9th International Conference uu
Parallel Processing and Applied Jlf[.lthuu.ltlu .

‘ -
4
=t

X o
N T
i

e

-

PPAM 2011 ,-,-.u,,....m;‘:."::‘.‘if';:}:':
A general-purpose virtualization service
for HPC on cloud computing:
an application to GPUs

R.Montella, G.Coviello, G.Giunta*
G. Laccetti” F. Isaila, J. Garcia Blas®

*Department of Applied Science — University of Napoli Parthenope
° Department of Mathematics and Applications — University of Napoli Federico Il
’Department of Computer Science — University of Madrid Carlos IlI

Outline

Introduction and contextualization
GVirtuS: Generic Virtualization Service
GPU virtualization

High performance cloud computing
Who uses GVirtu$S

Conclusions and ongoing projects

Introduction and contextualization

 High Performance Computing
* Grid computing
* Many core technology

e GPGPUs
e Virtualization

* Cloud computing

amazoncom.
mmmmm

Applica

.

I simpleStorage Serice
Elastic Block Storage
Armazon lastic computing infrastracturs

High Performance Cloud Computing

neoWulf.00 - Architettura Software

Farallel
aoibware

Extra-light
rxercaLilr?ux [_I I—l

| — | —
virtual Machines

compiled by WHAC

6

Legenda

|_| CFU core . Memory

I SFGPU IScIid State Drive (Firmware

Virtual Comptting | [] Logir or
— Machine Node [] Grid
I:I Mode

Front-end
Mods

il
- Machine
= 2rd

= e xfra-light neal irnsx

Catalogue

el §

GVirtu$S

Generic Virtualization Service

Framework for split-driver based abstraction components
Plug-in architecture

Independent form

— Hypervisor

— Communication

— Target of virtualization

High performance:
— Enabiling transparent virtualization

— Wth overall performances not too far from un-virtualized
machines

Split-Driver approach

e Split-Driver
e Hardware access by priviledged
domain.
e Unpriviledged domains access the
device using a frontend/backhend
approach

 Frontend (FE):
e Guest-side software component.

e Stub: redirect requests to the
backend.

 Backend (BE):
e Mange device requests.
e Device multiplexing.

C
'©
g Appliction
o
©
o Wrap library
©
@
= .
g Frontend driver
o
C
)
Communicator
£
g Backend driver
(@)
a)
2 Interface library
51
<@
'S Device driver
a

Device

GVirtuS approach

Appliction
Wrap library

Frontend driver

k=
(©
S
o
(]
©
)
a0
©
R,
=
—
aQ
c
>

Communicator

Backend driver

Interface library

Device driver

Priviledged Domain

Device

The Communicator

Guest Host

CUDA Application

e Provides a high performance communication [1] e
. . . FrontEnd BackEnd => Rurts
between virtual machines and their hosts. \)| untime
]) Comunicators:
 The choice of the hypervisor deeply affects the
efficiency of the communication. v
VMSocket

No hypervisor Unix Sockets
Generic TCP/IP

Xen XenLoop
VMware Virtual Machine

Communication
Interface (VMCI)

KVM/QEMU VMchannel

Used for testing purposes
Used for communication testing purposes, but interesting...

eruns directly on the top of the hardware through a custom Linux kernel
eprovides a communication library between guest and host machines
simplements low latency and wide bandwidth TCP/IP and UDP connections
eapplication transparent and offers an automatic discovery of the supported
VMS

ecommercial hypervisor running at the application level.

eprovides a datagram API to exchange small messages

*a shared memory API to share data,

*an access control API to control which resources a virtual machine can access
*and a discovery service for publishing and retrieving resources.

eLinux loadable kernel module now embedded as a standard component
esupplies a high performance guest/host communication

An application: Virtualizing GPUs

e GPUs "
o ¥
— Hypervisor independent —

— Communicator independent NVIDIA.

