
A general-purpose virtualization service

for HPC on cloud computing:

an application to GPUs

R.Montella, G.Coviello, G.Giunta*

G. Laccetti#, F. Isaila, J. Garcia Blas°

*Department of Applied Science – University of Napoli Parthenope

° Department of Mathematics and Applications – University of Napoli Federico II

°Department of Computer Science – University of Madrid Carlos III

Outline

• Introduction and contextualization

• GVirtuS: Generic Virtualization Service

• GPU virtualization

• High performance cloud computing

• Who uses GVirtuS

• Conclusions and ongoing projects

Introduction and contextualization

• High Performance Computing

• Grid computing

• Many core technology

• GPGPUs

• Virtualization

• Cloud computing

High Performance Cloud Computing

• Hardware:

– High performance computing cluster

– Multicore / Multi processor computing nodes

– GPGPUs

• Software:

– Linux

– Virtualization hypervisor

– Private cloud management software

• +Special ingredients…

GVirtuS

• Generic Virtualization Service

• Framework for split-driver based abstraction components

• Plug-in architecture

• Independent form
– Hypervisor

– Communication

– Target of virtualization

• High performance:
– Enabiling transparent virtualization

– Wth overall performances not too far from un-virtualized
machines

Split-Driver approach

• Split-Driver

• Hardware access by priviledged

domain.

• Unpriviledged domains access the

device using a frontend/backhend

approach

• Frontend (FE):

• Guest-side software component.

• Stub: redirect requests to the

backend.

• Backend (BE):

• Mange device requests.

• Device multiplexing.

• Split-Driver

• Hardware access by priviledged

domain.

• Unpriviledged domains access the

device using a frontend/backhend

approach

• Frontend (FE):

• Guest-side software component.

• Stub: redirect requests to the

backend.

• Backend (BE):

• Mange device requests.

• Device multiplexing.

6

ApplictionAppliction

Wrap libraryWrap library

Frontend driverFrontend driver

Backend driverBackend driver

Interface libraryInterface library

Device driverDevice driver

DeviceDevice

CommunicatorCommunicator

U
n

p
ri

v
il

e
d

g
e

d
 D

o
m

a
in

P
ri

v
il

e
d

g
e

d
 D

o
m

a
in

R
e

q
u

e
st

s

GVirtuS approach

• GVirtuS Backend

• Server application

• Run in host user space

• Concurrent requests

• GVirtuS Backend

• Server application

• Run in host user space

• Concurrent requests
7

ApplictionAppliction

Wrap libraryWrap library

Frontend driverFrontend driver

Backend driverBackend driver

Interface libraryInterface library

Device driverDevice driver

DeviceDevice

CommunicatorCommunicator

U
n

p
ri

v
il

e
d

g
e

d
 D

o
m

a
in

P
ri

v
il

e
d

g
e

d
 D

o
m

a
in

R
e

q
u

e
st

s

• GVirtuS Frontend

• Dyinamic loadable library

• Same application binary interface

• Run on guest user space

• GVirtuS Frontend

• Dyinamic loadable library

• Same application binary interface

• Run on guest user space

The Communicator
• Provides a high performance communication

between virtual machines and their hosts.

• The choice of the hypervisor deeply affects the
efficiency of the communication.

Hypervisor FE/BE comm Notes

No hypervisor Unix Sockets Used for testing purposes

Generic TCP/IP Used for communication testing purposes, but interesting…

Xen XenLoop •runs directly on the top of the hardware through a custom Linux kernel

•provides a communication library between guest and host machines

•implements low latency and wide bandwidth TCP/IP and UDP connections

•application transparent and offers an automatic discovery of the supported

VMS

VMware Virtual Machine

Communication

Interface (VMCI)

•commercial hypervisor running at the application level.

•provides a datagram API to exchange small messages

•a shared memory API to share data,

•an access control API to control which resources a virtual machine can access

•and a discovery service for publishing and retrieving resources.

KVM/QEMU VMchannel •Linux loadable kernel module now embedded as a standard component

•supplies a high performance guest/host communication

•based on a shared memory approach.

An application: Virtualizing GPUs

• GPUs

– Hypervisor independent

– Communicator independent

– GPU independent

GVirtuS - CUDA

• Currently full threadsafe
support to

– CUDA drivers

– CUDA runtime

– OpenCL

• Partially supporting (it is
needed more work)

– OpenGL integration

GVirtuS – libcudard.so

#include <stdio.h>
#include <cuda.h>
int main(void) {

int n;
cudaGetDeviceCount(&n);
printf("Number of CUDA GPU(s): %d\n", n);
return 0;

}

#include <stdio.h>
#include <cuda.h>
int main(void) {

int n;
cudaGetDeviceCount(&n);
printf("Number of CUDA GPU(s): %d\n", n);
return 0;

}

Virtual Machine Real Machine

cudaError_t cudaGetDeviceCount(int *count) {
Frontend *f = Frontend::GetFrontend();
f->AddHostPointerForArguments(count);
f->Execute("cudaGetDeviceCount");
if(f->Success())

*count =
*(f->GetOutputHostPointer<int>());

return f->GetExitCode();
}

cudaError_t cudaGetDeviceCount(int *count) {
Frontend *f = Frontend::GetFrontend();
f->AddHostPointerForArguments(count);
f->Execute("cudaGetDeviceCount");
if(f->Success())

*count =
*(f->GetOutputHostPointer<int>());

return f->GetExitCode();
}

GVirtuS FrontendGVirtuS Frontend

GVirtuS BackendGVirtuS Backend

Result *handleGetDeviceCount(
CudaRtHandler * pThis,
Buffer *input_buffer) {

int *count = input_buffer->Assign<int>();
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);
return new Result(exit_code, out);

}

Result *handleGetDeviceCount(
CudaRtHandler * pThis,
Buffer *input_buffer) {

int *count = input_buffer->Assign<int>();
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);
return new Result(exit_code, out);

}

Process HandlerProcess Handler

11

Choices and Motivations

• We focused on VMware and KVM hypervisors.

