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Abstract

In [7] Chvátal raised a question, whether there is a finite constant 𝑡 such
that every 𝑡-tough graph contains a hamiltonian cycle. Despite some re-
sults were presented on this topic, the answer remains unknown. Moreover
it is also unknown, whether for some 𝑡 every 𝑡-tough graph contains an
𝑟-trestle. This thesis shows the relations among the hamiltonian cycle,
the 𝑟-trestle and the toughness of a graph and how the relations change
considering general graphs, chordal graphs and planar graphs. Some other
relations dealing with generalizing hamiltonicity, the toughness of a graph
and also the hamiltonicity and forbidden subgraphs are mentioned.

As the original results we present chordal graphs and chordal planar
graphs with high toughness and no 𝑟-trestle. These graphs improves the
upper bound on the shortness exponent of the class of 1-tough chordal
planar graphs shown in [13]. We also present a sufficient condition on
forbidden subgraphs for a graph to have an 𝑟-trestle.
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Abstrakt

Jedna z nezodpovězených otázek, na téma hamiltonovskosti a tuhosti
grafu, je otázka, kterou vyslovil Chvátal v článku [7]. Existuje taková kon-
stanta t, že každý t-tuhý graf je hamiltonovský? Bez odpovědi zůstává
také otázka, zda existuje takové 𝑡, že každý 𝑡-tuhý graf obsahuje 𝑟-trestle.
V této práci ukážeme různé souvislosti mezi hamiltonovskými kružnicemi,
𝑟-trestly a tuhostí grafu. Budeme sledovat, jak se tyto souvislosti mění,
pokud namísto obecných grafů uvažujeme chordální grafy nebo rovinné
grafy. Zmíníme další možná zobecnění hamiltonovských kružnic a jejich
vzájemné vztahy, a v neposlední řadě také souvislost hamiltonovských
kružnic a 𝑟-trestlů se zakázanými podgrafy.

Práce obsahuje nové výsledky související s touto problematikou. Kon-
krétně jsou to chordální grafy a chordální rovinné grafy s relativně velkou
tuhostí, které nemají 𝑟-trestle. Tyto grafy dávají horní odhad pro short-
ness exponent třídy 1-tuhých chordálních rovinných grafů. Tento výsledek
vylepšuje horní odhad publikovaný v článku [13]. Ukážeme také dvojici
zakázaných podgrafů, která zajistí, že daný graf má 𝑟-trestle.

Klíčová slova

hamiltonovská kružnice, 𝑟-trestle, tuhost, chordální grafy, rovinné grafy,
shortness exponent, zakázané podgrafy
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Chapter 1
Introduction

1.1 Goals of the thesis

The thesis deals with hamiltonian properties of a graph, mainly a hamil-
tonian cycle and an 𝑟-trestle. We show how these properties cohere with
toughness and connectivity of a graph. We also mention the relations with
forbidden subgraphs and the relations with some other generalizations of
hamiltonicity.

The two main goals of the thesis are

∙ to depict in detail the relations among toughness of a graph and its
hamiltonian properties.

∙ to present original results on this topic.

We cite results dealing with these topics and discuss them to make a
detail picture of the issue. In order to provide a closer look into the issue
we state a number of propositions which help to understand the used terms
and the relations among the cited results.

In Chapter 1 we show several ways of generalizing hamiltonian cy-
cle and the relations among them. In Chapter 2 we mention some ma-
jor results dealing with hamiltonian graphs and graphs with an 𝑟-trestle.
Also some results considering toughness and connectivity of a graph are
shown. Chapter 3 is the main chapter of the thesis. We consider general
graphs, chordal graphs and planar graphs and show the relationship among
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1. Introduction

hamiltonian properties and toughness and connectivity in these classes of
graphs. Finally, in Chapter 4 some results dealing with forbidden graphs
and hamiltonicity are mentioned.

As the original results we present chordal graphs and chordal planar
graphs with high toughness and no 𝑟-trestle. We also present a sufficient
condition on forbidden subgraphs for a graph to have an 𝑟-trestle. In par-
ticular, Bauer, Broersma and Veldman in [5] constucted nonhamiltonian
graphs with toughness arbitrary close to 9

4
and nonhamiltonian chordal

graphs with toughness arbitrary close to 7
4
. In [18] Teska and Kužel ob-

tained graphs with toughness greater than 1 and no 𝑟-trestle. In Theorem
3.13 we present chordal graphs with toughness greater than 1 and no 𝑟-
trestle.

Böhme, Harant and Tkáč in [13] showed that every chordal planar
graph with toughness greater than 1 is hamiltonian. In order to show
that there exists a nonhamiltonian 1-tough chordal planar graph they also
showed in [13] that the shortness exponent of the class of 1-tough chordal
planar graphs is at most log9 8. In Theorem 3.27 we show there are 1-
tough chordal planar graphs which do not even have any r-trestle. These
graphs also improves the upper bound on the shortness exponent of the
class of 1-tough chordal planar graphs, showing the shortness exponent of
this class is at most 1

2
.

Gao in [25] showed that every 3-connected planar graph has a 6-trestle.
As a corollary of this result every planar graph with toughness greater than
1 has a 6-trestle. By Theorem 3.27 the result in this corollary is the best
possible.

Goodman and Hedetniemi in [30] showed that every 2-connected (𝐾1,3, 𝑍1)-
free graph is hamiltonian. In Theorem 4.6 we present an extension of this
result, showing every 2-connected (𝐾1,𝑟, 𝑍1)-free graph has an (𝑟 − 1)-
trestle.

