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ABSTRACT
Understanding the impact of wood vinegar on the growth of cherry radish is indis-
pensable for use in crop production and environmental safety. Our study explored the
regulation of rhizosphere microbial abundance and activity by wood vinegar, as well
as the relationship between microbial community and growth factors in-depth and
systematically. Bacterial communities at the phylum and genus levels were significantly
changed after wood vinegar treatment. Application of 200-fold diluted wood vinegar
significantly boosted Actinobacteriota and Firmicutes abundances by 40.88% and
126.67%, respectively, while Proteobacteria was promoted in carbon-rich soil. Fungi
positively responded to cherry radish root traits and were correlated with aboveground
biomass and fruit production. The fungi that correlated with photosynthesis included
Albifimbria, Allomyces, Calcarisporiella, Clonostachys, Fusarium, Fusicolla, Knufia,
Nigrospora, Paraconiothyrium, Preussia, Talaromyces, and Mortierellomycota. Wood
vinegar treatment significantly affected the composition and abundance of soil bacterial
and fungal communities in cherry radish rhizosphere, while simultaneously enhancing
photosynthetic efficiency (e.g., Pn: 80.45% and Tr: 56.75%) and resulting in a 44.91%
increase in crop yield. The promotion of cherry radish growth by wood vinegar
may be attributed to the stimulation of soil microorganisms that degraded aromatic
compounds and drove nitrogen cycling. This study provided novel insights into the
significant promotion of cherry radish growth using wood vinegar diluted 200 times
and identified potential microbial targets for agricultural applications.

Subjects Agricultural Science, Ecology, Ecosystem Science, Microbiology, Soil Science
Keywords Green agriculture, Growth promotion, Microbe-plant interaction, Soil microorgan-
ism, Wood vinegar

INTRODUCTION
Agricultural and forestry waste, which is approximately 2 billion tons generated annually in
China (Fan et al., 2020), is an important biomass resource as a byproduct generated during
the production and processing of agroforestry (Ozturk et al., 2017; Sun et al., 2023; Yu et
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al., 2024). Wood vinegar obtained via condensing and separating the flue gas generated
from biomass pyrolysis (Hagner et al., 2013; Yin et al., 2024), which has a wide range of
applications in agriculture, environmental protection, and healthcare (Grewal, Abbey &
Gunupuru, 2018; Mahmud et al., 2016; Hu & Gholizadeh, 2020; Sarchami, Batta & Berruti,
2021; Feng et al., 2023). Mmojieje & Hornung (2015) reported that wood vinegar from
mixed wood biomass exhibited up to 90% mortality for red spider mite and green peach
aphid. Gao et al. (2020) reported that wheat straw vinegar containing phenols, acetic
acid, and cations significantly decreased the wheat fusarium head blight infection rate and
deoxynivalenol content by 66% and 69%, respectively. Recently, research on the application
of wood vinegar hadmainly focused on their antibacterial properties and insecticidal effects
in agriculture. Nevertheless, the sawdust vinegar from low temperature (<400 ◦C) could
be used as liquid fertilizer to promote wheat seeds germination (Shang et al., 2021). These
results almost focused on the biological response of wood vinegar to the target substance
(plants, pests, and pathogens), but limited study concerned the wood vinegar effect on soil
microbiome (Jeong et al., 2015), and further studies for the rhizosphere microbial behavior
of wood vinegar are warranted.

