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ABSTRACT
The development and application of metagenomic approaches have provided an
opportunity to study and define horizontal gene transfer (HGT) on the level of
microbial communities. However, no currentmetagenomic data simulation tools offers
the option to introduce defined HGT within a microbial community. Here, we present
HgtSIM, a pipeline to simulate HGT event amongmicrobial community members with
user-defined mutation levels. It was developed for testing and benchmarking pipelines
for recovering HGTs from complex microbial datasets. HgtSIM is implemented in
Python3 and is freely available at: https://github.com/songweizhi/HgtSIM.
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INTRODUCTION
Horizontal gene transfer (HGT) has been recognized as an important force in microbial
evolution and adaptation (Soucy, Huang & Gogarten, 2015). A number of pipelines have
been developed to identifyHGTs in draft or completed genomes of isolatedmicroorganisms
(Adato et al., 2015; Hasan et al., 2012; Podell & Gaasterland, 2007; Ravenhall et al., 2015;
Trappe, Marschall & Renard, 2016; Zhu, Kosoy & Dittmar, 2014). In recent years, the
development and application of metagenomic approaches have provided novel and
vast amounts of information on the genomic composition of uncultured microorganisms
(Thomas, Gilbert & Meyer, 2012). This offers an opportunity to study HGT on the level
of microbial communities, however new bioinformatics tools and pipelines have to
be developed to reliably detect any HGT events in metagenomic datasets. Simulations
of metagenomics reads have been essential for the development and benchmarking of
pipelines for the quality control, assembly and annotation of metagenomic data (Peng
et al., 2012; Kang et al., 2015). These simulation tools typically produce reads based on
defined sets of reference genomes with user-defined abundance distributions and often
considering realistic errormodels for common sequencing technologies (Escalona, Rocha &
Posada, 2016). However, no current simulation tool offers the option to introduce defined
HGT within the microbial community data simulated, thus allowing to test pipelines that
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aim to detect HGT. Here, we have developed a pipeline called HgtSIM, which can simulate
HGTs between the genomes of microbial communities. The pipeline can simulate HGTs
with different degrees of similarity for transferred genes found in donor and recipient
genomes, thus allowing to assess the detection of relatively recent or past transfers.

METHODS
Simulation of gene mutations
The transfer of genes into a recipient genome often involves subsequent mutations that
reflect evolutionary drift or adaptation to the new genomic context (e.g., change in
codon usage to match tRNA availability). To simulate such mutations without disrupting
reading frames and to confine the mutations to a defined range, we use codons as units of
mutations. The mutations of codons were grouped into four categories (Ci): (1) one-base,
silent mutation; (2) one-base, non-silent mutation; (3) two-bases mutations and (4)
three-bases mutations (Table 1).

The algorithm for simulating random mutations is as follows:
(1) Get the length (L) of each gene to be transferred.
(2) Define the number of bases need to be changed (N ) based on a user-defined identity

value (I ) and L: i.e., N = LI/100.
(3) Define the type of mutations based on N and a user-defined ratio of the four

mutation categories. For example, if a ratio of 1:1:1:1 is specified for C1:C2:C3:C4,
then, N =C1+C2+2C3+3C4.

(4) Randomly select C1,C2,C3 and C4 codons and perform the corresponding mutations.
All changed nucleotides are recorded in a mutation report file. A BlastP-based

comparison between the amino acid sequences is also provided.

Simulation of gene transfers
The steps to simulate random gene transfers are as follows (Fig. 1):
(1) Add flanking sequences (if specified) to the (mutated) genes to be transferred. These

flanking regions could, for example, be transposon insertion sequences.
(2) Get the total length or the total number of intergenic regions of the recipient genome

(P) and user-defined number of genes (Q) to be transferred.
(3) Randomly select Q numbers between 1 and P and cut the recipient genome at

corresponding positions to create sub-sequences. If user wants to insert gene transfers
only into intergenic regions, then the recipient genome will be cut in the middle
position of the selected intergenic regions.

(4) Randomly assign the (mutated) genes to be transferred to the cut points and concatenate
them with the sub-sequences.
All the break positions and the (mutated) genes inserted to these positions are recorded

in an insertion report file.
The Python3 implementation of this HgtSIM algorithm, parameter setting and all scripts

used here are available at: https://github.com/songweizhi/HgtSIM.
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Table 1 Mutation types of codons. The changed bases are displayed in bold. The corresponding amino
acid change is given in parenthesis. As the number of silent two- and three-bases mutations are low (1%)
compared to non-silent mutations, we here combined them into the same categories. The start and stop
codons were excluded when calculating the number of mutation types.