1.2 Basic definitions

All graphs considered in this thesis are finite undirected graphs with nei-
ther loops nor multiple edges.

A graph is a pair 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) consisting of a nonempty finite set
𝑉 (𝐺) and a set 𝐸(𝐺) which is a set of different 2-element subsets of 𝑉 (𝐺).
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1.2. Basic definitions

We say the elements of 𝑉 (𝐺) are vertices and the elements of 𝐸(𝐺) are
edges of the graph 𝐺, |𝑉 (𝐺)| and |𝐸(𝐺)| denote the number of vertices
and the number of edges. Let 𝑢, 𝑣 ∈ 𝑉 (𝐺) and let an edge be a 2-element
subset containg 𝑢 and 𝑣, we denote the edge 𝑢𝑣 ∈ 𝐸(𝐺), we say vertices
𝑢, 𝑣 are adjacent in the graph 𝐺. We denote 𝑁(𝑣) the set of all vertices
adjacent to vertex 𝑣. We say the integer |𝑁(𝑣)| is a degree of vertex 𝑣

denoted 𝑑(𝑣). Let 𝑣 be a vertex such that 𝑑(𝑣) = |𝑉 (𝐺)|−1 we say 𝑣 is an
universal vertex of the graph 𝐺. The integer 𝛿(𝐺) is the minimum degree
of the graph 𝐺, ∆(𝐺) is the maximum degree of 𝐺

𝛿(𝐺) = min
𝑣∈𝑉 (𝐺)

(𝑑(𝑣)),

∆(𝐺) = max
𝑣∈𝑉 (𝐺)

(𝑑(𝑣)).

Let G = (𝑉 (𝐺), 𝐸(𝐺)) and 𝐺0 = (𝑉 (𝐺0), 𝐸(𝐺0)) be two graphs. If
𝑉 (𝐺0) ⊂ 𝑉 (𝐺) and 𝐸(𝐺0) ⊂ 𝐸(𝐺), we say the graph 𝐺0 is a subgraph of
the graph 𝐺 or the graph 𝐺 contains the graph 𝐺0 or just 𝐺 has 𝐺0. If 𝐺0

is a subgraph of 𝐺 such that an edge 𝑢𝑣 ∈ 𝐸(𝐺0) if and only if 𝑢𝑣 ∈ 𝐸(𝐺)

we say 𝐺0 is an induced subgraph of 𝐺, we say the subgraph 𝐺0 is induced
by vertices 𝑉 (𝐺0). If 𝐺0 is a subgraph of 𝐺 and 𝑉 (𝐺0) = 𝑉 (𝐺), we say
𝐺0 is a spanning subgraph of 𝐺.

Let G = (𝑉 (𝐺), 𝐸(𝐺)) and 𝐺0 = (𝑉 (𝐺0), 𝐸(𝐺0)) be two graphs. Let
𝜙 be a a bijection 𝜙 : 𝑉 (𝐺) → 𝑉 (𝐺0) such that 𝑢𝑣 ∈ 𝐸(𝐺) if and only
if 𝜙(𝑥)𝜙(𝑦) ∈ 𝐸(𝐺0). We say 𝜙 is an isomorphism, the graphs 𝐺 and
𝐺0 are isomorphic, denoted 𝐺 = 𝐺0. Let F be a class of graphs F =

{𝐻1, 𝐻2, ..., 𝐻𝑘}. We say a graph G is F-free or (𝐻1, 𝐻2, ..., 𝐻𝑘)-free if the
graph 𝐺 contains no induced subgraph isomorphic to any of the graphs
𝐻1, 𝐻2, ..., 𝐻𝑘. In particular, for F = {𝐻} we say the graph 𝐺 is 𝐻-free.
The graphs 𝐻1, 𝐻2, ..., 𝐻𝑘 are called forbidden subgraphs.

Let us mention the notation we will use. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be
a graph, by 𝐺 − 𝑢𝑣 we mean the graph (𝑉 (𝐺), 𝐸(𝐺) − 𝑢𝑣). Similary
𝐺 ∪ 𝑢𝑣 = (𝑉 (𝐺), 𝐸(𝐺) ∪ 𝑢𝑣). Let 𝑉1, 𝑉2 be subsets of 𝑉 (𝐺) and 𝐺 − 𝑉1

denotes the subgraph of 𝐺 induced by vertices 𝑉 (𝐺)−𝑉1, 𝑉1 ∪𝑉2 denotes
the subgraph of 𝐺 induced by vertices 𝑉1 ∪ 𝑉2.

Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph. Let 𝑉 (𝐺) = {𝑣1, 𝑣2, ..., 𝑣𝑛} and let
𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, ..., 𝑣𝑛−1𝑣𝑛}, we say 𝐺 is a path from 𝑣1 to 𝑣𝑛, denoted
𝑣1𝑣2...𝑣𝑛 or 𝑃𝑛. Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph |𝑉 (𝐺)| > 2. Let
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1. Introduction

𝑉 (𝐺) = {𝑣1, 𝑣2, ..., 𝑣𝑛} and let 𝐸(𝐺) = {𝑣1𝑣2, 𝑣2𝑣3, ..., 𝑣𝑛−1𝑣𝑛, 𝑣𝑛𝑣1}, we
say 𝐺 is a cycle, denoted 𝐶𝑛, integer 𝑛 is the length of the cycle 𝐶𝑛.

Let Σ be a class of graphs, denote 𝑐(𝐻) the length of the longest cycle
in the graph 𝐻. The shortness exponent 𝜎(Σ) of the class of graphs Σ is
defined as follows.