Wood vinegar, as soil remediation agents, consisted of alcohols, esters, amines,
pyridines, as well as trace elements such as potassium (K), phosphorus (P), calcium
(Ca), manganese (Mn), and ferrum (Fe) (Hou et al., 2018; Lu et al., 2020). As reported by
many previous studies, wood vinegar could increase soil fertility by increasing nutrient
elements (e.g., nitrogen (N), P, and K) (Polthanee, Kumla & Simma, 2015; Sun et al., 2018;
Mirsoleimani et al., 2023), reducing NH3 volatilization (Win et al., 2009), and dissolved
organic molecules (Lashari et al., 2013; Lashari et al., 2015; Fu et al., 2023), resulting in
improved production of crop. Wood vinegar gotten from biomass pyrolysis at low
temperature (<150 ◦C) are mainly composed of acid compounds, which promote the
length of wheat main roots to nearly 1.2 times (Lu et al., 2019a; Lu et al., 2019b). Lashari
et al. (2013) reported that biochar poultry manure compost fortified with wood vinegar
significantly increasewheat yield throughwood vinegar leaching soluble salts and enhancing
the effect uptake of P and K. Moreover, the dose of 3.0% mL hazelnut shell wood vinegar
had positive effects on the number of bacteria and β-glucosidase enzyme activity in soil
(Koç et al., 2019). In general, wood vinegar can improve crop yield and microbial activity,
but most of the previous studies separately confirmed the effect of wood vinegar on soil
microorganisms and plants (Jeong et al., 2015), and the coupling relationship was not
introduced in results, especially the regulation of rhizosphere microorganisms through
wood vinegar leading to crop growth. Therefore, the effects of wood vinegar composition
on the response of soil microorganisms and the promotion of cherry radish growth were
studied, and its applications were further determined.

In this study, we used wood vinegar produced from pyrolysis of rice straw. We deeply
explored the influence of wood vinegar on the rhizosphere microbial community of
cherry radish through soil culture experiments. In addition, the effects wood vinegar
concentrations on the growth indicators, photosynthetic efficiency, and chlorophyll
content of cherry radish were also explored. The objective is to explore the potential of
wood vinegar in activating rhizosphere microorganisms, thereby enhancing photosynthetic
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efficiency in crops and promoting the uptake of nutrients in the rhizosphere. These results
could provide new insights into the resource utilization of agricultural waste, and important
support for green agricultural development.

MATERIALS AND METHODS
Materials
The soil samples were collected from Ma’anshan in Anhui, classified as brown soil, and
developed from quaternary loess parent material. The cultivated brown soil has a pH value
of 6.5, 32.38 g/kg of organic matter, 15.12 g/kg of total nitrogen, 15.26 mg/kg of available
phosphorus and 56.58 mg/kg available potassium. The ‘‘Red Angel’’ cherry radish used as
the experiment crop and was purchased from Beijing Dongsheng Seed Industry Co., Ltd.
20.00 g of rice straw was weighed and then placed into a quartz tube inside a tube furnace.
With a continuous nitrogen flow of 100 mL/min, the sample was gradually heated to a
pyrolysis temperature of 450 ◦C at a rate of 10 ◦C/min and then held at that temperature
for 120 min (Hua et al., 2020). The crude wood vinegar was collected from three separate
pyrolysis experiments and gathered in an amber sample bottle. Following a 20-day storage
period in a dark environment, the sample underwent a meticulous separation process to
yield the wood vinegar.

Experimental design
Cherry radish seeds were immersed in a 4% (v/v) sodium hypochlorite (NaClO) solution
for 10 min to disinfect them, then rinsed with deionized water several times to remove
residual disinfectants (Lian et al., 2022). Firstly, five seeded seeds were sown directly at a
depth of 1 cm on the surface of bowl soil (3 kg). After 7 days of growth, only one plant
per pot, which exhibited good and consistent growth, was retained. Cherry radish was
cultivated in a greenhouse with a 12-h light cycle, day/night temperature of 25/20 ◦C, and
60% relative humidity (Gu et al., 2022). After 45 days of growth, the cherry radish was
harvested and related indicators were measured in the soil. Each group of treatments was
set with five replicates (five plants), and a total of five treatments were set in the experiment:
the untreated wood vinegar was set as the control (CK), and the wood vinegar was diluted
with deionized water by 400 (W400), 300 (W300), 200 (W200), 100 (W100), and 50 (W50)
times, respectively. During the experiment, 500 mL of wood vinegar with different dilution
ratios were poured into pots and bowls, and the same volume of water was poured into
CK.

