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Introduction and contextualization

 High Performance Computing
* Grid computing
* Many core technology

e GPGPUs
e Virtualization

* Cloud computing
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High Performance Cloud Computing
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GVirtu$S

Generic Virtualization Service

Framework for split-driver based abstraction components
Plug-in architecture

Independent form

— Hypervisor

— Communication

— Target of virtualization

High performance:
— Enabiling transparent virtualization

— Wth overall performances not too far from un-virtualized
machines



Split-Driver approach

e Split-Driver
e Hardware access by priviledged
domain.
e Unpriviledged domains access the
device using a frontend/backhend
approach

 Frontend (FE):
e Guest-side software component.

e Stub: redirect requests to the
backend.

 Backend (BE):
e Mange device requests.
e Device multiplexing.
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GVirtuS approach
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The Communicator

Guest Host

CUDA Application

e Provides a high performance communication [ 1] e
. . . FrontEnd BackEnd => Rurts
between virtual machines and their hosts. \ )| untime
] ) Comunicators:
 The choice of the hypervisor deeply affects the
efficiency of the communication. v
VMSocket

No hypervisor Unix Sockets
Generic TCP/IP

Xen XenLoop
VMware Virtual Machine

Communication
Interface (VMCI)

KVM/QEMU VMchannel

Used for testing purposes
Used for communication testing purposes, but interesting...

eruns directly on the top of the hardware through a custom Linux kernel
eprovides a communication library between guest and host machines
simplements low latency and wide bandwidth TCP/IP and UDP connections
eapplication transparent and offers an automatic discovery of the supported
VMS

ecommercial hypervisor running at the application level.

eprovides a datagram API to exchange small messages

*a shared memory API to share data,

*an access control API to control which resources a virtual machine can access
*and a discovery service for publishing and retrieving resources.

eLinux loadable kernel module now embedded as a standard component
esupplies a high performance guest/host communication



An application: Virtualizing GPUs

e GPUs "
o ¥
— Hypervisor independent —

— Communicator independent NVIDIA.

— GPU independent




GVirtu$S - CUDA
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GVirtuS - libcudard.so

Virtual Machine

#include <stdio.h>
#include <cuda.h>
int main(void) {
int n;
cudaGetbDeviceCount(&n);
printf("Number CUDA GPU(s): %d\n", n);
return O;

GVirtuS Frontend

N

cudaError_t cudaGetDeviceCount(int *count)
Frontend *f = Frontend: :GetFrontend()
f->AddHostPointerForArguments (count
f->Execute("cudaGetDeviceCount");
if(f->Success())
*count =
*(f->GetOutputHostPointer<int>());
return f->GetExitCode();

Real Machine

GVirtuS Backend

Process Handler

A 4

N
Result *handleGetDeviceCount(

CudaRtHandler * pThis,

Buffer *input_buffer) {
int *count = input_buffer->Assign<int>(Q);
cudaError_t exit_code;
exit_code = cudaGetDeviceCount(count);
Buffer *out = new Buffer();
out->Add(count);

return new Result(exit_code, out);
3 11




Hypervisor FE/BEComm OpenSrc Running as
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KVM/QEMU Loadable Kernel Module  Shares the host OS ones

is the component we have designed to obtain a high
performance communicator

exposes Unix Sockets on virtual machine instances
thanks to a QEMU device connected to the virtual PCl bus.




* Programming interface:

— Unix Socket

e Communication between
guest and host: cudaMemcpy'HostToDevice

— Virtual PCl interface

— QEMU has been modified cudaMemcpy handler_cudaMemcpy
VMSocket

dst 1 dst

src -1 src

size - size

kind kind

FE/BE interaction efficiency:

*there is no mapping between guest memory and device memory

ethe memory device pointers are never de-referenced on the host side
*CUDA kernels are executed on the BE where the pointers are fully consistent.




Performance Evaluation

e CUDA Workstation
— Genesis GE-i940 Tesla

— i7-940 2,93 133 GHz fsb, Quad Core hyper-
threaded 8 Mb cache CPU and 12Gb RAM.

— 1 nVIDIA Quadro FX5800 4Gb RAM video
card

— 2 nVIDIA Tesla C1060 4 Gb RAM

 The testing system:
— Ubuntu 10.04 Linux

— nVIDIA CUDA Driver, and the SDK/Toolkit
version 4.0.

— VMware vs. KVM/QEMU (using different
communicators).




GVirtuS-CUDA runtime performances

Results:

*0: No virtualization, no
accleration (blank)

*1: Acceleration without
virtualization (target)

*2,3: Virtualization with no
acceleration

*4...6: GPU acceleraion, Tcp/Ip
communication = Similar
performances due to
communication overhead

*7: GPU acceleration using
GVirtuS, Unix Socket based

communication

*8,9: GVirtus virtualization

H
0
1
2
3
4
5
6
7
8
9

=Good performances, no so far
from the target
=4..6 better performances than 0

Evaluation:
CUDA SDK benchmarks

Hypervisor

Host
Host
Kvm
VM-Ware
Host
Kvm
VM-Ware
Host
Kvm

VM-Ware

Comm. Histogram
100.00%

9.50%

67.07%
67.54%
67.73%
11.72%

28.38%

matrixMul

100.00%
9.24%
99.48%

52.73%
50.43%
50.37%
16.73%

42.63%

Computing times as Host-CPU rate

scalarProd

100.00%
8.37%

40.87%
42.95%
41.54%

9.09%

18.03%




Distributed GPUs
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High Performance Cloud Computing

 Ad hock performance test for
benchmarking

e Virtual cluster on local computing
cloud

Execution time in secondis)

e Benchmark:
— Matrix-matrix multiplication

— 2 parallelims levels: distributed
memory and GPU

e Results:

Execution time in second|s) (logarithrmic)

Input data size a=10")




GVirtuS in the world

e GPU support to OpenStack cloud software

— Heterogeneous cloud computing ..
John Paul Walters et Al. OpenStaCk
University of Southern California / Information Sciences Institute

— http://wiki.openstack.org/HeterogeneousGpuAcceleratorSupport

e HPC at NEC Labs of America in Princeton, University of
Missouri Columbia, Ohio State University Columbus

— Supporting GPU Sharing in Cloud Environments with a Transparent
Runtime Consolidation Framework

— Awarded as the best paper at HPDC2011



Download, taste, contribute!
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Conclusions

e The GVirtuS generic virtualization and sharing
system enables thin Linux based virtual machines to
use hosted devices as nVIDIA GPUs.

 The GVirtuS-CUDA stack permits to accelerate
virtual machines with a small impact on overall
performance respect to a pure host/gpu setup.

e GVirtu$S can be easily extended to other enabled
devices as high performance network devices



Ongoing projects
e Elastic Virtual Parallel File System

e MPI wrap for High Performance Cloud
Computing

e XEN Support (is a big challenge!)
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