𝜎(Σ) = lim inf
𝐻𝑛⊂Σ

log 𝑐(𝐻𝑛)

log |𝑉 (𝐻𝑛)|
,

where the lim inf is taken over all sequences of graphs 𝐻𝑛 ⊂ Σ such that
|𝑉 (𝐻𝑛)| → ∞ as 𝑛 → ∞.

Let 𝐺 be a graph, such that for each pair 𝑢, 𝑣 ∈ 𝑉 (𝐺), 𝑢𝑣 ∈ 𝐸(𝐺), we
say 𝐺 is a complete graph. We denote the complete graph 𝐾𝑛, 𝑛 = |𝑉 (𝐺)|.
If a graph 𝐺 is not a complete graph, we say 𝐺 is a non-complete graph.
Let 𝐺 be a graph and 𝐺0 its subgraph such that 𝐺0 is a complete graph,
we say 𝐺0 is a clique. Let 𝑣 be a vertex such that 𝑁(𝑣) is a clique, we say
𝑣 is a simplicial vertex.

Let 𝐺1 be a graph, we say the graph 𝐺1 has a perfect elimination
ordering, if there exists an ordering (𝑣1, 𝑣2, ..., 𝑣|𝑉 (𝐺1)|) of vertices of the
graph 𝐺1 such that 𝑣1 is a simplicial vertex of the graph 𝐺1, and for
𝑖 = 2, 3, ..., |𝑉 (𝐺1)| denote the graph 𝐺𝑖 = 𝐺𝑖−1−𝑣𝑖−1 and 𝑣𝑖 is a simplicial
vertex of the graph 𝐺𝑖.

Let 𝐺 be a graph. If there exists a partition of 𝑉 (𝐺) into two subsets
𝑉1 and 𝑉2 such that 𝑉 (𝐺) = 𝑉1∪𝑉2 and 𝑉1∩𝑉2 = ∅ and if 𝐸(𝐺) ⊂ 𝑉1×𝑉2,
then we say 𝐺 is a bipartite graph. We say the sets 𝑉1 and 𝑉2 are partities
of the graph 𝐺. A bipartite graph 𝐺 such that 𝐸(𝐺) = 𝑉1 × 𝑉2 is called
a complete bipartite graph. We denote 𝐾𝑚,𝑛 the complete bipartite graph
with |𝑉1| = 𝑛 and |𝑉2| = 𝑚. We denote 𝑆(𝐾1,𝑟) a subdivision of the graph
𝐾1,𝑟, formed by inserting a vertex of degree 2 on each edge of 𝐾1,𝑟.

We say that a graph 𝐺 is connected if for every pair of vertices 𝑢 and
𝑣, 𝐺 contains a path from 𝑢 to 𝑣. We say that a graph 𝐺 is k-connected if
for every pair of vertices 𝑢 and 𝑣, 𝐺 contains a 𝑘 paths from 𝑢 to 𝑣, such
that no two of these paths contain a common edge. The maximal integer
𝜅(𝐺) such that a graph 𝐺 is 𝜅(𝐺)-connected is called the connectivity of
the graph 𝐺. We say that a graph 𝐺 is locally connected if for every
𝑣 ∈ 𝑉 (𝐺), 𝑁(𝑣) is a connected graph. If 𝐺 is a connected graph and a
subgraph 𝐺−𝑢𝑣 is not a connected graph, we say the edge 𝑢𝑣 is a bridge.
A maximal connected subgraph of the graph 𝐺 is called a component of
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1.2. Basic definitions

G. Denote 𝜔(𝐺) the number of components of the graph 𝐺. Let 𝐺 be a
non-complete graph and let

𝜏(𝐺) = min
𝑆⊂𝑉 (𝐺)

(
|𝑆|

𝜔(𝐺− 𝑆)
),

such that 𝜔(𝐺 − 𝑆) ≥ 2. For a complete graph 𝐾𝑛 let 𝜏(𝐾𝑛) = ∞. The
number 𝜏(𝐺) is the toughness of the graph 𝐺. For 𝑡 ≤ 𝜏(𝐺) we say the
graph is 𝑡-tough.

A tree is a connected graph that contains no cycle. A spanning tree
is a spanning subgraph which is a tree. A walk (of length k) in a graph
𝐺 is a non-empty alternating sequence 𝑣1𝑒1𝑣2𝑒2...𝑒𝑘−1 such that for 𝑖 =

1, 2, ..., 𝑘 − 1, 𝑣𝑖, 𝑣𝑘 ∈ 𝑉 (𝐺) and 𝑒𝑖,∈ 𝐸(𝐺) and 𝑒𝑖 = 𝑣𝑖𝑣𝑖+1. If 𝑣1 = 𝑣𝑘 we
call this sequence a closed walk. A spanning walk is a walk that contains
every vertex of the graph 𝐺. Let 𝑘 ≥ 1 be an integer, the complete graph
𝐾𝑘 is the smallest 𝑘-tree, and a graph 𝐺 is a 𝑘-tree if and only if it contains
a simplicial vertex 𝑣 with degree 𝑘 such that 𝐺 − 𝑣 is a 𝑘-tree. Clearly,
1-trees are just trees.