Characterization of soil and wood vinegar
The soil pH is measured using the potential method (soil-water ratio 2.5:1). The organic
matter of the soil was determined using potassium dichromate-sulfuric acid (K2Cr2O7-
H2SO4) for oxidation and ferrous sulfate (FeSO4) titration (Peng et al., 2016). The soil
sample is digested using copper sulfate (CuSO4) and potassium sulfate (K2SO4), and
then titrated with hydrochloric acid (HCl) to obtain total nitrogen (Lenaerts et al., 2018).
The available phosphorus and potassium were determined by modified kelowna methods
(Qian, Schoenaru & Karamanos, 1994).
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The molecular composition of wood vinegar samples measured using an electrospray
ionization (ESI) Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR
MS) (Bruker SolariX, Bruker, Germany) equipped with a 9.4 T superconducting magnet.
Sample solutions were injected into the electrospray source at 180 µL/h with a syringe.
The operating conditions for negative-ion formation be applied with a 4.0 kV spray shield
voltage, 4.5 kV capillary column introduced voltage, and 320 V capillary column end
voltage. The mass range was configured with 200–800 Mass to charge ratio (m/z). The
samples were given 128 FT-ICR MS scans to improve signal-to-noise ratio and dynamic
range. The detailed determinations of H/C, O/C, and double bond equivalents (DBE) of
molecular compositions are presented in Text S1 (Hua et al., 2020).

Measurements of plant growth
Cherry radish fruits were harvested after ripening, and the diameter of the fruit was
measured using a ruler (centimeters), while the yield was calculated by weighing the fruits
on an electronic balance (FA2104B, Shanghai). After harvest, the root morphology of
five cherry radish treated with different doses of wood vinegar was analyzed using the
WinRhizo system v.4.0b (Instruments Regent LA2400, Japan). The photosynthetic index
was measured on a sunny morning (9:00-11:00), and the second leaf at the top of the
plant was selected as the measured leaf (Gu et al., 2021). The net photosynthetic rate (Pn),
transpiration rate (Tr), stomatal conductance (Gs), and intracellular CO2 concentrations
(Ci) of cherry radish were analyzed by the CIRAS-3 portable gas exchange system (PP-
Systems, USA) (Liu et al., 2020). The supernatant was separated and the absorbance was
recorded at 662 nm for Chlorophyll a and 646 nm for Chlorophyll b using the Shimadzu
UV-1800 spectrophotometer (Shimadzu, Kyoto, Japan) (Şükran, Gunes & Sivaci, 1998).

Microbial diversity and community
The DNA of soil bacteria was extracted from 0.5 g of frozen soil using the FastDNA
SPIN Kit (MP Biomedicals, CA, USA). The 16S rRNA gene was amplified through
thermocycler polymerase chain reaction (PCR) system (GeneAmp 9700, ABI, USA)
using 16S rRNA amplicon (338F, 5′-ACTCCTACGGGAGGCAGCAG-3′)/806R, 5′-GGAC
TACHVGGGTWTCTAAT-3′). Then, the quality and concentration of the extracted DNA
were determined using a NanoDropND-1000 UV–Vis spectrophotometer (Thermo Fisher,
Waltham, MA, USA) and a Quanti Fluor dsDNA system (Promega, Madison, WI, USA).
Majorbio Bio-Pharm Technology Co. Ltd. (Shanghai, China) used the Illumina MiSeq
platform (Illumina, San Diego, USA) to analyze the bacterial diversity according to the
standard protocols. The online Majorbio Cloud Platform (http://www.majorbio.com) was
used to perform data analysis, which included Venn diagram analysis, collinearity analysis,
alpha diversity analysis, beta diversity analysis, and heatmap analysis.

Statistical analysis
One-way ANOVA, correlation analysis, and Duncan’s multiple range-test were obtained
from SPSS version 25.0 (IBM, Armonk, NY, USA). A redundancy analysis (RDA) was
conducted utilizing the R programming language to elucidate the interplay between the
microbial community structure and the physiological parameters of cherry radish. All the
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experiments were carried out in five replicates and a significant difference was considered
at p< 0.05. Unless otherwise indicated, all other experiments were conducted in five
replicates, and significant differences between the experiments were taken into account
(p< 0.05).

