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Introduction and contextualization

• High Performance Computing

• Grid computing

• Many core technology

• GPGPUs

• Virtualization

• Cloud computing



High Performance Cloud Computing

• Hardware:

– High performance computing cluster

– Multicore / Multi processor computing nodes

– GPGPUs

• Software:

– Linux

– Virtualization hypervisor

– Private cloud management software

• +Special ingredients…



GVirtuS

• Generic Virtualization Service

• Framework for split-driver based abstraction components

• Plug-in architecture

• Independent form
– Hypervisor

– Communication

– Target of virtualization

• High performance:
– Enabiling transparent virtualization

– Wth overall performances not too far from un-virtualized 
machines



Split-Driver approach

• Split-Driver 

• Hardware access by priviledged 

domain. 

• Unpriviledged domains access the 

device using a frontend/backhend 

approach

• Frontend (FE):

• Guest-side software component. 

• Stub: redirect requests to the 

backend. 

• Backend (BE):

• Mange device requests. 

• Device multiplexing.
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GVirtuS approach

• GVirtuS Backend 

• Server application

• Run in host user space

• Concurrent requests

• GVirtuS Backend 

• Server application

• Run in host user space

• Concurrent requests
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• GVirtuS Frontend

• Dyinamic loadable library

• Same application binary interface

• Run on guest user space

• GVirtuS Frontend
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• Run on guest user space



The Communicator
• Provides a high performance communication 

between virtual machines and their hosts.

• The choice of the hypervisor deeply affects the 
efficiency of the communication.

Hypervisor FE/BE comm Notes

No hypervisor Unix Sockets Used for testing purposes

Generic TCP/IP Used for communication testing purposes, but interesting…

Xen XenLoop •runs directly on the top of the hardware through a custom Linux kernel

•provides a communication library between guest and host machines

•implements low latency and wide bandwidth TCP/IP and UDP connections

•application transparent and offers an automatic discovery of the supported 

VMS

VMware Virtual Machine 

Communication 

Interface (VMCI)

•commercial hypervisor running at the application level.

•provides a datagram API to exchange small messages

•a shared memory API to share data,

•an access control API to control which resources a virtual machine can access

•and a discovery service for publishing and retrieving resources.

KVM/QEMU VMchannel •Linux loadable kernel module now embedded as a standard component 

•supplies a high performance guest/host communication 

•based on a shared memory approach.



An application: Virtualizing GPUs

• GPUs

– Hypervisor independent

– Communicator independent

– GPU independent



GVirtuS - CUDA

• Currently full threadsafe 
support to

– CUDA drivers

– CUDA runtime

– OpenCL

• Partially supporting (it is 
needed more work)

– OpenGL integration



GVirtuS – libcudard.so

#include <stdio.h>
#include <cuda.h>
int main(void) {

int n;
cudaGetDeviceCount(&n);
printf("Number of CUDA GPU(s): %d\n", n);
return 0;

}
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Virtual Machine Real Machine

cudaError_t cudaGetDeviceCount(int *count) {
Frontend *f = Frontend::GetFrontend();
f->AddHostPointerForArguments(count);
f->Execute("cudaGetDeviceCount");
if(f->Success())

*count = 
*(f->GetOutputHostPointer<int>());

return f->GetExitCode();
}
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GVirtuS FrontendGVirtuS Frontend

GVirtuS BackendGVirtuS Backend

Result *handleGetDeviceCount(
CudaRtHandler * pThis, 
Buffer *input_buffer) {

int *count = input_buffer->Assign<int>();
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);
return new Result(exit_code, out);

}

Result *handleGetDeviceCount(
CudaRtHandler * pThis, 
Buffer *input_buffer) {

int *count = input_buffer->Assign<int>();
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);
return new Result(exit_code, out);

}

Process HandlerProcess Handler
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Choices and Motivations

• We focused on VMware and KVM hypervisors.

• vmSocket is the component we have designed to obtain a high 
performance communicator

• vmSocket exposes Unix Sockets on virtual machine instances 
thanks to a QEMU device connected to the virtual PCI bus.

vmSocket



• Programming interface:
– Unix Socket

• Communication between 

guest and host:
– Virtual PCI interface

– QEMU has been modified

• GPU based high performance 

computing applications usually 

require massive data transfer 

between host (CPU) memory 

and device (GPU) memory…

FE/BE interaction efficiency:

•there is no mapping between guest memory and device memory

•the memory device pointers are never de-referenced on the host side

•CUDA kernels are executed on the BE where the pointers are fully consistent.