Let 𝐺 = (𝑉 (𝐺), 𝐸(𝐺)) be a graph and let 𝐹 be a set of different 2-
element subsets of 𝑉 (𝐺) such that 𝑢𝑣 ∈ 𝐹 if and only if there exists a
vertex 𝑥 ∈ 𝑉 (𝐺) such that 𝑢 ∈ 𝑁(𝑥) and 𝑣 ∈ 𝑁(𝑥). We say the graph
𝐺2 = (𝑉 (𝐺), 𝐸(𝐺) ∪ 𝐹 ) is the square of the graph 𝐺. We say the graph
𝐺 is a 𝑘-regular graph if 𝑑(𝑣) = 𝑘 for every 𝑣 ∈ 𝑉 (𝐺). Let 𝐺 be a graph,
such that if an induced subgraph 𝑆 of 𝐺 is a cycle, then 𝑆 = 𝐶3, we say
𝐺 is a chordal graph. Let {𝐼1, 𝐼2, ..., 𝐼𝑛} be the set of real intervals. Let
𝐺 be a graph, 𝑉 (𝐺) = {𝑣1, 𝑣2, ..., 𝑣𝑛} such that 𝑣𝑖𝑣𝑗 ∈ 𝐸(𝐺) if and only
if 𝐼𝑖 𝐼𝑗 ̸= ∅, 𝑖 ̸= 𝑗, we say 𝐺 is an interval graph. Let 𝐺 be a graph, if
𝐺 can be drawn on the plane in such a way that no two edges meet in a
point other than a common vertex, then we say 𝐺 is a planar graph. Let
𝐺 be a planar graph, we say 𝐺 is a maximal planar graph if for every pair
𝑢, 𝑣 ∈ 𝑉 (𝐺) such that 𝑢𝑣 ̸∈ 𝐸(𝐺) the graph 𝐺0 = (𝑉 (𝐺), 𝐸(𝐺) ∪ 𝑢𝑣) is
not planar.

We define only terms that are further used in this thesis. More defini-
tions can be found in [1].
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1. Introduction

1.3 Generalizing hamiltonicity

There are several ways of generalizing hamiltonian cycle. In this section
we define some of them, show how they generalize the hamiltonian cycle
and show the relations among them.

1.3.1 Various generalizations

A hamiltonian cycle is a spanning subgraph which is a cycle, a hamiltonian
path is a spanning subgraph which is a path. If a graph 𝐺 contains a
hamiltonian cycle, we say 𝐺 has a hamiltonian cycle or 𝐺 is hamiltonian.
If a graph 𝐺 contains a hamiltonian path, we say 𝐺 is traceable. Otherwise
we say 𝐺 is nonhamiltonian or nontraceable. An 𝑟-trestle is a 2-connected
spanning subgraph with maximum degree at most 𝑟. If a graph 𝐺 contains
an 𝑟-trestle, we say 𝐺 has an 𝑟-trestle or 𝐺 is the graph with an 𝑟-trestle.
A 2-trestle is exactly a hamiltonian cycle. Refering to the fact whether a
graph has a hamiltonian cycle or an 𝑟-trestle we will also use the words
hamiltonicity and hamiltonian properties.

A 𝑘-factor is a 𝑘-regular spanning subgraph. A hamiltonian cycle is a
special case of a 2-factor, such that the 2-factor consists of 1 component.
A k-walk is a closed spanning walk which enters every vertex of a graph at
most 𝑘 times. A 1-walk is exactly a hamiltonian cycle. A spanning 𝑘-tree
is a spanning tree with maximum degree at most 𝑘. The spanning 2-tree
is exactly the hamiltonian path. Notice that in this section spanning 𝑘-
tree always means a spanning tree with maximum degree at most 𝑘. In
Chapter 3 we will also mention k-trees. Those 𝑘-trees in Chapter 3 are
entirely different graphs from the spanning 𝑘-trees mentioned here.

1.3.2 Relations among generalizations

Let 𝐺 be a graph which has an 𝑟-trestle 𝑇 . By definition the graph 𝑇 is
a 2-connected spanning subgraph of the graph 𝐺 and ∆(𝑇 ) ≤ 𝑟. Clearly,
∆(𝑇 ) ≤ 𝑟 + 1, so the graph 𝑇 is also an (𝑟 + 1)-trestle of the graph 𝐺.

Proposition 1.1 Let 𝐺 be a graph which has an 𝑟-trestle. Then the
graph 𝐺 has an (𝑟 + 1)-trestle.
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1.3. Generalizing hamiltonicity

Or less formally, by Proposition 1.1 we have the following chain of impli-
cations.

2-trestle (hamiltonian cycle) ⇒ 3-trestle ⇒ 4-trestle ⇒ ...

Similary, if a graph has a 𝑘-walk it also has a (𝑘 + 1)-walk, if a graph
contains a spanning 𝑘-tree it contains a spanning (𝑘 + 1)-tree as well.
Jackson and Wormald in [32] showed the following relation between a 𝑘-
walk and spanning 𝑘-tree.

Theorem 1.2 [32]
(1) If 𝐺 contains a spanning 𝑘-tree, then G has a 𝑘-walk.
(2) If 𝐺 has a 𝑘-walk, then 𝐺 contains a spanning (𝑘 + 1)-tree.

1-walk (hamiltonian cycle) ⇒ spanning 2-tree (hamiltonian path) ⇒
⇒ 2-walk ⇒ spanning 3-tree ⇒ 3-walk ⇒ ...

The following result was performed by Kaiser, Kužel, Li and Wang in
[33].

Theorem 1.3 [33] Let 𝐺 be a graph such that 𝐺 contains no bridge.
Then 𝐺 has a ⌈Δ(𝐺)+1

2
⌉-walk.

