Submitted 20 November 2020
Accepted 16 March 2021
Published 16 April 2021

Corresponding author
Elvio Amparore,
elviogilberto.amparore@unito.it

Academic editor
Eibe Frank

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.479

© Copyright
2021 Amparore et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

To trust or not to trust an explanation:
using LEAF to evaluate local linear XAI
methods

Elvio Amparore'?, Alan Perotti* and Paolo Bajardi’

! Department of Computer Science, University of Turin, Turin, Italy
*ISI Foundation, Turin, Italy

ABSTRACT

The main objective of eXplainable Artificial Intelligence (XAI) is to provide effective
explanations for black-box classifiers. The existing literature lists many desirable
properties for explanations to be useful, but there is a scarce consensus on how to
quantitatively evaluate explanations in practice. Moreover, explanations are typically
used only to inspect black-box models, and the proactive use of explanations as
a decision support is generally overlooked. Among the many approaches to XAlI,
a widely adopted paradigm is Local Linear Explanations—with LIME and SHAP
emerging as state-of-the-art methods. We show that these methods are plagued by
many defects including unstable explanations, divergence of actual implementations
from the promised theoretical properties, and explanations for the wrong label. This
highlights the need to have standard and unbiased evaluation procedures for Local
Linear Explanations in the XAl field. In this paper we address the problem of identifying
a clear and unambiguous set of metrics for the evaluation of Local Linear Explanations.
This set includes both existing and novel metrics defined specifically for this class of
explanations. All metrics have been included in an open Python framework, named
LEAF. The purpose of LEAF is to provide a reference for end users to evaluate
explanations in a standardised and unbiased way, and to guide researchers towards
developing improved explainable techniques.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science
Keywords eXplainable Al, Local linear explanation, LIME, SHAP, Machine Learning Auditing

INTRODUCTION

In recent years, the field of Machine Learning (ML) has experienced a surge in practical
applications. However, many ML models, spanning from random forests to deep neural
networks, do not provide a human-understandable clarification of their internal decision
processes: this issue is known as the black-box problem (Burrell, 2016).

The lack of explanatory power hampers the deployment of ML in real-world scenarios for
a variety of reasons. As a first limitation, black-box algorithms are poor decision support
systems (Doran, Schulz ¢ Besold, 2017): domain experts such as doctors or financial
analysts would hardly take into account an algorithmically-generated second opinion
without an argument to support it, or a measurable score of trust (Jiang et al., 2018).
From a legal viewpoint, in the European Union Al systems are regulated by law with the
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General Data Protection Regulation (GDPR)—which includes directives on algorithmic
decision-making (Goodman ¢ Flaxman, 2016). For instance, GDPR states that: (i) The
decisions which produces legal effects concerning (a citizen) or of similar importance shall

not be based on the data revealing sensitive information, for example about ethnic origins,
political opinions, sexual orientation, ...; and (ii) The controller must ensure the right for
individuals to obtain further information about the decision of any automated system. While
the required explanations of a complex socio-technical system concern the decision process
as a whole, clearly good explainability algorithms would help supporting the provisioning
of detailed explanations for ML components (Edwards ¢ Veale, 2017).

In recent times, widely used ML models turned out to be biased against racial
(Obermeyer et al., 2019) or gender (Hamilton, 2019) groups. While interpretable-by-
design models should be preferred in high-stakes decisions (Rudin, 2019), algorithmic
fairness is of paramount importance, and its very first step is the explanation of black-box
outcomes (Panigutti et al., 2020). Furthermore, an unexplained ML model might also be
right for the wrong reasons, due to the algorithm learning spurious correlation in the data.
Being capable of assessing the reasons why a ML component outputs a given classification
is essential to establish trustable Al (Ignatiev, 2020).

In this paper we focus on the class of explanation models named local linear explanations
(LLE). A taxonomy of other approaches can be found in Belle & Papantonis (2020).
Explainability methods that explain arbitrary black-box models (Ribeiro, Singh ¢ Guestrin,
2016a) using LLEs provide an explanation in terms of the most relevant features for a
data point classification. The XAl literature considers several evaluation criteria (Bohanec,
Borstnar & Robnik-Sikonja, 2017; Guidotti et al., 2018), but there is generally no consensus
on a core of fundamental metrics, and in some cases these properties lack a precise definition
(Gilpin et al., 2018). Furthermore, the explanation process has to be contextualised with
respect the audience for which explainability is sought (Arrieta et al., 2019)—for example,
the same clinical black-box decision could be explained very differently to patients,
doctor, and medical data analysts. Finally, a natural application of explanations consists in
supporting a decision making task in order to perform the minimum change on an instance
that modifies the classification label. Proactive use of explanations can be found for instance
in the credit sector (Grath et al., 2018), to guide an applicant in amending his/her position
in order to get a loan approval, or in planning (Fox, Long ¢ Magazzeni, 2017). To the best
of our knowledge, there is no agreement on how to quantify the prescriptive exploitation
of local linear explanations.

The main contribution of this paper is a clear and unambiguous definition of a core set
of metrics to compare and evaluate explainability methods that explain black-box models
with LLEs. We propose to quantify three new LLE aspects: (i) the local concordance of
the white-box model w.r.t the black-box model for the instance to be explained, under
the constraint of explanation conciseness; (ii) the tendency of an explainability method
to produce the same explanation on the same data point (named reiteration similarity);
and (iii) how good the explanation is when it is taken as a recipe to change a data point
classification (prescriptivity). The core set of metrics also includes existing LLE metrics
taken from literature (local fidelity). To encourage users to adopt a single, reproducible
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definition of these metrics for LLEs, we provide an implementation in the form of a Python
framework, named LEAF (Local Explanation evAluation Framework). We apply LEAF on
the two most used model-agnostic explainability algorithms for LLEs, LIME and SHAP,
and show that they display unexpected behaviours that were not previously reported in
literature.