RESULTS
Composition analysis of wood vinegar
The molecular composition of wood vinegar from biomass pyrolysis through FT-ICR MS
analysis are depicted in Fig. 1. All detected substances are divided into seven groups, which
were shown as follows: (lipid (H/C: 1.5–2.0; O/C: 0–0.3), protein (H/C: 1.5–2.2; O/C: 0.3–
0.67), carbohydrate (H/C: 1.5–2.2; O/C: 0.67–1.2), unsaturated hydrocarbon (H/C: 0.7–1.5;
O/C: 0–0.1), lignin (H/C: 0.7–1.5; O/C: 0.1–0.67), tannin (H/C: 0–1.5; O/C: 0. 67–1.2), and
condensed aromatic-like components (H/C: 0.2–0.7; O/C: 0–0.67)), and the results shown
in the Van Krevelen diagram clearly illustrated the differences in molecular composition
of wood vinegar. The main distribution of wood vinegar compounds H/C = 0.2−0.7 and
H/C = 0.5−1.5, indicating rich aromatic structure and lignin, with 45.51% and 22.70%
contents, respectively (Figs. 1C–1D).

Wood vinegar promotes the yield of cherry radish
The effects of wood vinegar at different concentrations on the yield indicators of cherry
radish are different (Fig. 2). Within a certain concentration range (W50-W200), the yield
of cherry radish gradually increased with the increased concentration of wood vinegar.
When the added concentration of wood vinegar reached W200, the diameter and yield of
cherry radish reached the largest values, increasing by 42.43% and 44.91% respectively.
Simultaneously, wood vinegar could also promote the shoot biomass of cherry radish
(Fig. S1). After treated by 200-fold diluted wood vinegar, the growth rate and biomass
accumulation of cherry radish increased by 34.08% compared with CK. The notable
enhancement may be attributed to the regulatory effects of wood vinegar on soil microbial
activity, thereby potentially boosting microbial processes that are beneficial for plant
growth.

Effect of wood vinegar on photosynthesis of cherry radish
The effect of wood vinegar treatment on the photosynthesis of cherry radish are shown in
Fig. 3. Compared with CK, there was a significant difference in the net photosynthetic rate
of cherry radish treated with different concentrations of wood vinegar (p< 0.05). After
applying 200 times wood vinegar, the maximum net photosynthetic rate reached 25.53
µm CO2/(m2

· s), which was 80.45% and 19.97–101.84% higher than the CK and other
wood vinegar treatment groups, respectively. The net photosynthesis also verified that
the W200 treatment group had the strongest ability to accumulate fruit and biomass in
cherry radish (Fig. 2). Similarly, 200 times wood vinegar treatment had a positive impact
on the transpiration rate of cherries (up to 15.88 mmol H2O/(m2

· s)), accelerating water
absorption and transportation (Fig. 3B). The stomatal conductance fluctuations were
significant, with a significant level (p< 0.05) observed in the wood vinegar treatment
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Figure 1 Plots of carbon (CHO, CHON, CHONS, and CHOS chemicals) (A) and oxygen (CHO,
CHON, CHONS, and CHOS chemicals) (B) number versusDBE ofWV. (C) Van Krevelen diagrams of
CHO, CHON, CHONS, and CHOS chemicals for biomass pyrolysis derived-WV, and (D) Bar d.

Full-size DOI: 10.7717/peerj.18505/fig-1

Figure 2 Effect of wood vinegar treatment on the diameter (A) and weight (B) of cherry radish fruit.
Data with different letters are significantly different (p< 0.05).

Full-size DOI: 10.7717/peerj.18505/fig-2
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Figure 3 The gas exchange parameters: (A) net photosynthetic rate (Pn), (B) transpiration rate (Tr),
(C) stomatal conductance (Gs), and (D) intercellular CO2 concentration (Ci) of cherry radish.