• vmSocket is the component we have designed to obtain a high
performance communicator

• vmSocket exposes Unix Sockets on virtual machine instances
thanks to a QEMU device connected to the virtual PCI bus.

vmSocket

• Programming interface:
– Unix Socket

• Communication between

guest and host:
– Virtual PCI interface

– QEMU has been modified

• GPU based high performance

computing applications usually

require massive data transfer

between host (CPU) memory

and device (GPU) memory…

FE/BE interaction efficiency:

•there is no mapping between guest memory and device memory

•the memory device pointers are never de-referenced on the host side

•CUDA kernels are executed on the BE where the pointers are fully consistent.

FE/BE interaction efficiency:

•there is no mapping between guest memory and device memory

•the memory device pointers are never de-referenced on the host side

•CUDA kernels are executed on the BE where the pointers are fully consistent.

vmSocket: virtual PCI device

Performance Evaluation

• CUDA Workstation
– Genesis GE-i940 Tesla

– i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

– 1 nVIDIA Quadro FX5800 4Gb RAM video
card

– 2 nVIDIA Tesla C1060 4 Gb RAM

• The testing system:
– Ubuntu 10.04 Linux

– nVIDIA CUDA Driver, and the SDK/Toolkit
version 4.0.

– VMware vs. KVM/QEMU (using different
communicators).

GVirtuS-CUDA runtime performances

Hypervisor Comm. Histogram matrixMul scalarProd

0 Host CPU 100.00% 100.00% 100.00%

1 Host GPU 9.50% 9.24% 8.37%

2 Kvm CPU 105.57% 99.48% 106.75%

3 VM-Ware CPU 103.63% 105.34% 106.58%

4 Host Tcp/Ip 67.07% 52.73% 40.87%

5 Kvm Tcp/Ip 67.54% 50.43% 42.95%

6 VM-Ware Tcp/Ip 67.73% 50.37% 41.54%

7 Host AfUnix 11.72% 16.73% 9.09%

8 Kvm vmSocket 15.23% 31.21% 10.33%

9 VM-Ware vmcl 28.38% 42.63% 18.03%

Evaluation:

CUDA SDK benchmarks

Computing times as Host-CPU rate

Results:

•0: No virtualization, no

accleration (blank)

•1: Acceleration without

virtualization (target)

•2,3: Virtualization with no

acceleration

•4...6: GPU acceleraion, Tcp/Ip

communication ⇒ Similar

performances due to

communication overhead

•7: GPU acceleration using

GVirtuS, Unix Socket based

communication

•8,9: GVirtuS virtualization

⇒Good performances, no so far

from the target

⇒4..6 better performances than 0

Distributed GPUs
Hilights:

•Using theTcp/Ip

Communicator FE/BE could be

on different machines.

•Real machines can access

remote GPUs.

Applications:

•GPU for embedded systems as

network machines

•High Performance Cloud

Computing

CUDA

Application

Frontend

Guest VM

Linux

Hypervisor

CUDA

Application

Frontend

Host OS

Linux

CUDA

Application

Frontend

Guest VM

Linux

Backend

CUDA

Runtime

Driver

Host OS

Linux

Backend

CUDA

Runtime

Driver

…

node02

node01

VMSocket

UNIX Socket

Inter node load balanced

Inter node among VMs

Inter node

tcp/ip?

Security?

Compression?

High Performance Cloud Computing
• Ad hock performance test for

benchmarking

• Virtual cluster on local computing

cloud

• Benchmark:

– Matrix-matrix multiplication

– 2 parallelims levels: distributed

memory and GPU

• Results:

⇒⇒⇒⇒Virtual nodes with just CPUs

⇒⇒⇒⇒Better performances with virtual

nodes GPUs equipped

⇒⇒⇒⇒2 nodes with GPUs perform better

than 8 nodes without virtual

acceleration.

matrixMul MPI+GPU

GVirtuS in the world

• GPU support to OpenStack cloud software

– Heterogeneous cloud computing
John Paul Walters et Al.
University of Southern California / Information Sciences Institute

– http://wiki.openstack.org/HeterogeneousGpuAcceleratorSupport

• HPC at NEC Labs of America in Princeton, University of
Missouri Columbia, Ohio State University Columbus

– Supporting GPU Sharing in Cloud Environments with a Transparent
Runtime Consolidation Framework

– Awarded as the best paper at HPDC2011

Download, taste, contribute!

• http://osl.uniparthenope.it/projects/gvirtus
GPL/LGPL License

Conclusions

• The GVirtuS generic virtualization and sharing
system enables thin Linux based virtual machines to
use hosted devices as nVIDIA GPUs.

• The GVirtuS-CUDA stack permits to accelerate
virtual machines with a small impact on overall
performance respect to a pure host/gpu setup.

• GVirtuS can be easily extended to other enabled
devices as high performance network devices

Ongoing projects

• Elastic Virtual Parallel File System

• MPI wrap for High Performance Cloud

Computing

• XEN Support (is a big challenge!)

Download

Try & Contribute!