The paper is structured as follows: in ‘Background’ we provide an overview of basic
concepts concerning Local Linear Explainers as well as the two techniques we will compare,
LIME and SHAP. In ‘Methodology’ we introduce the LEAF framework and focus on the
metrics it computes to evaluate LLE explanations. In ‘Results’ we apply LEAF on a range
of datasets and black-box classifiers, evaluating the explanations provided by LIME and
SHAP, and discussing the results. We end the paper with a general discussion (‘Discussion’)
and final considerations (‘Conclusions’).

BACKGROUND

In order to tackle the black-box problem, several XAI techniques have been proposed
(Goebel et al., 2018; Dosilovic, Breic & Hlupic, 2018), exploiting different principles and
processes, usually with supporting graphical representations (Tamagnini et al., 2017) and
visual analytics (Choo ¢ Liu, 2018). In general the goal is to extract human-understandable
knowledge from trained black-box models (Ming, Qu ¢ Bertini, 2018; Ribeiro, Singh ¢
Guestrin, 2016b; Ribeiro, Singh ¢ Guestrin, 2016¢). However, despite strong consensus
about the necessity of enriching ML models with explainability modules, there is no shared
definition of what an explanation should be (Lipton, 2016; Pedreschi et al., 2019), nor
quantitative comparisons of different methods (Murdoch et al., 2019).

Model-agnostic explanation models are typically based on decision trees, rules or
feature importance (Guidotti et al., 2018; Freitas, 2014; Craven ¢ Shavlik, 1995), because of
the simplicity of such explanations. Several model-specific and data-specific explanation
models have also been developed, e.g., for deep neural networks (Binder et al., 2016;
Selvaraju et al., 2019), deep relational machines (Srinivasan, Vig ¢ Bain, 2019), time
series (Karlsson et al., 2019), multi-labelled and ontology-linked data (Panigutti, Perotti
¢ Pedreschi, 2020) or logic problems (Biecek, 2018); software toolkits including the
implementation of various XAI algorithms have been also introduced (Arya et al., 2019). A
comprehensive survey of explainability methods can be found in Guidotti et al. (2018) and
in Dosilovic, Brcic & Hlupic (2018).

Local linear explanation methods

In this section we review the class of explanation models named local linear explanations
(LLE), also called feature importance models (Guidotti et al., 2018), additive feature
attribution methods (Lundberg ¢ Lee, 2017) or linear proxy models (Gilpin et al., 2018).
Let x be a data point of a dataset X, that is fed to a black-box model f. For the sake of
generality, no assumption on the details of f are made. A XAI method explains the value
f (x) with a LLE by building an interpretable, white-box classifier ¢ that mimics f around
X.
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Formally, let 7 be the set of input features of X, and F = | F| be its cardinality. Let
X C RF be the input dataset, with ux and 0}2( the vectors of feature means and variances,
respectively. For simplicity, we consider X to be a tabular dataset in an interpretable space,
i.e., the same space where explanations are provided. Let f : Rf — R be the original
black-box model, and let x € RY be the input to be explained. We consider white-box
models in the form of local linear explanations (LLE).

A LLE model g is a linear function of the input variables of the form

F
gx)=wo+ Y wixi (1)
i=1

g assigns to each feature 7 a weight wj;, in order to approximate the behaviour of f in
the local neighbourhood of x. Intuitively, the absolute value w; of each feature 7 gives its
importance in the explanation. In some cases, only K < F features have non-zero weights.

In the following subsection we will describe LIME and SHAP in detail. Several other
explainability methods (Guidotti et al., 2018) for specific classes of black-box models
(i.e., model-aware) exist. For instance, DeepLIFT (Shrikumar, Greenside & Kundaje, 2017)
is a recursive prediction explanation for deep learning models, which introduced the
idea of background values also used by SHAP. Another approach, LACE (Pastor ¢» Baralis,
2019), combines the local perturbation concept of LIME together with the computation of
Shapley-like values used in SHAP. Other approaches tackle explainability from a different
perspective, i.e., they do not provide explicit indications about the reasons why a decision
has been taken but rather generate counterfactual explanations through optimisation-based
methods (Ustun, Spangher & Liu, 2018; Karimi et al., 2019; Grath et al., 2018).

LIME: local interpretable model-agnostic explanations

The LIME method (Ribeiro, Singh ¢ Guestrin, 2016¢) constructs LLE models g starting from
a synthetic neighbourhood N (x) around the input to be explained x. A local neighbourhood
N (x) of H points around an instance x is defined as

N@) = |x=x+p, p~NO,0x) | j=1...H]| 2)

where each vector p; represents a local perturbation, A is the multivariate normal
distribution, and o is the vector of feature variances in the training dataset. For simplicity,
we do not consider how to randomly generate categorical features, which can be uniformly
sampled from their frequency in the input dataset X. To find g, LIME fits a ridge regression
model to N (x) using the linear least squares function

L(f.g,7mx) = Z me(2)(f (2) —g (n(2)))?
zeN(x)

where the default distance kernel 7, (z) = exp(—d (x,2)?/ yz) is a weighted distance
function for a kernel width y = %\/I? , and d(-,-) is the Euclidean distance. Explanations
can be given in an explanation space X’ which can differ from X, provided that a mapping
function 1 : X — X' is given (n is the identity when X = X).