Full-size DOI: 10.7717/peerj.18505/fig-3

compared to the control, particularly with W200 showing a 92.57% increase (Fig. 3C).
Except for the W50 treatment, the intercellular CO2 concentration in cherry radish leaves
of all other treatment groups was lower than that of the CK group, with a decrease range
of 13.83%–28.56% (Fig. 3D). However, the lowest intercellular CO2 in W200-treated
cherry radish leaves indicated enhanced CO2 utilization during photosynthesis, compared
to other treatment groups. The trend of intercellular CO2 content in different treatment
groups were basically the opposite of net photosynthetic rate, which was consistent with
the laws of plant photosynthesis (Wang et al., 2011). In addition, the trends in cherry leaf
chlorophyll content and chlorophyll a/b ratio (Fig. S3) were in line with the patterns of
changed net photosynthetic rates.

Effects of wood vinegar on the abundance and diversity of microbial
The coverage of the wood vinegar treatment group (W200 and W400) and the CK were
all above 0.99, indicating that the sequencing results well reflected the actual situation of
the bacteria and fungi of the samples (Figs. 4A–4B). The Shannon index of the treatment
group with 200-fold diluted wood vinegar showed the highest value, indicating that the
treatment with 200-fold diluted wood vinegar was beneficial to the increase of rhizosphere
bacteria diversity, as shown in Figs. 4A–4B. Simpson’s index also showed that the bacterial
community of the treatment group with 200-fold diluted wood vinegar had the lowest
Simpson index, which further supports the results of the Shannon index. The results
showed that W200 had no significant difference in fungal diversity index (p > 0.05),
but had extremely significant differences in bacterial Shannon (p < 0.001), Simpson
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Figure 4 Effects of wood vinegar on the abundance and diversity of bacteria (A) and fungi (B) in rhizo-
sphere soil.

Full-size DOI: 10.7717/peerj.18505/fig-4

(p< 0.001), and OUT number (p< 0.001), indicating that W200 can promote bacterial
diversity and richness. Venn diagram could be used to represent the similarity and overlap
of soil microorganisms (Fig. S4). The operational taxonomic unit (OTU) number of
bacteria and fungi in the soil samples after being treated differently were 2047 and 290,
respectively. The independent bacteria and fungi OTU numbers in the 200-fold diluted
wood vinegar treatment were 148 and 164, accounting for 5.63% and 24.33% of the OTUs,
respectively. Results from the data indicated that wood vinegar treatment increased the
composition of dominant bacterial and fungal genera in the rhizosphere soil and formed
a more diverse microbial environment in the bacterial community structure, thereby
benefiting the growth of cherry radish.

DISCUSSION
Cherry radish yield and photosynthesis improvement under wood
vinegar application
Results indicated a positive effect of wood vinegar application on biomass production
of cherry radish, which might be related to the regulation of wood vinegar on soil
microbial activity, and possible by promoting cherry radish nutrient absorption. Akley et
al. (2023) recorded that the soil drenching of wood vinegar enhanced soil enzyme activity
(arylsulphatase, acidic phosphatase, and α-Glucosidase), which strongly correlates with
improved biomass and grain yield of cowpea. Similarly, Lu et al. (2019b) discovered that
using low concentrations of wood vinegar (0.33−0.50 mL/L) stimulated root vitality and
enhanced fresh root biomass of wheat.Moreover, the application of wood vinegar increased
soil organic matter, for wood vinegar stimulatedmore labile C pool which enhanced uptake
of nutrients by plants, and stimulated populations of beneficial microorganisms (Cardelli
et al., 2020;Wang et al., 2022). Soil treatment with a 500-fold diluted wood vinegar resulted
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in a significant (p< 0.05) 73.39% increase in bacterial population (e.g., Gram-negative
bacteria, anaerobic bacteria, and aerobic bacteria) and enhanced soil ecological activity (Rui
et al., 2014). Overall, the use of wood vinegar could improve the growing environment of
cherry radish, thereby promoting aboveground growth and development of cherry radish
(Mhamdi, 2023).