— GPU independent

GVirtu$S - CUDA

[\TA \ (———
* Currently full threadsafe oo
t t X pplica IOI"IJ X) .
support to , x » —
. FrontEnd (1])
— CUDA drivers /== —
— CUDA runtime i
— OpenCL A
Hypervisor
. . o, o Host 05
e Partially supporting (it is Baddd | jnurkeme
needed more work) "con |
. . Runti
— OpenGL integration \& e
nVidia GPU Device

GVirtuS - libcudard.so

Virtual Machine

#include <stdio.h>
#include <cuda.h>
int main(void) {
int n;
cudaGetbDeviceCount(&n);
printf("Number CUDA GPU(s): %d\n", n);
return O;

GVirtuS Frontend

N

cudaError_t cudaGetDeviceCount(int *count)
Frontend *f = Frontend: :GetFrontend()
f->AddHostPointerForArguments (count
f->Execute("cudaGetDeviceCount");
if(f->Success())
*count =
*(f->GetOutputHostPointer<int>());
return f->GetExitCode();

Real Machine

GVirtuS Backend

Process Handler

A 4

N
Result *handleGetDeviceCount(

CudaRtHandler * pThis,

Buffer *input_buffer) {
int *count = input_buffer->Assign<int>(Q);
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);

return new Result(exit_code, out);
3 11

Hypervisor FE/BEComm OpenSrc Running as

—Xen Yep-loep Yes Kernel Mg
\WALV/IRY.VEYDN Arninlicatian Characthao hact NC Anac
v ivi L L™ I B f_\rlrl IIIIIIII 1 - TA — g LTI L e S e e B - — J
KVM/QEMU Loadable Kernel Module Shares the host OS ones

is the component we have designed to obtain a high
performance communicator

exposes Unix Sockets on virtual machine instances
thanks to a QEMU device connected to the virtual PCl bus.

* Programming interface:

— Unix Socket

e Communication between
guest and host: cudaMemcpy'HostToDevice

— Virtual PCl interface

— QEMU has been modified cudaMemcpy handler_cudaMemcpy
VMSocket

dst 1 dst

src -1 src

size - size

kind kind

FE/BE interaction efficiency:

*there is no mapping between guest memory and device memory

ethe memory device pointers are never de-referenced on the host side
*CUDA kernels are executed on the BE where the pointers are fully consistent.

Performance Evaluation

e CUDA Workstation
— Genesis GE-i940 Tesla

— i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

— 1 nVIDIA Quadro FX5800 4Gb RAM video
card

— 2 nVIDIA Tesla C1060 4 Gb RAM

 The testing system:
— Ubuntu 10.04 Linux

— nVIDIA CUDA Driver, and the SDK/Toolkit
version 4.0.

— VMware vs. KVM/QEMU (using different
communicators).

GVirtuS-CUDA runtime performances

Results:

*0: No virtualization, no
accleration (blank)

*1: Acceleration without
virtualization (target)

*2,3: Virtualization with no
acceleration

*4...6: GPU acceleraion, Tcp/Ip
communication = Similar
performances due to
communication overhead

*7: GPU acceleration using
GVirtuS, Unix Socket based

communication

*8,9: GVirtus virtualization

H
0
1
2
3
4
5
6
7
8
9

=Good performances, no so far
from the target
=4..6 better performances than 0

Evaluation:
CUDA SDK benchmarks

Hypervisor

Host
Host
Kvm
VM-Ware
Host
Kvm
VM-Ware
Host
Kvm

VM-Ware

Comm. Histogram
100.00%

9.50%

67.07%
67.54%
67.73%
11.72%

28.38%

matrixMul

100.00%
9.24%
99.48%

52.73%
50.43%
50.37%
16.73%

42.63%

Computing times as Host-CPU rate

scalarProd

100.00%
8.37%

40.87%
42.95%
41.54%

9.09%

18.03%

Distributed GPUs

Hilights: e ~\ e Y\ &> VMsocket
CUDA CUDA a UNIX Socket
(.,..) Inter node load balanced
'Using the-l-cp/l p Frontend Frontend Inter node among VMs
. A Inter node
Communicator FE/BE could be -
cp/ip?
on different machines. Comprassion?
*Real machines can access
remote GPUs. ,
&
[
CU[:Q :
Applications: i :
3
a
'.
*GPU for embedded systems as %, . node01
. e e e e e————————————— . S ———
network machines ode0a ‘0.’ o
—\ R
Backend
*High Performance Cloud HI(_’_St o
] Runti INUX
Computing —
Driver
U