LIME is designed to select a subset of the F features for the LLE model g iteratively,
by fitting multiple ridge regressors using a sequential feature selection (SFS) algorithm
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(Pudil, Novovicd ¢ Kittler, 1994). Intuitively, the resulting model g is a local explanation
for x because it is built to classify the behaviour of N (x), which is a synthetic dataset built
around x. It is a linear explanation because it provides a single scalar weight for each feature
of x. A different distance kernel ,(z) can be used, altering the resulting explanation.

SHAP: shapley additive explanations

The SHAP method (Lundberg ¢ Lee, 2017) (also called IME, Interactions-based Method
for Explanation) derives local explanation models using the concept of Shapley values from
cooperative game theory (Moretti & Patrone, 2008; Moeyersoms et al., 2016). In principle,
the Shapley theory applies to binary features only, but it can be extended to real values. Many
variations of SHAP have been defined: in this paper we will refer to the KernelExplainer,
which is the model-agnostic and most general version of the method. Other model-specific
variations, like TreeExplainer for tree-based models (Lundberg et al., 2020), have also been
defined, but are not considered in this paper due to their model-aware nature.

A SHAP explanation is a vector ¢ = (¢o, ¢ ...¢r) that assigns a feature importance
¢; to each input feature. Intuitively, the input features of a classifier are akin to players
cooperating to win a game (the model prediction). The more important a player i is to the
cooperation, the higher is its Shapley value ¢(i). Features are grouped into coalitional sets,
corresponding to the power set of the set of features F.

To evaluate the black-box model for a subset of features S C IF (i.e., the coalition with
only players from S), SHAP introduces the concept of background values B, to replace the
missing features in the evaluation of f. Let fs(xs) denote the evaluation of f on x where
only the features in the subset S are kept, and the others are replaced with the background
values from B. The set B is usually taken as either a single sample B = {[E(X)} being the
dataset average, or as a set of centroids of X.

For a feature i € F, its Shapley value ¢ (i) is defined as follows

, |SI!- (F-1S]-1)!
$(i)= ) g UsuaGesun) = fs(xs) (3)
SCF\{i}
Let ¢o = fz(xz) be the constant neutral value, where all feature values of x are ignored.
We can derive a LLE model g as a linear regressor using Eq. (1) with weights

wo = o, wi= o , 1<i<F,u;eBy (4)
Xi— i

Such derivation guarantees to be locally accurate (Lundberg ¢ Lee, 2017, page 4), i.e.,
f(x) =g(x). Unlike LIME, SHAP does not build a local neighbourhood N (x) to generate
the explanation, relying instead on the computation of the feature importances using
Eq. (3).

An important observation is that KernelExplainer of SHAP is deterministic only in its
theoretical formulation (Lundberg ¢ Lee, 2017; Strumbelj ¢ Kononenko, 2010), but may

significantly diverge from such promise in practice, due to implementative details. The exact

computation of Shapley values requires to evaluate Eq. (3) on all subsets of IF, resuinting
in 2F evaluations. However, the official SHAP implementation limits the evaluation to
a user-defined number of subsets (default 2F + 2!!). Therefore, when explaining data
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Figure 1 How LEAF can support the development of a supervised explainable machine learning
pipeline. The standard steps for a supervised machine learning pipeline are: given a labeled data set,
features are engineered and models are tested to provide the best prediction accuracy. Once the best
model (that might also be an intrinsically black-box model) is identified, it can be used to take decisions
and classify previously unseen data points (black arrows). Here, post-hoc explanation techniques can be
used to understand the black-box decisions by means of white-box explanations. The LEAF framework
can induce two feedback loops in the whole pipeline, both to quantify the goodness and choose the
more suitable explanation approach (P1, blue arrows), or to sort out which model is providing the most
accurate post-hoc explanations, according to the explanation metrics (P2, red arrows).

Full-size Gal DOI: 10.7717/peerjcs.479/fig-1

+

points with more than 11 features, SHAP resorts to the Adaptive Sampling (Strumbelj ¢
Kononenko, 2014) heuristic, which approximates the Shapley values using a reduced set of
subsets.

On feature importance

While both LIME and SHAP are based on the concept of feature importance, the definition
of what constitutes an “important” feature is not unique. A survey of the different
interpretations of the importance concept can be found in Shrikumar, Greenside ¢» Kundaje
(2017). LIME adopts the concept of local importance. A feature is locally important if its
variation around x produces a big change in the output value of f. Therefore, a feature
that is highly relevant for the classification of x, but whose perturbation in the close
neighbourhood N (x) does not impact much on the resulting classification, can easily
get a low importance. For SHAP, importance is determined in comparison against the
background values B. A feature is important if its deviation from the background value to x
produces a large variation in the output. As a result, LIME and SHAP produce explanations
that are not directly comparable and therefore it is of high importance to determine a set
of evaluation metrics that are not biased by the different concepts of importance.

METHODOLOGY

LEAF is a Python framework designed to support several steps of a machine learning
pipeline where local linear explanations are part of the final decision process. It is designed
around two major perspectives reflecting the most common scenarios where explainability
methods might be present, as sketched in Fig. 1, i.e., final decision process and the model
development:
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e P1: Explaining single decisions. The black-box classifier f is given. The goal is to
understand if an explanation ¢ computed by an explainer on a single instance x can
be trusted, and how complex g should be. LEAF supports this use case by providing
metrics related to the quality of the explanation, given that the LLE method and a level
of explanation complexity are defined. This allows an end-user to trust the white-box
explanation, or to reject it if it does not meet the expected quality.

e P2: Model development. The black-box model f can be chosen to maximise both
classification performances and model interpretability. In this case, it might be important
to know which classifier should be used to provide, on average, the best explanations.
LEAF supports this use case with a feedback loop allowing the comparison of different
black-box models in terms of quality of the explanations that can be extracted.