Compared with the CK and other wood vinegar concentrations, the cherry radish
treated with 200-fold diluted wood vinegar showed significant differences (p < 0.05)
in net photosynthetic rate, transpiration rate, stomatal conductance, and intercellular
CO2 concentration. After soil drenching with 200-fold diluted wood vinegar, the net
photosynthetic rate and transpiration rate of cherry radish were 19.97–101.84% and
20.03–107.16% higher than the CK and other wood vinegar treatment groups, respectively.
It was reported that wood vinegar enhanced net photosynthesis by regulating soil microbial
activity and enhancing the ability of crop roots to absorb nutrients (Chen et al., 2016; Rui
et al., 2014). The transpiration rate of cherries was related with root growth (Kulkarni
et al., 2017), and the changed trend of root index in W200 treated cherry radish further
confirmed the enhanced transpiration rates (Fig. S2). Cherry radish transpiration was vital
for preserving water balance and facilitating photosynthesis, while robust root growth
ensured efficient water and nutrient uptake from the soil (Farooq et al., 2019; Wu et al.,
2022). For example, after W200 treatment, the contents of root tips, length, and surface
area were 35.50, 16.70 cm, and 36.33 cm2, respectively, with an increase of 59.19%, 74.14%,
and 26.72% compared to CK. As the concentration of wood vinegar increased, the stomatal
conductance of cherry radish firstly decreased and then increased, which was consistent
with the changes in net photosynthetic rates and transpiration rates. The trend of change
may be attributed to the high concentration of wood vinegar that is impeding the growth
of cherry radish by passivating soil microbial activity. The results showed that cherry
radish treated with 200-fold wood vinegar exhibited a reduction in intercellular CO2

concentration ranging from 11.33 to 245.50 µm CO2/(m2s) compared to other treatment
groups. This indicated that the leaves could utilize more CO2 for photosynthesis (Gu et
al., 2021). The overall trend of chlorophyll content in cherry radish was consistent with
the net photosynthetic rate of the leaves, with chlorophyll a and chlorophyll b increasing
by 24.93–120.22% and 11.01–89.73% compared to the treatment group, respectively.
Similarly, the exposure of compost to a 0.5% wood vinegar treatment resulted in a marked
elevation of 21% in the chlorophyll a/b ratio among cucumis sativus seedling compared to
those untreated with wood vinegar (Afsharipour, Mirzaalian & Seyedi, 2024). The increase
in chlorophyll content could effectively promote photosynthesis by enhancing the plant’s
ability to absorb light energy, leading to improved growth, higher biomass production,
and better overall plant health (Li et al., 2020). In a word, the application of a 200-fold
diluted wood vinegar significantly improved the photosynthetic rate, transpiration, root
growth, and chlorophyll content in cherry radish, thereby enhancing nutrient absorption
and effective utilization of intercellular CO2.
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Wood vinegar enhances rhizosphere microbial activity
After wood vinegar treatment, there were significant differences in the relative abundance
of bacterial communities at both the phylum and genus levels (Fig. 5). After 200-fold
diluted wood vinegar treatment, the proportion of Actinobacteriota and Firmicutes in
soil samples increased, with respective increases of 40.88% and 126.67% compared to
the CK group. Actinobacteriota could promote the decomposition of soil organic matter
and nutrient transformation, thereby contributing to the improvement of soil fertility
(Lan et al., 2022; Ren et al., 2018). The wood vinegar compounds contained 68.21%
organic matter, which stimulated the activity of actinomyces and thereby increased
its abundance. In addition, Actinobacteriota also had a certain bioprotective effect,
thus inhibiting the growth of pathogenic bacteria and promoting the healthy growth
of cherry radish. Meanwhile, the abundance of Proteobacteria (up to 25.82%) in high
carbon soil was promoted by W200 application (Fierer, Bradford & Jackson, 2007), and
it was considered as an important soil symbiont together with Firmicutes (Anderson et
al., 2018; Zhalnina et al., 2015). Moreover, the bacterial genera with relative abundance
greater than 1% in soil treated with wood vinegar at different dilution concentrations and
CK were Arthrobacter, Sphingomonas, Vicinamibacterales, Vicinamibacteraceae, Massilia,
g__RB41, norank_f__norank_o__norank_c__KD4-96, and norank_f__Roseiflexaceae (Fig.
5B). More importantly, the abundance of Arthrobacter, Sphingomonas, and norank_f__
norank_o__Cyanobacteriales genera in wood vinegar at a concentration of 200 times was
significantly higher (over 10%) than other treatments, indicating a significant change in the
proportion of dominant bacterial genera in the rhizosphere soil of cherry radish. Especially
for norank_f__ norank_o__Cyanobacteriales, which were between 15.34 and 230.05 times
higher than CK and W400. Notably, wood vinegar additives stimulate cherry radish to
absorb rhizosphere elements, degrade variety aromatic compounds (the main component
of wood vinegar), and drive nitrogen cycling by increasing the abundance of dominant soil
microorganisms, such as Arthrobacter (Schwabe et al., 2021), Sphingomonas (Gong et al.,
2016; Liu et al., 2017), and norank_f__ norank_o__Cyanobacteriales (Wang et al., 2023).
Additionally, compared to CK and W400 treatments, the fungi in the W200 treatment