Let 𝐺 be a graph which has an 𝑟-trestle 𝑇 . The graph 𝑇 is 2-connected,
so it contains no bridge. By Theorem 1.3 the graph 𝑇 has an ⌈ 𝑟+1

2
⌉-walk.

The graph 𝑇 is a spanning subgraph of the graph 𝐺, so the graph 𝐺 has
an ⌈ 𝑟+1

2
⌉-walk.

𝑟-trestle ⇒ ⌈ 𝑟+1
2
⌉-walk

Jackson and Wormald in [32] also showed a necessary condition on
toughness for a graph to have a 𝑘-walk.

Theorem 1.4 [32] If 𝐺 has a 𝑘-walk, then G is 1
𝑘
-tough

Notice that every graph with a spanning 𝑘-tree by Theorem 1.2 has a
𝑘-walk, so the necessary condition in Theorem 1.4 holds for a spanning 𝑘-
tree. A similar necessary condition for an 𝑟-trestle is mentioned in Section
3.1. The following result was obtained by Win in [35]

9



1. Introduction

Theorem 1.5 [35] If 𝐺 is connected, 𝑘 ≥ 2 and for any subset 𝑆 of
𝑉 (𝐺), 𝜔(𝐺− 𝑆) ≤ (𝑘 − 2)|𝑆| + 2, then 𝐺 has a spanning 𝑘-tree.

For 𝑘 ≥ 3 let 𝐺 be a 1
𝑘−2

-tough graph, so 𝐺 is a connected graph. By
definition of toughness 𝜔(𝐺−𝑆) ≤ (𝑘−2)|𝑆| for every 𝑆 ⊂ 𝑉 (𝐺) such that
𝜔(𝐺− 𝑆) ≥ 2. Hence 𝜔(𝐺− 𝑆) ≤ (𝑘− 2)|𝑆|+ 2, for every 𝑆 ⊂ 𝑉 (𝐺). By
putting together Theorems 1.5 and 1.2 the following corollary is obtained.

Corollary 1.6 For 𝑘 ≥ 3 let 𝐺 be a 1
𝑘−2

-tough graph, then the graph 𝐺

has a spanning 𝑘-tree and a 𝑘-walk.

Ellingham and Zha in [21] showed the following.

Theorem 1.7 [21] Every 4-tough graph has a 2-walk.

In this thesis we focus on hamiltonian cycles and 𝑟-trestles, we will
also see a couple of results considering a 2-factor. Since toughness ensures
some properties similar to hamiltonicity, it is reasonable to ask whether
certain toughness of a graph ensures the graph has a hamiltonian cycle,
or whether for given 𝑟 the graph has an 𝑟-trestle. For general graphs
the answer is unknown. Yet some relations among toughness hamiltonian
cycle and 𝑟-trestle are known, as we will see further on in the thesis. First
of all, let us have a look on toughness and hamiltonicity separately.

10



Chapter 2
Hamiltonicity and toughness

2.1 Hamiltonian cycle and r-trestle

In Section 1.3 we showed various ways to generalize hamiltonicity. From
now on in the thesis we focus on the hamiltonian cycle and the 𝑟-trestle.
First of all, let us mention some of the major results dealing with hamil-
tonian graphs and graphs with an 𝑟-trestle. These presented results show
that certian conditions on the degree of vertices of a graph ensure the graph
is hamiltonian, or ensure the graph has an 𝑟-trestle. It is also known that
the problem whether a graph is hamiltonian and the problem whether
a graph has an 𝑟-trestle are both NP-complete. The NP-complexity is
sketched in Subsection 2.1.2. Now let’s show that sufficiently high degree
of vertices implies hamiltonicity.

2.1.1 Degree conditions

We start with a condition on the minimal degree, the following well-known
result was showed by Dirac in [9].

Theorem 2.1 [9] Let 𝐺 be a graph such that |𝑉 (𝐺)| ≥ 3 and
𝛿(𝐺) ≥ |𝑉 (𝐺)|

2
, then 𝐺 is hamiltonian.

The result in Theorem 2.1 was improved by Ore. In fact, Dirac’s
Theorem 2.1 is a corollary of the following Ore’s Theorem 2.2.

11



2. Hamiltonicity and toughness

Theorem 2.2 [4] Let 𝐺 be a graph such that |𝑉 (𝐺)| ≥ 3 and such that
for all pairs of distinct nonadjacent vertices 𝑥 and 𝑦, 𝑑(𝑥)+𝑑(𝑦) ≥ |𝑉 (𝐺)|,
then 𝐺 is hamiltonian.

Further studies led to the result performed by Bondy and Chvátal in
[10]. It further extends Ore’s Theorem 2.2.

Theorem 2.3 [10] Let 𝑥 and 𝑦 be distinct nonadjacent vertices of a
graph 𝐺 such that 𝑑(𝑥) + 𝑑(𝑦) ≥ |𝑉 (𝐺)|. Then 𝐺 + 𝑥𝑦 is hamiltonian if
and only if 𝐺 is hamiltonian.

Considering an 𝑟-trestle and a minimum degree condition, the result in
Theorem 2.4 was obtained by Jendroľ, Kaiser, Ryjáček and Schiermeyer
in [14]. It is an extension of Dirac’s Theorem 2.1.

Theorem 2.4 [14] Let 𝐺 be a 2-connected graph such that 𝛿(𝐺) ≥
2|𝑉 (𝐺)|
𝑟+2

, then 𝐺 has an 𝑟-trestle.