In literature there is no consensus upon nor a unique definition of “explanation quality”.
However, different aspects of a LLE model g can be measured by different metrics. LEAF
includes the most commonly used ones (conciseness, local fidelity), along with new metrics
(local concordance, reiteration similarity, prescriptivity) described hereafter.

Conciseness

We agree with Guidotti et al. (2018) that the general definition of interpretability as to
which extent the model and/or the prediction are human-understandable is pivotal in the
evaluation of an explanation; alas, interpretability is often only vaguely defined in literature
as correlated to human comprehensibility (Freitas, 2014). Due to our quantitative approach,
we decided to focus on a specific measurable aspect of interpretability: for LLE models, we
introduce the conciseness metric as corresponding to the maximum number K of non-zero
weights w; that are kept in the explanation presented to the user, while the other F — K
features are treated as non-relevant and are excluded. For datasets with a large number
of features, a compact explanation is clearly preferable, for a human reader, over one
encompassing all features in the dataset.

LIME and SHAP have different approaches to the conciseness of their explanations. In
LIME, the conciseness is given a priori, i.e., the number K is fixed by the user and the
explanation is provided with exactly K features, with no guarantee if K is too high or
too low. SHAP instead has no direct concept of conciseness, and will always produce a
feature importance ¢; for every feature F. However, since the values of ¢ already represent
a ranking of the features importance, the user could keep the K-topmost features, and
drop the others to obtain a concise explanation (Fryer, Strinke ¢~ Nguyen, 2021).

Local fidelity

It measures how good is the white-box g in approximating the behaviour of the black-box
f for the target sample x around its synthetic neighbourhood N (x). The fidelity score
can be defined either as a global fidelity (see Guidotti et al., 2018) or as a local fidelity (see
Ribeiro, Singh ¢ Guestrin (2016¢)); hereafter, we will refer to the latter. The agreement
between f and g is usually measured using the F1 score (Guidotti et al. (2018), pp. 92).
Being a local metric, each sample x will result in a different local fidelity score. By using the
neighbourhood N (x) instead of x, local fidelity gives an indication of how g behaves in the
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locality of x, but as a consequence local fidelity is highly dependent on how the N (x) points
are sampled. While there is no canonical way to define such sampling (Andrews, Diederich
& Tickle, 1995), we adopt the one provided in Ribeiro, Singh & Guestrin (2016¢), which is
the same as Eq. (2). It is worth noting that this definition of local fidelity, albeit common,
favours local importance and could therefore be biased toward LIME-like methods. This
happens because LIME fits the white-box model ¢ minimizing the classification loss for a
neighborhood N (x), thus local fidelity captures the optimization target of LIME.

Local concordance

It measures how good g is in mimicking f for the sole instance x under the conciseness
), where £(k) = max(0,1 —k)
is the hinge loss function (Rosasco et al., 2004), so that the score ranges from 0 for total

constraint. Local concordance is defined as: E(| f(x)—g(x)

disagreement, to 1 for a perfect match. In literature there are several similar metrics with
different names, like completeness (Sundararajan, Taly & Yan, 2017), summation-to-delta
(Shrikumar, Greenside ¢» Kundaje, 2017), or the axiomatic definition of local accuracy
defined in (Lundberg ¢ Lee, 2017). However, all these definitions overlook the relationship
with conciseness. An explanation is typically pruned to encompass a reduced set K of
features. We clarify this ambiguity by evaluating the local concordance for white-box
models with only the K requested features. Local concordance is different from local
fidelity because it also considers the conciseness constraint, i.e., only the K requested
features are considered.

SHAP claims (Lundberg ¢ Lee, 2017) the local concordance of g to be always 1.
Unfortunately, this is true only in the trivial case when K =F, i.e., when all features
belong to the explanation. When a conciseness constraint requires K to be less than F,
deterministic methods like SHAP may also fail to provide a local concordance of 1. We
shall provide a detailed analysis of this behaviour in ‘Results’. LIME provides no guarantees
about the local concordance of its LLE models. Since for both techniques f (x) and g(x) are
not guaranteed to be exactly the same, the label of the explanation could be inconsistent
with the label predicted by the black-box model.

Reiteration similarity
Most available explainability methods use some form of randomised/Monte Carlo
algorithm to build their explanations. Therefore, if a method is applied several times
to explain the same instance x, the resulting explanations may vary. The work in Lipton
(2016) suggests that XAI methods may not converge to a unique solution, while the work
in Zhang et al. (2019) studies the source of uncertainty of LIME explanations, without
providing a general way to quantify LLE stability. As already mentioned in ‘SHAP: shapley
additive explanations’, SHAP defines a maximum number of evaluations of f. For small
datasets SHAP behaves deterministically; conversely, if 2F exceeds this threshold value,
SHAP relies on Adaptive Sampling and therefore behaves stochastically. In this case, Shapley
values are approximated and SHAP explanations are not perfectly stable.

We propose to measure the similarity of a set of explanations of a single instance x
as a measure of similarity across multiple reiterations of the explanation process. Given
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two explanations g,¢’, let J(g,g’) be the Jaccard similarity between the sets ®(g) and
®(g’) of non-zero weight indices of ¢ and g’. Given a set of R explanations of x, namely
Gy = {gi‘i = 1...R}, we define the reiteration similarity metric as E[](g,g’)],\?’g,g/ € Gx.
Note that this definition only considers the selected features, not their weight in the LLE
model. A fine-tuned definition that includes also the feature weights and/or the feature
rankings (Webber, Moffat ¢ Zobel, 2010) could be designed, but it is not considered in this

paper.