High Performance Cloud Computing

 Ad hock performance test for
benchmarking

e Virtual cluster on local computing
cloud

Execution time in secondis)

e Benchmark:
— Matrix-matrix multiplication

— 2 parallelims levels: distributed
memory and GPU

e Results:

Execution time in second|s) (logarithrmic)

Input data size a=10")

GVirtuS in the world

e GPU support to OpenStack cloud software

— Heterogeneous cloud computing ..
John Paul Walters et Al. OpenStaCk
University of Southern California / Information Sciences Institute

— http://wiki.openstack.org/HeterogeneousGpuAcceleratorSupport

e HPC at NEC Labs of America in Princeton, University of
Missouri Columbia, Ohio State University Columbus

— Supporting GPU Sharing in Cloud Environments with a Transparent
Runtime Consolidation Framework

— Awarded as the best paper at HPDC2011

Download, taste, contribute!

About B Projects People Mailing!

UniParthenope Open Source Lab

.. only who writes ugly code doesn't want to show |

[MAR | gVirtus Pages
&co & ¥6 comments

About

A General Purpose GPU transparent s

virtualization component

gVirtus tries to fill the gap between in-house hosted computing clusters, equipped with GPGPUs
devices, and pay-for-use high performance wirtual clusters deployed wia public or private

Projects

Abstractinstrument

Code
computing clouds. gWirtuS alfows an instanced virtual machine to access GPGPUs in a transparent 5
way, with an overhead slightly greater than a real machine/CPCPU setwup. gVirtus Is hypervizar gyHTUE
independant, even it currently virtualizes nWIDiA CUDA based GPUs, it is not kimited to a specific Instaliation
brand technology. The performance of the components of gVirtus s assessed through a sulte of Downloads
tests in different deployment scenarios, such as providing GPGPU power to cfoud computing based Code
HPC clusters and sharing remaotely hosted GPGPUs among HPC nodes. JaClouk
Common pages Instaliation

F Downloads
* Instaliation

« [load Dooumentation and
owWnioads

Tutorials
Contacts Code
& Department of Applied Science (hitp: [/dsa.uniparthenope. it} Petroula
= Applied High-Performance Scientific Computing Research Laboratory Code
fhttp:/ fdsa.uniparthenope. it/Imnacp) Wi 3Uieilities
* University of Napoll Parthenope (http:/ /ww uniparthenope.it) Code
* Mailinglist: http:{ fosl.uniparthenope.it/ mailman flistinfogvirtus GradsSharp
+ Prof. Giufio Ciunta {giulio.giuvnta@uniparthe nope.it) Linge
* Dr. Raffaele Monteliz {raffaele. montella@uniparthenope.it) People
& Ciuseppe Agrillo {giuseppe.agrillo@uniparthenope i)
* Giuseppe Coviello {giuseppe.covielfo@uniparthenope.it) Recent Posts

laClouX beta-0.1
UniParthenope OpenSource Lab
Party: Tatk Schedule

e http://osl.uniparthenope.it/projects/gvirtus
GPL/LGPL License

Conclusions

e The GVirtuS generic virtualization and sharing
system enables thin Linux based virtual machines to
use hosted devices as nVIDIA GPUs.

 The GVirtuS-CUDA stack permits to accelerate
virtual machines with a small impact on overall
performance respect to a pure host/gpu setup.

e GVirtu$S can be easily extended to other enabled
devices as high performance network devices

Ongoing projects
e Elastic Virtual Parallel File System

e MPI wrap for High Performance Cloud
Computing

e XEN Support (is a big challenge!)

V O U JU LC