More results related with hamiltonicity can be found in Chapters 3
and 4, in particular in Chapter 3 results considering the relations between
toughness and hamiltonicity in general graphs and in special classes of
graphs, in Chapter 4 results that show come conditions on forbidden sub-
graphs ensure hamiltonicity. Now let’s have a look at the NP-complexity.

2.1.2 NP-complexity

In the following paragraphs we will briefly mention the NP-complexity,
proper definitions and more on this topic can be found in [2].

Consider the following decision problem. Let’s have a graph 𝐺 and we
should decide whether the graph 𝐺 is hamiltonian or not. In fact to show
the problem is NP-complete it is enough to consider 3-connected 3-regular
planar graphs instead of general graphs.

Planar hamiltonian cycle problem
INSTANCE: A 3-connected 3-regular planar graph 𝐺.
QUESTION: Is the graph 𝐺 hamiltonian?

In [23] Garey, Johnson and Tarjan showed that the planar hamiltonian
cycle problem is NP-complete.

12



2.2. Connectivity and toughness

Theorem 2.5 [23] The planar hamiltonian cycle problem is NP-complete.

However every 3-connected planar graph has a 6-trestle and every 4-
connected planar graph is hamiltonian. The hamiltonicity of planar graphs
is depicted in detail in Section 3.4. Let’s have a similar decision problem,
but this time consider a 3-connected graph 𝐺 which does not have to be
planar and an r-trestle.

r-trestle problem
INSTANCE: A 3-connected graph G and an integer 𝑟 ≥ 3.
QUESTION: Does the graph 𝐺 have an r-trestle?

Teska and Kužel showed that the r-trestle problem is NP-complete, the
result can be found in [18].

Theorem 2.6 [18] The r-trestle problem is NP-complete.

A similar decision problems considering the connectivity and toughness
of a graph are mentioned in the next Section. The problem to decide for
given t whether a given graph is t-tough is NP-hard.

2.2 Connectivity and toughness

First of all, let us remind the definiton of toughness. Denote 𝜔(𝐺) the
number of components of the graph 𝐺. Let 𝐺 be a non-complete graph
and let

𝜏(𝐺) = min
𝑆⊂𝑉 (𝐺)

(
|𝑆|

𝜔(𝐺− 𝑆)
),

such that 𝜔(𝐺− 𝑆) ≥ 2. For a complete graph 𝐾𝑛 let 𝜏(𝐾𝑛) = ∞. 𝜏(𝐺)

is the toughness of the graph 𝐺. For 𝑡 ≤ 𝜏(𝐺) we say the graph is 𝑡-tough.
Notice for a graph 𝐺 which is not connected 𝑆 = ∅, 𝜏(𝐺) = 0, so the

graph 𝐺 is 0-tough. An example of a non-complete graph with high tough-
ness is the graph 𝐾−

𝑛 obtained from the complete graph 𝐾𝑛 by leaving 1

edge. The graph 𝐾−
𝑛 is 𝑛−2

2
-tough and (𝑛− 2)-connected.
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2. Hamiltonicity and toughness

2.2.1 Complexity

In the previous section the NP-complexity of the problems whether a graph
is hamiltonian and whether a graph has an 𝑟-trestle were mentioned. In
this section we consider the following decision problems. Let’s have a
graph 𝐺 and an integer 𝑘 and we should decide whether the graph 𝐺 is
𝑘-connected. Similary, we have a graph 𝐺 and a positive rational number
𝑡 and we should decide whether the graph 𝐺 is 𝑡-tough. Whereas the 𝑘-
connected problem can be solved in polynomial time, the 𝑡-tough problem
is NP-hard.

t-tough problem
INSTANCE: A graph 𝐺 and a positive rational number 𝑡

QUESTION: Is the graph 𝐺 𝑡-tough?

The following result was shown by Bauer, Hakimi and Schmeichel in
[26].

Theorem 2.7 [26] The 𝑡-tough problem is NP-hard.

2.2.2 Toughness and connectivity in relation

The toughness of a graph provides certain connectivity of a graph. On
the other hand there are graphs with high connectivity and arbitrary low
toughness. The relation between toughness and connectivity is depicted
in the following Propositions 2.8 and 2.9.

Consider a non-complete 𝑡-tough graph 𝐺, by definition |𝑆| ≥ 𝜔(𝐺 −
𝑆) · 𝑡 for every 𝑆 ⊂ 𝑉 (𝐺) such that 𝜔(𝐺 − 𝑆) ≥ 2. So in particular
|𝑆| ≥ 𝜔(𝐺− 𝑆) · 𝑡 ≥ 2𝑡, hence to obtain at least 2 components at least 𝑘

vertices 𝑘 ≥ 2𝑡 have to be left from the graph 𝐺.

Proposition 2.8 Every non-complete 𝑡-tough graph is 𝑘-connected, 𝑘 ≥
2𝑡.

On the other hand, consider the complete bipartite graph 𝐾𝑘,𝑛𝑘+1. By
leaving fewer then k vertices from the graph 𝐾𝑘,𝑛𝑘+1 the obtained graph
remains connected, hence the graph 𝐾𝑘,𝑛𝑘+1 is 𝑘-connected. By leaving all
𝑘 verticies of the smaller partity of the graph 𝐾𝑘,𝑛𝑘+1 each of the remained
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2.2. Connectivity and toughness

𝑛𝑘 + 1 vertices is isolated. The obtained graph has 𝑛𝑘 + 1 components,
hence the graph 𝐾𝑘,𝑛𝑘+1 is not 1

𝑛
-tough.