Prescriptivity

Most literature in the field deals with the subject of building explanations, without
considering how to use such explanation models to take decisions. One intuitive
information that an explanation should provide is: “since x is classified as class A, what are
the minimum changes on x according to the explanation g that lead to a new instance x’ that
belongs to class B?” While there are several examples of such usage of explanations (Grath
et al., 2018; Joshi et al., 2019; Karimi et al., 2019; Ustun, Spangher ¢ Liu, 2018; Fernandez,
Provost & Han, 2020), explanators like LIME and SHAP are not designed to explicitly
support this kind of use for the explanations they produce. Therefore it is of interest to
understand if local linear explanations are applicable in a proactive scenario. We introduce
the novel metric of prescriptivity to measure how effective a LLE is when taken as a recipe
to change the class of x. Without loss of generality, we will consider the target classification
boundary y’ to be %, but ¥’ could assume any value.

Let D, (y') = {x eRF |g(x) =y’} be the set of points in the domain of ¢ whose codomain
is the constant y’. The boundary of g is then the set Dg(%). Given x and the LLE model
g, let x” be the projection of x on the boundary of g, such that d(x,x") is minimal. The
intuition is that x’ is the closest point to x that switches its classification, according to the
explanation model g. Let h = x’ — x be the difference vector. Since g(x) = wo+ Zlewi X
the point x’ is the solution to the equation

F
wot Y (ith)wi=5 = hi=(5—g&)-w (5)
i=1
Figure 2 shows how x’ is found on the LLE model g that gives the local explanation
of x, and it is loosely based on a similar picture in Ribeiro, Singh ¢ Guestrin (2016¢). The
projection x” of x on the boundary Dg(%) is the closest point to x where g(x’) = % Oof
course, the value of f(x') could be different from 3, depending on how good g is in
approximating the classification boundary.
We define the prescriptivity metric as: E(% Jf () —g(x)
function, and C = max(y’,1—y’) is a normalisation factor, so that 1 means that x" lies on

), where £(-) is the hinge loss

the boundary, and 0 means x’ is at the highest distance from the boundary. Observe that by
taking the absolute value, we measure both over-shoots and under-shoots of the boundary
as a loss of prescriptivity.
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Figure 2 Finding the prescriptive point x” on the LLE boundary D, ( % )
Full-size Cal DOI: 10.7717/peerjcs.479/fig-2

RESULTS

Many reasons might contribute to the popularity of LIME and SHAP: their ability to
explain a wide range of black-boxes and different kinds of data (such as images and
text), a user-friendly Python implementation that includes helpful visualisations, the
adoption and inclusion into some companies XAI solutions are some of them. As a matter
fact, they currently represent the standard approach to tackle explainability in machine
learning pipelines. In both methods, however, complex data is always mapped into an
interpretable representation in tabular form for the explanation. For instance, images could
be either partitioned into a bit-vector of superpixel/pixel patches, or the pixels could be
directly mapped into tabular columns; texts could be converted into a bit-vector of word
occurrences. Explanations are then produced in terms of the features (i.e., the columns) of
these tabular representations. Therefore, without loss of generality, our experiments focus
on the explanations of tabular data, which is easier to analyse and understand, without any
intermediate conversion. Moreover, experiments cover binary classification tasks only, as
it is common practice among LLE methods (including LIME and SHAP) to map n-ary
classification using #n one-vs-all binary classifiers.

We start by considering the problem P1 defined in ‘Methodology’ and addressed it with
LEAF key metrics. Given an instance x to be explained, for each explainability method
considered, LEAF generates R explanations of x. It then shows a summary of the explanation
metrics along with an explanation, to help the user understand if the local model g can be
trusted.

As an example, we consider the drug consumption dataset (Fehrman et al., 2015), where
the classifier tries to predict whether a patient is inclined to be a frequent consumer of a
specific drug (caffeine in this case) based on personality traits (F = 10 features). Figure 3
shows how LEAF works on a data point x, producing R = 50 explanations to compute the
reiteration similarity score. The explained black-box classifier f is a random forest with
E =50 estimators and max. depth of 5. Both the LIME and SHAP methods are evaluated,
using 5000 neighbourhood samples for LIME (default), and 5,000 samples to compute the
Shapley values for SHAP. While the number of points used by the two tools refers to rather
different internal details, we have chosen to take the same number as a basic fair principle.
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Figure 3 LEAF applied to evaluate the quality of the explanations provided by LIME and SHAP on the
same data point x, using the same ML model f. The black-box prediction f (x) is 0.72 for the frequent
class. (A) The output for LIME with K = 4, followed by the four LEAF metrics. (B) SHAP output re-
stricted to the K = 4 most relevant features, whose output values sums up to 0.67 instead of 0.72 due to

truncation.
Full-size & DOTI: 10.7717/peerjcs.479/fig-3

Each box in Fig. 3 shows the explainer outputs (top), followed by the summary of the
explanation metrics. The summary shows the boxplot of the metric values, as well as their
averages. Only the first explanation is shown, even though LIME/SHAP are run R = 50
times to obtain 50 explanations so that the metrics, such as reiteration similarity, can be
computed. Asking for K = 4 most relevant features, LIME and SHAP do not agree on which
features are the most important, which is not unexpected given their different definition of
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feature importance (see ‘On Feature Importance’). These two explanations have different
local fidelity and prescriptivity scores. In addition, LIME shows some instability in terms of
reiteration similarity, i.e., multiple invocations of the explainer will not result in the same
set of relevant features. Moreover, LIME explanations shows an average local concordance
of 0.78, which means that g(x) is not very close to the value of f (x). SHAP on the same
instance is more consistent, reporting the same explanation over and over. As previously
stated, SHAP guarantees a perfect local concordance only when considering all the F
features in the LLE, not just the K < F most relevant. In this case the local concordance
is 0.949 which is still high. However, the local fidelity of the LLE models of SHAP in the
neighbourhood of x is much smaller than the one obtained by LIME explanations. In
contrast, SHAP shows to have a better prescriptivity than LIME, i.e., manipulating the top
four features identified by SHAP as explanations produces a new point x’ with a higher
chance of changing the classifier outcome.