Category Mutation type Example Total number

C1 One-base, silent ATC (Ile)→ ATA (Ile) 124
C2 One-base, non-silent GCC (Ala)→ACC (Thr) 356

Two bases, silent AGG (Arg)→CGT(Arg) 20
C3

Two bases, non-silent CTC (Leu)→ CCT (Pro) 1,394
Three bases, silent AGT (Ser)→TCC (Ser) 12

C4
Three bases, non-silent GTG (Val)→TAC (Tyr) 1,400

Figure 1 The workflow of HgtSIM.
Full-size DOI: 10.7717/peerj.4015/fig-1

RESULTS AND DISCUSSION
The effect of mutation categories on the level of coded amino
acid changes
The correlation of mutation on the nucleotide level and the resulting amino acid changes
under different ratios of mutation categories were assessed by performing random
mutations on 100 genes selected from ten Alphaproteobacteria genomes (Table 2). The
values for the level of user-defined nucleotide mutations and the values for the resulting
changes in protein sequences were similar for the category ratios of ‘‘0:0:0:1’’ and ‘‘1:0:1:1’’
(Fig. 2). This correlation analysis provides the user with information on the level of protein
sequence changes that occur at any given nucleotide mutation level and category settings.

The effect of assemble k-mer range on the recovery of simulated
HGTs
We next demonstrated the usefulness of HgtSIM to assess the recovery rate of HGTs from
a simulated metagenomic shotgun-sequencing dataset after various sequence assembly
processes. For this, 10 genes each were selected from the ten Alphaproteobacteria genomes
and randomly transferred to ten Betaproteobacteria genomes (Table 2) with various
degrees of mutation (0%, 5%, 10%, 15%, 20%, 25% and 30%). The ratio of mutation
types was set to 1:0:1:1 and a flanking sequence of ‘‘TAGATGAGTGATTAGTTAGTTA’’
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Table 2 The selected 20 genomes used in this study.

Class Strain NCBI
BioProject ID

Genome
size (Mbp)

Acidiphilium multivorum AIU301 60101 3.58
Ketogulonigenium vulgarumWSH 001 161161 2.64
Mesorhizobium australicumWSM2073 47287 3.74
Methylocapsa acidiphila B2 72841 5.91
Methyloferula stellata AR4 165575 4.04
Rhodovibrio salinarum DSM 9154 84315 4.30
Roseobacter litoralis Och 149 19357 3.98
Sphingobium japonicum UT26S 1 19949 3.35
Starkeya novella DSM 506 37659 4.54

Alphaproteobacteria

Tistrella mobilis KA081020 065 76349 3.74
Alicycliphilus denitrificans K601 50751 4.76
Dechlorosoma suillum PS 37693 3.63
Gallionella capsiferriformans ES 2 32827 3.02
Herbaspirillum seropedicae SmR1 47945 5.26
Nitrosospira multiformis ATCC 25196 13912 3.04
Ramlibacter tataouinensis TTB310 16294 3.88
Sideroxydans lithotrophicus ES 1 33161 2.41
Snodgrassella alvi wkB2 167602 2.99
Sulfuricella denitrificans skB26 170011 2.86

Betaproteobacteria

Tetrathiobacter kashmirensisWT001 67337 4.16
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Figure 2 The correlation of mutation on the nucleotide level and the resulting aa changes under
different mutation category ratios. The four numbers separated by colon refer to the ratio between
C1,C2,C3 and C4.

Full-size DOI: 10.7717/peerj.4015/fig-2
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Figure 3 The effect of assemble k-mer range on the recovery of HGT events.
Full-size DOI: 10.7717/peerj.4015/fig-3

were added to the two ends of all transfers. Ten million paired-end, error-free 100-bp
reads (corresponding to a coverage of 26.4×) with 250 bp insert size were simulated
with an in-house script from the 20 genomes for each mutation group. To get an even
sequencing depth distribution of the 20 genomes, their relative abundances were all set to
one. The simulated reads were then assembled with IDBA_UD 1.1.1 (Peng et al., 2012) and
metaSPAdes 3.9.0 (Nurk et al., 2017) with multiple k-mer ranges (Fig. 3). A gene transfer
was considered to be recovered during the assembly if at least one of the gene’s two flanking
regions was >1 Kbp and the flanking region matched its recipient genome. To do this, a
blastn (Altschul et al., 1990) was performed between the introduced gene transfers and the
contigs produced by the assemblers. The blast results were then filtered with an identity
cutoff of 99% and a coverage cutoff of 99% for the transferred genes.