Proposition 2.9 For every integer 𝑘 ≥ 1 and for every number 𝑡 > 0

there exists a k-connected graph which is not t-tough.
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Chapter 3
Toughness related to hamiltonian
properties

By definition the toughness of a complete graph is ∞. Clearly, the graphs
𝐾1, 𝐾2 are not hamiltonian and the graphs 𝐾𝑛 for 𝑛 ≥ 3 are hamiltonian.
In Chapter 3 we consider only non-complete graphs. So everytime we say
a graph we mean a non-complete graph.

As it was mentioned in Section 1.3, certian toughness of a graph ensures
the graph has a 𝑘-walk or the graph has a spanning 𝑘-tree. In this chapter
we will see certain toughness also ensures the graph has a 𝑘-factor. These
spanning subgraphs are somewhat similar to a hamiltonian cycle. The
straightaway question is: Does toughness ensure hamiltonicity? In this
chapter we will see it does for some special classes of graphs. However, for
general graphs it is not known.

3.1 Hamiltonicity implies toughness

Let’s have a graph 𝐺 and its spanning subgraph 𝑆. Notice that if 𝑆 is
t-tough then 𝐺 is also t-tough. Clearly, every cycle is 1-tough, so a graph
which contains a spanning cycle is 1-tough. Therefore to be 1-tough is
the necessary condition for a graph to be hamiltonian. (Or recall the
hamiltonian cycle is the 1-walk and consider Theorem 1.4.) Later on, we
will refer to this simple claim, therefore let us state it formally.

Proposition 3.1 Every hamiltonian graph is 1-tough.
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3. Toughness related to hamiltonian properties

An extenction of Proposition 3.1 was performed by Tkáč and Voss in
[6]. It shows the necessary condition on toughness for a graph to have an
𝑟-trestle.

Theorem 3.2 [6] Let 𝑟 be an integer, 𝑟 ≥ 2. Every graph with an
𝑟-trestle is 2

𝑟
-tough.

However, not every 1-tough graph is hamiltonian. For example, con-
sider Petersen’s graph. It is not hard to see Petersen’s graph is 4

3
-tough

and it is not hamiltonian. Similary not every 2
𝑟
-tough graph has an 𝑟-

trestle. In fact, for 𝑟 ≥ 4 and 2 ≤ 𝑘 ≤ 𝑟
2

the graph 𝐾1,𝑘 is clearly 2
𝑟
-tough

and is not even 2-connected, hence it has no 𝑟-trestle. We will see more
examples of graphs which are not hamiltonian and graphs with no 𝑟-trestle
further on in the thesis.

3.2 Toughness implies hamiltonicity

First of all, notice that high connectivity of a graph does not ensure the
graph is hamiltonian. In other words, there are graphs with high connec-
tivity which contain no hamiltonian cycle, there also are such graphs with
no 𝑟-trestle. For example, consider a complete bipartite graph 𝐾𝑘,𝑛𝑘+1.
As it was mentioned in the paragraph linked to Proposition 2.9 the graph
𝐾𝑘,𝑛𝑘+1 is k-connected and it is not 1

𝑛
-tough. Hence by Proposition 3.1 it

is not hamiltonian for 𝑛 ≥ 1, also by Theorem 3.2 it has no 𝑟-trestle for
𝑛 ≥ 𝑟

2
.

In the previous paragraph we saw that the graphs with high connec-
tivity are not necessarily hamiltonian, also by Propositions 2.8 and 2.9 we
know toughness is a stronger property than connectivity and in Section
1.3 we saw the toughness ensures some properties similar to hamiltonicity.
So does the toughness ensure hamiltonicity? In [7] Chvátal conjectured
the following.

Conjecture 3.3 [7] There is a finite constant 𝑡 such that every 𝑡-tough
graph is hamiltonian.

There has been a lot of reserch on this topic. Despite of that it is still
unknown whether the Conjecture 3.3 is true. Moreover it is not known
whether there are any finite constants 𝑡 and 𝑟 such that every t-tough
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3.2. Toughness implies hamiltonicity

graph has an 𝑟-trestle. The following Conjecture 3.4 was stated by Tkáč
and Voss in [6].

Conjecture 3.4 [6] For every integer 𝑟 ≥ 2, there is a finite constant 𝑡

such that every 𝑡-tough graph has an 𝑟-trestle.

Yet it was shown by Enomoto, Jackson, Katerinis and Saito in [16]
that certain toughness of a graph ensures the graph has a k-factor.

Theorem 3.5 [16] Let 𝐺 be a 𝑘-tough graph with |𝑉 (𝐺)| ≥ 𝑘 + 1 and
|𝑉 (𝐺)|𝑘 even. Then 𝐺 has a 𝑘-factor.

Theorem 3.6 also performed in [16] shows the result in Theorem 3.5 is
the best possible.

Theorem 3.6 [16] Let 𝑘 ≥ 1. For every 𝜖 > 0, there exists a (𝑘 − 𝜖)-
tough graph 𝐺 with |𝑉 (𝐺)| ≥ 𝑘 + 1 and |𝑉 (𝐺)|𝑘 even which has no
𝑘-factor.

A hamiltonian cycle itself is a 2-factor of a graph. Due to Theorem 3.5
a 2-tough graph has a 2-factor and by Theorem 3.6 there exists a graph
with toughness arbitrary close to 2 which has no 2-factor.

It was believed 2 might be the value of toughness to ensure hamiltonic-
ity of a graph. In other words, Chvátal’s Conjecture 3.3 was specified to
the following Conjecture 3.7.