Even such a trivial example allows us to gain several insights about the trustability of
explanations. First, LIME and SHAP focus on different sets of features. Second, LIME
is not very stable, so the trustability of a single explanation is limited. Third, SHAP is
perfectly stable and overall achieves better scores than LIME, even if the low local fidelity
is something to be considered.

It is worth noting that the explanation local fidelity for this sample (in particular for
the explanation provided by SHAP) is not very good (it is 0.762 for LIME and only 0.375
for SHAP). However, when we actually follow the indication of the explanation to reach
the new boundary f (x"), we see that it is quite close. This could happen because the local
fidelity evaluates two different aspects at once: (1) it could be low because the white box
model g is not a good model for the neighborhood N (x); (2) the neighborhood N (x) lies
close to a non-linear classification boundary, which is not fully captured by g. This example
shows that the widely-used local fidelity score does not capture the prescriptive use of an
explanation, and it is limited in the local evaluation of the white-box model.

This example shows how the metrics provided by LEAF allow a domain expert to take
decisions about the trustworthiness of an explainer for the problem under scrutiny.

Evaluating the reiteration similarity of XAl methods

To be trusted, an explanation needs to be stable, i.e., the explainability method should not
provide entirely different sets of relevant features ®(g) if called multiple times to explain
the same instance x. Reiteration similarity is therefore a precondition that needs to be
verified. This is even more evident when considering the GDPR remark about the right for
individuals to obtain information about the decision of any automated system: clearly, if
an algorithmic decision-support system provides inconsistent explanations for the same
data point, the single explanation provided to the user cannot be trusted.

Figure 4 shows the reiteration similarity metric distribution measured on 100 instances,
computed for both LIME and SHAP, for four datasets and six classifier categories (lin,
log, rf, kn, mlp, svc), also reported in the legend. Linear classifiers are transparent by
design and do not need additional explanations—we have included one as a baseline. Each
boxplot shows the reiteration similarity distribution of the explainer on a classifier f on
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Figure 4 Reiteration similarity metric on four datasets and six classifier categories, for two concise-
ness levels K =4 and 8.
Full-size Gal DOI: 10.7717/peerjcs.479/fig-4

a dataset, for a fixed value of K (4 and 8 on the left and right, respectively). Each of the
100 values is also shown as a small dot, and is again the result of R =50 explanations
for each instance, thus resulting in 100 x 50 explanations per boxplot. The datasets are:
drug consumption, arrhythmia (Dua & Graff, 2017), heartrisk (Doddamani, 2018), and the
breast cancer Wisconsin dataset (Dua ¢ Graff, 2017), with F =10, 279, 15 and 30 features,
respectively.

We used scikit-learn (https://scikit-learn.org/) classifiers to test the LEAF framework.
The classifiers used in the tests are: lin (simple linear classifier); log (logistic classifier with
liblinear solver); rf (random forest classifier with 50 estimators, 5 levels max depth); kn
(k-neighbors with 3 neighbors); mlp (simple neural network with 1 hidden layer and 100
neurons); svc (support vector classifier with rbf kernel and y =2). Table 1 summarises
the used datasets and the out-of-samples accuracy reached by the tested classifiers. The
train/test ratio used to compute the accuracies is 80/20.

The data shows that the considered methods may produce unstable explanations on
some pathological instances or for some classifier categories. The classifiers mlp and svc
appear to be the hardest ones to explain. The difficulty of explaining ANN models was
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Table 1 Summary of the datasets used in the experimental section.

Out-of-sample accuracy

Dataset F lin log rf kn mlp sve

Drug 10 0.583 0.588 0.788 0.828 0.904 0.925
Arrhythmia 279 0.635 0.746 0.838 0.684 0.765 0.500
Heart risk 15 0.665 0.670 0.740 0.832 0.865 0.892
Breast cancer 30 0.969 0.986 0.934 0.986 0.979 0.629

also noted in Strumbelj & Kononenko (2010), as well as for svc in Caragea, Cook ¢ Honavar
(2001). Nevertheless this remains a bit surprising, since explainability methods have been
promoted to explain ANNs and to be model-agnostic in general. SHAP appears to have
slightly higher reiteration similarity values on average than LIME, but pathological cases
are observed with both approaches.

To further evaluate the impact of non-linearity to the reiteration similarity, we consider
in Fig. 5 the same metric on the heartrisk dataset for multiple neural network architectures.
The plot shows the distribution of the reiteration similarity metric on 500 data points.
Data points are split into correctly and incorrectly classified (i.e., f (x) =y or f (x) #y), to
further investigate whether the original data point classification is relevant for the observed
instability. Reiteration similarity seems to decline with the increasing non-linearity of the
classifier. However, the relation between the non-linearity (both in terms of neurons and
hidden layers) and the reiteration similarity score follows a non-trivial pattern. In fact even
simpler models may experience instabilities in the explanations over multiple reiterations.
We have decided to separately investigate correctly and incorrectly classified data points
with respect to their reiteration similarity; empirical observations show that in this case
the correctness of the sample classification does not seem to be a major factor for the
reiteration similarity scores.

