, 2018), the Open Source Computer112

Vision Library (OpenCV) and the C/C++ programming language for mice tracking during behavioral113

neuroscience experiments.114

Convolutional Neural Networks115

The idea behind CNNs is to use a cascade of convolutional and pooling layers to reduce the spatial116

dimension of an input image and combine local patterns to generate features that get more abstract as the117

data progress into the network. This cascade is called an encoder as raw input pixels are encoded into118

more abstract features (Lecun et al., 1998).119

In this paper, f in
i denotes the i-th input feature map, f out

j denotes the j-th output feature map and b j120

denotes the bias term for the j-th output feature map. For the convolution layer, nin and nout represent the121
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number of input and output feature, respectively. For the Fully connected layer, nin and nout are the length122

of the input and output feature vector.123

The convolutional layer takes a series of feature maps as input and convolves with convolutional124

kernels to obtain the output feature maps. A nonlinear layer, which applies nonlinear activation function125

to each element in the output feature maps, is often attached to convolutional layers. The convolutional126

layer can be expressed using (1):127

f out
i =

nin

∑
j=1

f in
j ⊗gi, j +b j (1 ≤ i ≤ nout) (1)

Where, gi, j is the convolutional kernel applied to j-th input feature map and i-th output feature map128

and b j is the bias term for the j-th input feature map.129

The pooling layer also referred as a downsampling layer, which takes an n×n filter and a stride of130

length n, is then applied to the input vector and outputs the maximum or average values of each subarea.131

The reasoning behind this layer is that once we know that a specific feature is an original input, its exact132

location is not as crucial as its relative location to other features, such invariance can be provided by this133

layer as seen in (Scherer et al., 2010; Zhou et al., 2016). Max-pooling can be expressed as (2):134

f out
i, j = max

p×p







f in
m,n . . . f in

m,n+p−1

...
...

f in
m+p−1,n . . . f in

m+p−1,n+p−1






(2)

Where, p is the pooling kernel size. This non-linear “downsampling” not only reduces the feature135

map size and the computation for next layers but also provides a form of translation invariance.136

In a CNN, the encoder is often followed by some fully-connected layers as in a classical multi-layer137

perceptron setup. These layers apply a linear transformation to the input feature vector (3):138

f out =W · f in +b (3)

Where, f in is the input feature vector resulted from previous convolutions, W is an nout ×nin transfor-139

mation matrix, b is the bias term, and f out is the output with the classes probabilities.140

These layers take the highly abstracted encoded features as input, forwards then throughout the141

network using the feed forward algorithm and output global statistical predictions about the presence or142

absence of objects of interest in the input image (Ciresan et al., 2011).143

YOLO Object Detector144

You Only Look Once (YOLO) (Redmon and Farhadi, 2018) is an object detection algorithm targeted for145

real-time processing. It differs from other object detectors by using a single CNN for both classification146

and localization of the objects.147

YOLO uses logistic regression for calculating the confidence score of an object in each bounding box.148

Another feature is to use a variant of Darknet, which has a 53-layer network trained on Imagenet dataset149

(Deng et al., 2009). However, 53 more layers are stacked on it to form a 106-layer fully convolutional150

architecture for detection tasks. The algorithm also includes many important elements like residual blocks,151

skip connections, and upsampling in its architecture.152

The analysis of a frame in the YOLO framework consists of three steps. First, the input image is153

resized, then a single CNN is run on it, and in the last step, thresholds using non-max suppression are154

applied in the resulting detections as described in (Redmon et al., 2016). Figure 2 describes how an image155

of the dataset of this work is processed initially in the input, passing through the CNN, and finally in the156

output with mouse tracking.157

RESULTS158

Our approach used two versions of the YOLO network to detect mice within three different experimental159

setups. The results obtained in this work were based on the analysis of 13622 images, organized according160

to the dataset described in Table 2.161
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Figure 2. YOLO pipeline.

The first version of YOLO trained was the YOLO Full network which uses the Darknet-53 (Redmon162

and Farhadi, 2018) convolutional architecture that comprises 53 convolutional layers. Such a model was163

trained as described in (Redmon et al., 2016) starting from an Imagenet (Deng et al., 2009) pre-trained164

model. The model comprises a segment with convolutional layers and residual connections in a total of165

65.290×109 floating point operations. Each model requires 235 MB of storage size. We used a batch of166

64 images, a momentum of 0.9, and weight decay of 5×10−4. The model took 139 hours to be trained.167

We also trained a smaller and faster YOLO alternative, namely YOLO Tiny. To speed up the process168

this “tiny” version comprises only a portion of the Darknet-53 (Redmon and Farhadi, 2018) resources:169