group showed a significant increase (0.98–25.06 fold higher) in the main phylum,
specifically Basidiomycota, unclassified_k__Fungi, and Blastocladiomycota, with the
main fungal genera being unclassified_f__Stachybotryaceae. Basidiomycota, as a crucial
decomposer, generates enzymes (peroxide) that enzymatically break down plant
components such as cellulose and lignin, thereby augmenting the overall carbon pool
of the soil (Ahmed, De Figueroa & Pajot, 2020). Moreover, unclassified_k__Fungi, as a
dominant genus in rhizosphere soil, stimulates fungi that generate total nitrogen (Yang
et al., 2022). The organic matter (W200) in the rhizosphere promoted the abundance of
Blastocladiomycota (Zhang et al., 2021), which was beneficial for crop growth. Similarly,
Stachybotryaceae also showed a positive response to nitrogen in the rhizosphere soil (Kumar
et al., 2022). These results also indicated that fungal communities displayed a vital role in
the utilization and absorption of soil nutrients by crops.
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Figure 5 The relative abundance of soil bacteria (phylum (A) and genus (B)) and fungi (phylum (C)
and genus (D)).

Full-size DOI: 10.7717/peerj.18505/fig-5

The relationship between cherry radish growth factors and microbial
communities
RDA was employed to explore the relationship between environmental factors and
microbial communities during the application of wood vinegar as fertilizer (Figs. S5–
S6). RDA1 and RDA2 accounted for 65.89% and 23.95% of the variance in bacterial
community dynamics, and 39.99% and 28.07% for fungal communities, respectively.
During the cultivation process, the order of correlation between environmental
factors and bacterial/fungal communities was: surface area >chlorophyll b >shoot
biomass >length >fruit biomass for bacteria, and Tr >surface area >Pn >Gs >fruit
biomass for fungi. The strong correlations (p < 0.05) indicated that optimizing
environmental parameters could regulate microbial communities, enhancing cherry
radish growth. Moreover, the correlation plot generated in Fig. 6 and Fig. S7 identified
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the microbial communities and growth factors mediating the promotion of cherry radish
growth by wood vinegar. The root growth indicators (length, tip, surface area, and
diameter) showed significant correlation (p < 0.05) with the genera of Arthrobacter,
norank_f__norank_o__Cyanobacteriales, and Agromyces (Fig. S7). Among them, the
Arthrobacter and norank_f__norank_o__Cyanobacteriales in the W200 treatment
group were 1.85–297.85 times higher than those in the CK and W400 treatment
groups. It has been reported that Arthrobacter (Schwabe et al., 2021) and norank_f__
norank_o__Cyanobacteriales (Wang et al., 2023) degrade aromatic compounds (wood
vinegar) to drive the cycling of nitrogen nutrients in the rhizosphere. Meanwhile,
norank_f__norank_o__Cyanobacteriales, Ellin6067, and Agronomyces exhibit a significant
relationship (p< 0.05) with photosynthesis. In the soil treated with W200, it was found
that norank_f__norank_o__Cyanobacteriales (Wang et al., 2023) and Agronomyces (Wang
et al., 2020) were involved in nitrogen and carbon cycling, respectively, thereby promoting
cherry radish growth and significantly improving physiological indicators.

