

Prime Implicate Generation in Equational Logic

Mnacho Echenim Nicolas Peltier Sophie Tourret

Grenoble Informatics Laboratory Max Planck Institute for Informatics

July 18th, 2018

Motivations

Abduction: search for explanations

Theory, $Hyp \models Obs \Leftrightarrow Theory, \neg Obs \models \neg Hyp$

Implicate = consequence Prime Implicate (PI) = most general consequence

Goal

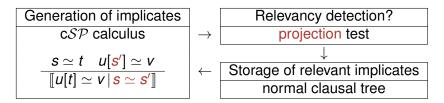
Generate all PI of formulæ in equational logic.

Why equational logic?

- Many results available in propositional logic.
- Few practical results available in more expressive logics.
- Equality required for many applications (e.g. verification).

General approach

Given an input formula in CNF:



Conclusion

Dealing with the equality predicate

Propositional logic: entailment = inclusion

$$\neg A \lor D \models \neg A \lor \neg B \lor \neg C \lor F \lor D$$

ground equational clauses built on constants and functions

Example: $e \not\simeq b \lor b \not\simeq c \lor f(a) \simeq f(b)$

Main challenge: the transitivity and substitutivity axioms

Equational logic: entailment \neq inclusion

$$e \not\simeq c \lor a \simeq c \models e \not\simeq b \lor b \not\simeq c \lor f(a) \simeq f(b)$$

Solution: projection test!

Experimental results

Benchmarks:

B1	B2
random	random
without function symbols	with function symbols

B1 cSP_flat < Zres [Simon & Del Val, 2001] B2

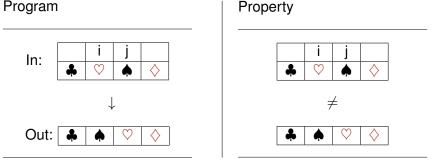
$\texttt{cSP} < \texttt{cSP_flat} < \texttt{Zres} < \texttt{SOLAR} \ [\texttt{Nabeshima et al., 2010}]$

Examples of applications

- Bug finding
- Ontology explanation
- Knowledge base consequences
- Query on an incomplete knowledge graph

Tests and Potential Applications

Bug finding example Program



Counter-examples: i = j = 1, i = 1, j = 2

Abduction: $i \simeq j \lor \operatorname{cell}(i) \simeq \operatorname{cell}(j)$

Results

Theory

correctness proofs for $c\mathcal{SP}$ and redundancy deletion algorithms

Implementation

prototypes better than the state of the art

Publications

- 3 workshops [IWS12, ADDCT14, PAAR14]
- 3 conferences [IJCAI13, IJCAR14, CADE15]
- 1 journal [JAIR17]

Future work

- Extension of redundancy detection to handle variables.
- Implementation in an efficient inference engine.
- Extension to theories in an SMT fashion [IJCAR18].

Thank you for your attention.