The results show that the best recovery was obtained with a k-mer range of 20–124 for
IDBA_UD as well as 21–55 and 21–125 for metaSPAdes (Fig. 3). The number of genes
recovered by the two assemblers were reduced when the user-defined nucleotide mutation
levels were low (i.e., <5%). When no mutation was introduced, only one and nine genes
were recovered by IDBA_UD and metaSPAdes, respectively.

The effect of sequencing depth on the recovery of no-mutation HGTs
We then investigated how sequencing depth might affect the recovery of HGTs with no
mutations. To do this, between one to 20 million paired-end 100-bp reads with 250 bp
insert size were simulated for the 20 genomes, no error was introduced to the simulated
reads during simulation and no mutation was introduced to the 100 transferred genes. The
simulated reads were then assembled with IDBA_UD and metaSPAdes with the optimal
k-mer ranges identified above. Assembly statistics (total length, number of contigs, N50
and percentage of recovered reference genomes) were obtained with MetaQUAST 4.5
(Mikheenko, Saveliev & Gurevich, 2015).
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Figure 4 The total length (A), percentage of recovered sequences (B), contig number and N50 (C) of
assembler produced assemblies. (D) Number of recovered transfers. The lines showing the number of
contigs and N50 of metaSPAdes produced assemblies with two different k-mer settings were overlapping
in panel (C).

Full-size DOI: 10.7717/peerj.4015/fig-4

The results show that the quality of assemblies improved with increasing sequencing
depth (Figs. 4A–4C) and over 98.5% of sequences for the reference genomes were
reconstructed with sequencing depths of greater 6.6× (Fig. 4A). We found that the
number of gene transfers recovered by IDBA_UD and metaSPAdes was not linearly
correlated with sequencing depth. The best recovery (69 out of 100 transfers) was observed
with metaSPAdes at a k-mer range of 21–125 and sequencing depth of 7.9× (Fig. 4D).
With a k-mer range of 21–55, 43 gene transfers were recovered by metaSPAdes when
the sequencing depth is 4×. As for IDBA_UD, the best recovery was obtained with a
sequencing depth of 5.28×. The decrease of HGT recovery rates beyond a certain coverage
threshold was surprising and contrasted the improved general quality measurements of
the assemblies (Figs. 4A–4C). One possible explanation is that assemblers under certain
coverage condition are more likely to assemble contigs for the transferred genes that lack
flanking regions, and visual inspection of assembly graphs found instances of this.

The effect of read length and insert size on the recovery of
no-mutation HGTs
We also simulated how insert size and read length might influence recovery of transfer
events. As the best recovery of no-mutation HGTs was observed with metaSPAdes and a
k-mer range of 21–125 at sequencing depth of 7.9× (Fig. 4D), we simulated reads with
different length (100 bp and 250 bp) and insert sizes (250 bp, 500 bp and 1 Kbp) to this
depth. More no-mutation gene transfers were recovered with reads length of 100 bp than
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Table 3 The effect of reads length and insert size on the recovery of 100 simulated HGT events.

Reads length (bp) 100 250
Insert size (bp) 250 500 1,000 250 500 1,000
Recovered gene transfers 69 55 63 15 23 51

Figure 5 The correlation between the length of gene transfers and their recovery rate.
Full-size DOI: 10.7717/peerj.4015/fig-5

with 250 bp. For the datasets with 250 bp read length the recovery of gene transfers was
improved with longer insert sizes (Table 3).

The effect of the DNA length on the rate of transfer recovery
The correlation between the length of the DNA transferred and its recovery rate was also
analyzed. The three datasets shown in Fig. 4D were used for this analysis. There was no
statistically supported correlation between the gene length and the recovery rate, indicating
that gene length has no impact on recovery rate under the given experimental conditions
(Fig. 5).

CONCLUSIONS
Our study demonstrates how various aspects of metagenomic sequencing projects (e.g.,
insert length, read length, assembly parameters, gene length) can influence the potential to
recoverHGT frommetagenomic datasets. Testing and benchmarking of various parameters
and tools with simulated datasets produced by HgtSIM will in the future help to develop
robust pipelines that have maximal success in recovering HGT from complex metagenomic
data.
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