For fungal communities, Allomyces, Clonostachys, Fusarium, Fusicolla, Knu-
fia, Nigrospora, Paraconiothyrium, Preussia, Talaromyces, Trichocladium, unclassi-
fied_f__Didymellaceae, unclassified_f__Stachybotryaceae, unclassified_Mortierellomycota
showed a positive response (p < 0.05) to root length, root number, and root
surface area of cherry radish, while also showed a positive correlation (p < 0.05)
with aboveground biomass and fruit (Fig. 6). The fungi that positively correlated
(p< 0.05) with the photosynthesis (except for Ci) of cherry radish include Albifimbria,
Allomyces, Calcarisporiella, Clonostachys, Fusarium, Fusicolla, Knufia, Nigrospora,
Paraconiothyrium, Preussia, Talaromyces, unclassified_c__Sordariomycetes, unclassi-
fied_Chytridiomycota, unclassified_f__Didymellaceae, unclassified_f__Stachybotryaceae, and
unclassified_Mortierellomycota. Particularly, Allomyces, Fusarium, Fusicolla, Trichocladium,
and unclassified_f__Didymellaceae, showed a very significant correlation with cherry radish
growth and physiological indicators (p < 0.01). The common bacterial species (such
as, Cladorrhinum (Barrera et al., 2019), Fusarium (Yuan et al., 2020), Allomyces (Zhang,
Huang & Liu, 2013), and Clonostachys (Fournier et al., 2020) in the soil could decompose
the organic matter (wood vinegar), or wood vinegar could activate these bacteria to
enhance the absorption of nutrients by cherry radish, thus promoting the development of
its root system and ultimately boosting crop photosynthesis and yield. Studies have already
verified that Fusarium and Fusariumwere the main rhizosphere populations that promoted
rapeseed growth and resulted in a higher yield (Lay et al., 2018). Data showed that wood
vinegar stimulated the dominant microorganisms in the cherry radish rhizosphere, thus
increasing nutrient absorption and boosting yield.

CONCLUSIONS
In this study, the effects of wood vinegar on physiological indicators and rhizosphere
microbial community of cherry radish were studied through soil culture experiments.
The results indicated that within a certain concentration range of W50 to W200, cherry
radish yield gradually increased with rising wood vinegar concentration. Specifically, at
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Figure 6 Thermogram analysis of the correlation between fungi community and growth factors.Note:
* Significant correlation at 0.05 level, ** Very significant correlation at 0.01 level. *** Very significant cor-
relation at 0.001 level.

Full-size DOI: 10.7717/peerj.18505/fig-6

an application concentration of W200, the diameter, biomass, and yield of cherry radish
increased by 42.43%, 34.08%, and 44.91%, respectively. Furthermore, after applying
wood vinegar (W200), the maximum net photosynthetic rate of cherry radish leaves
reached 25.53 µm CO2/(m2

· s), exhibiting a similar growth trend as other photosynthetic
indicators. Although the optimal range for performance improvement has been established,
dilutions exceeding this range, such as W300 and W400, also exhibited better performance
than CK. In particular, for certain indicators, these higher dilutions (W300 and W400)
showed similar levels of improvement as theW200 concentration. The application of wood
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vinegar has been proven benefit the growth and reproduction of microbial communities.
Specific microorganisms, such as Allomyces, Fusarium, and Fusicolla, have been shown to
significantly enhance the growth of cherry radish (p< 0.01). The promoting effect may be
related to the increased soil microbial activity or enhanced nutrient uptake facilitated by
wood vinegar. Due to diverse range of biomass types and pyrolysis temperatures, further
research is needed to understand the effects of wood vinegar on the growth and yield of
cherry radish, as well as its potential benefits for other plants.
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