23 convolutional layers, resulting in 9.670× 109 floating point operations, almost seven times fewer170

operations than the bigger version. Each model requires only 34 MB of storage space. The network was171

trained as described in (Redmon et al., 2016), fine-tuning an Imagenet (Deng et al., 2009) pre-trained172

model. We used a batch of 64 images, a momentum of 0.9, and weight decay of 5×10−4. The model173

took 19 hours to be trained. Figure 3 shows some examples, resulting from mice tracking performed on174

the three different datasets used.175

Table 3 shows the classification metrics resulting from the classification step, using both, YOLO Full176

and Tiny. These metrics are used to evaluate the quality of the classifier output. Precision is the ratio of177

correctly predicted positive observations to the total predicted positive observations. Recall is the ratio of178

correctly predicted positive observations to all observations. F1-score is the weighted average of precision179

and recall, therefore, the maximum value assigned to it is 1, which means a perfect precision and recall.180

Table 3. YOLO performance after 40000 epochs

Dataset size
Precision Recall F1-score

Full Tiny Full Tiny Full Tiny

13622 0.99 0.98 0.99 0.99 0.99 0.99

Still on Table 3, for the Tiny network, the average values of Precision, Recall, and F1-score were181

all equal to 0.987, which indicates a good relation between Precision and Recall, whereas for the Full182

network, the results were slightly better, with the average values of Precision, Recall, and F1-score equal to183

0.99. More results related to mice tracking performance are shown in Table 4. First, it is shown the mean184

average precision (mAP), which is the mean value of the average precisions for each class, where average185

precision is the average value of 11 points on the Precision-Recall curve for each possible threshold, that186

is all the probability of detection for the same class (Precision-Recall are evaluated according to the terms187

described in the PascalVOC (Everingham et al., 2015)). Finally, the average intersect over union (IoU),188

which is the average of the intersection between the predicted bounding box and the ground truth box189

divided by the the total area of both boxes.190

The Full network shows slightly better statistics for both the mean average precision and average IoU,191

differing from the Tiny counterpart by 0.04% and 1.86%, respectively, as shown in Table 4.192
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Figure 3. Output examples of the YOLO network. (a)-(c) refer to Ethological Evaluation

(Henriques-Alves and Queiroz, 2016), (d)-(f) refer to Automated home-cage (Jhuang et al., 2010) and

(g)-(i) to Crim (Burgos-Artizzu et al., 2012).

Table 4. Results for the epoch 40000, mAP and IoU

Dataset size
Mean Average Precision (%) Average IoU (%)

Full Tiny Full Tiny

13622 90.79 90.75 84.67 82.81

In terms of training and testing time for the YOLO network, Table 5 shows the efficiency of using the193

Full architecture in relation to the Tiny one. The training using the Tiny architecture was performed in 19194

hours, that is about seven times faster than the Full version. For the tests the use of the Tiny version was195

about four times faster than the Full counterpart.196

Table 5. GPU time necessary to perform the training and test of the model

Train Time (hours) Test Time (seconds)

Full Tiny Full Tiny

139 19 1188 261

Figure 4 shows the comparison between the two models used, YOLO Full and Tiny. It was presenting197

the same sample of 100 images from the set of tests, for both models. Figure 4(a) shows high accuracy of198

the Full architecture with small oscillations of the accuracy curve during the training. In Figure 4(b), the199

high accuracy is maintained from the earliest times, and remains practically unchanged up to the limit200

number of epochs. Both architectures reached high mean average precision values while successfully201

minimizing the values of the loss function. The Tiny version of the YOLO network presented better202

stability in precision, which can be seen by the smoothness in its curve.203

Figure 4(c) is a bar graph showing the mean time spent on the classification of a single image in both204

architectures. The smaller size of the Tiny version gets a direct translation in execution time, having205

0.08±0.06 as the mean and standard deviation values, whereas the Full version has 0.36±0.16s as the206

mean and standard deviation values, respectively.207
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Figure 4. (a)-(b) Comparison of the model’s mAP every 1000 epochs classifying 100 images from the

test set. (c) GPU time necessary to perform the classification of a single image.

CONCLUSION208

The results presented in Tables 3 and 4 suggest a higher classification accuracy for the YOLO network209

when using the Full architecture, although the difference obtained with the Tiny version was not substantial.210

Given the aforementioned small difference between the two versions of the network, the possibility of211

a robust real time system for mice tracking is made a reality with the Tiny version of the YOLO network.212

Due to the smaller demand of computing power, this work opens the possibility of real-time tracking213

systems where actions can be taken during the experiment in an automated and intelligent way without214

the need for human intervention.215

The computational development presented in this paper performed mice tracking in behavioral216

experiments setups using the deep neural network model called You Only Look Once (YOLO). The217

accuracy of the YOLO model and its performance showed better results using the Tiny architecture in218

comparison with the Full architecture. The results obtained in this work, which include high rates of219

accuracy and fast computation, encourage experimentalists to conduct new experimental designs where220

real-time decisions can be made.221
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