Evaluating the prescriptivity of explanations

Figure 6 shows an example of using an explanation (generated by SHAP) of an instance
x to identify a new synthetic instance x” which is closer to the classification boundary
than x. This example uses the heartrisk dataset (Doddamani, 2018), which associates heart
risks with personal health traits, and we use a mlp regressor for f with 100 neurons in the
hidden layer and ReLU activation. The example focuses on a fictional patient: female, aged
49, smoker and with the other health attributes reported in the feature table in Fig. 6(B),
column x. The SHAP explanation on Fig. 6(A) shows the heart risk of x. LEAF uses the
selected features of SHAP to generate x" using Eq. (5), which is then explained again by
SHAP (bottom of (B)). The initial at risk classification (f (x) = 0.81) is driven below the
risk boundary with f(x") &~ 0.49 by changing the K = 3 features (systolic blood pressure
from 235 to 125.5, etc...). A prescriptivity close to 1 indicates that the boundary Dg(%)
identified by the LLE model g is a reliable indicator of the boundary position.

For this example, we have selected an instance with high prescriptivity, showing how the
explanation can be trusted proactively. Since this is not always the case, it is important to
quantify whether the explanation can be used in a prescriptive way.
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Figure 5 Reiteration similarity for LIME (left) and SHAP (right) for multiple Neural Network archi-
tectures on the Heartrisk dataset, with K = 4. (A-B): single layer architecture, the number of neurons in
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Selecting an explainable classifier

We now consider the problem P2 defined in ‘Methodology’. If a classifier may be chosen
among different options, LEAF can be used to identify the one that will provide the best
results with a XAI method, and the lowest complexity K.

As example we consider again the drug consumption dataset. Instead of evaluating a
single instance for a fixed classifier/conciseness value K, in the P2 scenario we consider
six classifiers and three values for K. Figure 7 shows the distributions of the evaluation
metrics for a test set of 100 instances, each tested R =50 times to compute the reiteration
similarity.

Each block in Fig. 7 shows an evaluation metric, computed for different values of K (on
the rows). Each plot shows on the left (A, C, E, I, G, K) the values for LIME, and on the
right the values for SHAP (B, D, F, H, ], L). Each method is tested for six different classifier
categories. Boxplots shows the results of the metric in the given setting, for the 100 tested
instances.

This plot can be used to support several decision aspects of P2:

e What explainability method should be selected in order to have stable explanations? LIME
is highly stable only for linear/logistic classifiers, and for lower conciseness levels (higher

K values). SHAP instead shows excellent reiteration similarity even at low conciseness.
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Figure 6 Prescriptive use of an explanation.
Full-size &l DOI: 10.7717/peerjcs.479/fig-6

e What classifier should be trained to have high accuracy in the LLE models? LIME has low
local concordance for some classifiers (kn, mlp, svc), even for high values of K. SHAP
instead shows increasing concordance levels at the increase of K, for all classifiers.
Therefore SHAP is a better choice for local concordance, unless the black-box classifier
is a linear or a logistic one.

o What choices should be made to have explanations with high local fidelity? Surprisingly,
high local fidelity explanations can only be achieved by using some classifier categories
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Figure 7 (A-L) LEAF used to support the decision of the best explainable classifier (case P2).
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(linear, logistic, and random forest for LIME). Increasing the conciseness does not
appear to increase the local fidelity significantly, at least in the tested range of K. Some
classifier categories (mlp, svc) show very poor explanation fidelities, regardless of the
explainability method used.

e What choices should be made to have prescriptive explanations? Again, explanations can
be used in a prescriptive way only for some classifier categories (lin, log). SHAP appears
to have high prescriptive power even for low values of K, but only for a few classifier
categories (lin, log and moderately for rf). LIME requires higher values of K than SHAP
to generate prescriptive explanations consistently. Other classifier categories (kn, mlp,
svc) have poorly prescriptive LLE models, independently of the value of K and the
method used.

To summarise the example in Fig. 7, SHAP should be preferred because it shows a higher
reiteration similarity and local concordance. It also shows good prescriptive power, at least
for some classifiers. LIME should be preferred only if the user wants a higher local fidelity
with low values of K.

Since the drug dataset used in Fig. 7 has only F = 10 features, SHAP exhibits
a deterministic behaviour and perfect reiteration similarity, local concordance and
prescriptivity are more favorable for SHAP. Figure 8 shows the results for the same
metrics on the other three considered datasets (with F =279, 15 and 30 respectively),
computed using the same experimental settings of Fig. 7. For these datasets, SHAP does
not use the deterministic algorithm, resulting in unstable explanations (B), with limited
local concordance (D).

These observations lead us to conclude that SHAP is not more stable than LIME in the
general case, and the reported advantage of Shapley values can only be exploited in practice
for datasets with few features.

DISCUSSION

Modern ML techniques are applied to an ever-growing number of domains, but often
these ML models are intrinsically unable to provide explanations of their inner decision
processes. XAl algorithms tackle this problem by enriching black-box labels with human-
understandable explanations in the form of decision trees, rules or linear approximations.
Many explainability methods have been proposed over the past years, and the necessity of
comparing and evaluating the different explanations they produce has emerged. Several
metrics have been proposed in literature for this task; however, when focusing on local
linear explanations, there are no quantitative and systematic ways to assess and compare
LLEs. We argue that a toolkit for explanation assessment is fundamental for the adoption
of XAI algorithms and, as a consequence, of black-box ML models.