FE/BE interaction efficiency:

•there is no mapping between guest memory and device memory

•the memory device pointers are never de-referenced on the host side

•CUDA kernels are executed on the BE where the pointers are fully consistent.

vmSocket: virtual PCI device



Performance Evaluation

• CUDA Workstation
– Genesis GE-i940 Tesla

– i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

– 1 nVIDIA Quadro FX5800 4Gb RAM video 
card

– 2 nVIDIA Tesla C1060 4 Gb RAM

• The testing system: 
– Ubuntu 10.04 Linux

– nVIDIA CUDA Driver, and the SDK/Toolkit 
version 4.0. 

– VMware vs. KVM/QEMU (using different 
communicators).



GVirtuS-CUDA runtime performances

# Hypervisor Comm. Histogram matrixMul scalarProd

0 Host CPU 100.00% 100.00% 100.00%

1 Host GPU 9.50% 9.24% 8.37%

2 Kvm CPU 105.57% 99.48% 106.75%

3 VM-Ware CPU 103.63% 105.34% 106.58%

4 Host Tcp/Ip 67.07% 52.73% 40.87%

5 Kvm Tcp/Ip 67.54% 50.43% 42.95%

6 VM-Ware Tcp/Ip 67.73% 50.37% 41.54%

7 Host AfUnix 11.72% 16.73% 9.09%

8 Kvm vmSocket 15.23% 31.21% 10.33%

9 VM-Ware vmcl 28.38% 42.63% 18.03%

Evaluation:

CUDA SDK benchmarks

Computing times as Host-CPU rate

Results:

•0: No virtualization, no 

accleration (blank)

•1: Acceleration without 

virtualization (target)

•2,3: Virtualization with no 

acceleration

•4...6: GPU acceleraion, Tcp/Ip 

communication ⇒ Similar 

performances due to 

communication overhead

•7: GPU acceleration using 

GVirtuS, Unix Socket based 

communication

•8,9: GVirtuS virtualization

⇒Good performances, no so far 

from the target

⇒4..6 better performances than 0



Distributed GPUs
Hilights:

•Using theTcp/Ip 

Communicator FE/BE could be 

on different machines.

•Real machines can access 

remote GPUs.

Applications:

•GPU for embedded systems as 

network machines

•High Performance Cloud 

Computing
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High Performance Cloud Computing
• Ad hock performance test for 

benchmarking

• Virtual cluster on local computing 

cloud

• Benchmark:

– Matrix-matrix multiplication

– 2 parallelims levels: distributed 

memory and GPU

• Results:

⇒⇒⇒⇒Virtual nodes with just CPUs

⇒⇒⇒⇒Better performances with virtual 

nodes GPUs equipped

⇒⇒⇒⇒2 nodes with GPUs perform better 

than 8 nodes without virtual 

acceleration.

matrixMul MPI+GPU



GVirtuS in the world

• GPU support to OpenStack cloud software

– Heterogeneous cloud computing
John Paul Walters et Al.
University of Southern California / Information Sciences Institute

– http://wiki.openstack.org/HeterogeneousGpuAcceleratorSupport

• HPC at NEC Labs of America in Princeton, University of 
Missouri Columbia, Ohio State University Columbus

– Supporting GPU Sharing in Cloud Environments with a Transparent 
Runtime Consolidation Framework

– Awarded as the best paper at HPDC2011



Download, taste, contribute!

• http://osl.uniparthenope.it/projects/gvirtus
GPL/LGPL License



Conclusions

• The GVirtuS  generic virtualization and sharing 
system enables thin Linux based virtual machines to 
use hosted devices as nVIDIA GPUs.

• The GVirtuS-CUDA stack permits to accelerate 
virtual machines with a small impact on overall 
performance respect to a pure host/gpu setup.

• GVirtuS can be easily extended to other enabled 
devices as high performance network devices



Ongoing projects

• Elastic Virtual Parallel File System

• MPI wrap for High Performance Cloud 

Computing

• XEN Support (is a big challenge!)

Download

Try & Contribute!