In this paper, we propose a general framework that we believe can be of great interest
to most users, practitioners or researchers struggling with interpreting machine learning
models via post-hoc explanations. It is worth stressing that the results of our work are
not intended to identify the best explainable approach that fits every scenario, but rather
to provide a well-grounded framework to provide such assessment case by case. In this
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Figure 8 (A—O) Observed metrics values across different classification tasks.
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direction, we decided to not be constrained to a specific prediction task, but rather to
test LEAF on different datasets and models, to fully describe the potential of a systematic
approach to evaluate explanations. Our detailed experiments show that even widely adopted
methods such as LIME and SHAP are prone to lack of reiteration similarity, low conciseness
or even provide insufficient explanations for the correct label (i.e., the K selected features
are not enough to categorise the datapoint). This supports our claim that explanations
should always be paired with quality metrics to ensure they meet the requirements set by
the user.

One of the major limitations of the present study is that we mainly focused on LIME and
SHAP - however, we argue these are the two state-of-the-art model-agnostic XAI techniques
for Local Linear Explanations. However, the described approach can be extended to analyse
other explainability methods as well, both model-aware and model-agnostic ones, as long
as the provided explanations are LLEs. Moreover, we restricted our attention to tabular
data only, since less structured data are typically converted into tabular form to build
interpretable models.

We argue that further analyses of the introduced metrics would be an interesting
direction for future work. For instance, the idea of reiteration similarity has been developed
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as a comparison between sets of features, without taking into account their relative
importance, but if the rank of the explanatory features is considered particularly relevant
for a specific domain, a weighted reiteration similarity can be defined. Moreover, reiteration
similarity is shown as one of the major weaknesses of the analysed XAI methods. In
particular, explanations of some classifier categories, like neural networks, seem to

be plagued by unstable explanations. In our experiments, we observed that the LIME
method is highly affected by unstable explanations and low local concordance, and SHAP
deterministic behaviour is in practice limited to simple datasets only. We believe that the lack
of a reiteration similarity control in XAI tools is a major obstacle in their adoption. Future
works should target the reiteration similarity metric to built novel ensemble approaches,
e.g., providing bagged/boosted explanations, and/or design explanations methods that
provide some form of statistical accuracy/precision. Moreover, more complex refinements
of this metric could be defined, as already mentioned in ‘Methodology’, to target additional
aspects like feature rankings [66] or feature weights.

Local fidelity as defined in Ribeiro, Singh ¢ Guestrin (2016¢) also shows some limitations:
the synthetic neighbourhood generates potentially out-of-sample data points which could
lead to unreliable black-box model behaviours, influencing the overall explanation quality.
The impact of a local fidelity score with a different sampling distribution is an important
research direction that has not been fully addressed in this work.

We also believe that explanations interpreted as prescriptive control strategies could
become an important source of information for practical action planning, as illustrated
by the hearth risk example. To the best of our knowledge, such usage of LLE models
has not been fully exploited so far. Measuring the effectiveness of a LLE to reach the
decision boundary is a crucial part of any prescriptive strategy, and this is captured by the
prescriptivity metric. Future work in this direction should involve the concept of actionable
features, i.e., only consider changes on controllable features inside a constrained range, as
well as measuring some form of reiteration similarity on the boundary or considering a
trajectory instead of a single boundary point, similarly to individual recourses (Joshi et al.,
2019).

It is worth noting that the actual prescriptivity definition could indicate out-of-
distribution x’, which have limited to no practical value. Reducing the feature space to an
actionable space could therefore constrain the problem to avoid generating inconsistent x’.
Moreover, we acknowledge that the blind interpretation of the prescribed sample x’ should
not be considered in a causal way, since the target only flips the black-box prediction. For
instance, in Fig. 2 the prescribed change in the highlighted features does not automatically
imply that the patient will heal from her underlying health conditions, but just that the
modified behaviours and features flip the classification in the decision support system.

A first, organic direction for future work is the inclusion in LEAF of other metrics
for explanation evaluation that have been recently introduced in literature. For instance,
in Alvarez-Melis ¢» Jaakkola (2018) the faithfulness metric is introduced, with the aim of
testing if the relevance scores are indicative of “true” importance. A second candidate
is the Area Over the Perturbation Curve (Samek et al., 2017), as it has been shown to be
valuable for assessing explanation performances of saliency maps but could be generalized
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for dealing with tabular data. Moreover, it would be interesting to integrate LEAF with
the RemOve And Retrain (Hooker et al., 2019) iterative process, as it provides an empirical
(albeit computationally expensive) method to approximate the actual relevance of the
features selected by an explanation method. In principle this could be used to improve
the interactive feedback loop proposed for the (P2) scenario. Another direction for future
work is to complement the metrics of LEAF framework with a set of sanity checks based on
measures of statistical reliability, as suggested in Tomsett et al. (2020) for saliency metrics.

CONCLUSIONS

In this paper, we focused on the metrics that can be applied to model-agnostic
explainability methods generating Local Linear Explanations, reviewing both existing
metrics (interpretability, local fidelity), clearing ambiguities in the existing definitions (local
concordance), and defining new ones that look at critical key points of the explanation
process (reiteration similarity). Given the growing interest in using explanations to support
decision systems, we also defined a general metric (prescriptivity) that evaluates how much
a Local Linear Explanation can be used to change the outcome of a black-box classifier.

Our Python library, named LEAF, implements the aforementioned evaluation metrics
for LLEs. We described how LEAF can be helpful in tackling two common scenarios,
namely the explanation of a single decision (P1) and the model development (P2) use cases.
An extensive set of experiments, using LIME and SHAP on four datasets, shows how the
proposed metrics are fundamental to assess the trustability of LLE explanations.

We propose LEAF as an open framework, where researchers are encouraged to include
additional metrics and benchmarks to foster the rigorous inspection and assessment of
local linear explanation methods for black-box ML models.
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