Conjecture 3.7 Every 2-tough graph is hamiltonian.

Anyway, the Conjecture 3.7 was disproved. In [5] Bauer, Broersma and
Veldman constructed graphs with toughness arbitrary close to 9

4
which are

nontraceable, hence not hamiltonian.

Theorem 3.8 [5] For every 𝜖 > 0 there exists a (9
4
− 𝜖)-tough nontrace-

able graph.

Also in [5] nontraceble chordal graphs with toughness arbitrary close
to 7

4
were constructed. In [18] Teska and Kužel obtained graphs with

toughness greater than 1 and no r-trestle. In fact, all these graphs are
similar, therefore let us sketch the construction of the nontraceable graphs
with toughness arbitrary close to 9

4
.

Let 𝐻 be the graph in Figure 3.1 and x, y its vertices. We say
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3. Toughness related to hamiltonian properties

x y

Figure 3.1: building block 𝐻

the graph 𝐻 is a building block. For integers 𝑚 and 𝑙 ≥ 2 define the
graph 𝐺(𝐻, 𝑥, 𝑦, 𝑙,𝑚) as follows. Take 𝑚 disjoint copies of the graph
𝐻 denoted 𝐻1, 𝐻2, ..., 𝐻𝑚, the vertices 𝑥𝑖, 𝑦𝑖 are the appropriate ver-
tices of 𝐻𝑖. Let 𝐹𝑚 be the graph obtained from the disjoint union 𝐻1 ∪
𝐻2 ∪ ... ∪ 𝐻𝑚 by adding all edges such that the graph induced by ver-
tices {𝑥1, 𝑥2, ..., 𝑥𝑚, 𝑦1, 𝑦2, ..., 𝑦𝑚} is a clique 𝐾2𝑚. Let 𝑇 be a clique 𝐾𝑙

and let 𝐺(𝐻, 𝑥, 𝑦, 𝑙,𝑚) be the graph obtained from the disjoint union
𝑇 ∪ 𝐹𝑚 by adding all edges 𝑢𝑣 such that 𝑢 ∈ 𝑇 , 𝑣 ∈ 𝐹𝑚. The graph
𝐺(𝐻, 𝑥, 𝑦, 𝑙,𝑚) is 𝑙+4𝑚

2𝑚+1
-tough and for 𝑚 ≥ 2𝑙 + 3 it is nontraceable. The

graph 𝐺(𝐻, 𝑥, 𝑦, 𝑙,𝑚) is sketched in Figure 3.2.

K2m

Kl

Figure 3.2: the graph 𝐺(𝐻,𝑥, 𝑦, 𝑙,𝑚)

Using the same construction, adapting the relation between 𝑚 and 𝑙
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3.3. Chordal graphs

and using the graph 𝐿𝑟 from Figure 3.3 instead of the graph 𝐻 Teska and
Kužel obtained graphs with toughness greater than 1 with no 𝑟-trestle.
The result can be found in [18]

x y

a1 a2 ar ar+1 ar+2
a2r

K2r

Figure 3.3: building block 𝐿𝑟

Theorem 3.9 [18] For every 𝜖 > 0 and for every integer 𝑟 ≥ 3 there
exists a ( 𝑟

2+𝑟+1
𝑟2

− 𝜖)-tough graph having no 𝑟-trestle.

Although it is not known whether Chvátal’s Conjecture 3.3 is true for
general graphs, it holds for some special classes of graphs. For example,
by [24] it holds for interval graphs, by [3] for chordal graphs, by [12]
for planar graphs. In particular it was shown in [3] that every 18-tough
chordal graph is hamiltonian. Also by putting together the result from [12]
with Proposition 2.8 every planar graph with toughness greater then 3

2
is

hamiltonian. We now focus on showing the relations among hamiltonicity,
generalized hamiltonicity and connectivity and toughness in special classes
of graphs, namely chordal graphs, k-trees and planar graphs.

3.3 Chordal graphs

Let us start this section with a characterization of chordal graphs. Let
𝐺1 be a graph, we say the graph 𝐺1 has a perfect elimination ordering, if
there exists an ordering (𝑣1, 𝑣2, ..., 𝑣|𝑉 (𝐺1)|) of vertices of the graph 𝐺1 such
that 𝑣1 is a simplicial vertex of the graph 𝐺1, and for 𝑖 = 2, 3, ..., |𝑉 (𝐺1)|
denote the graph 𝐺𝑖 = 𝐺𝑖−1 − 𝑣𝑖−1 and 𝑣𝑖 is a simplicial vertex of the
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3. Toughness related to hamiltonian properties

graph 𝐺𝑖.
Fulkerson and Gross in [34] showed the following characterization of

chordal graphs. We will use this characterization further on in the thesis.

Theorem 3.10 [34] Let 𝐺 be a graph. The graph 𝐺 is chordal if and
only if the graph 𝐺 has a perfect elimination ordering.

Let 𝑋𝑘,𝑛𝑘+1 be the graph obtained from the graph 𝐾𝑘,𝑛𝑘+1 by adding
all 𝑘(𝑘−1)

2
edges among all pairs of the 𝑘 vertices of the smaller partity. So

the graph 𝑋𝑘,𝑛𝑘+1 consists of a clique 𝐾𝑘 and 𝑛𝑘+1 simplicial verices each
of them has degree 𝑘 and each of them is adjacent to each vertex of the
clique 𝐾𝑘. It is easy to see 𝑋𝑘,𝑛𝑘+1 is a chordal graph. In Subsection 3.3.1
we will see the graph 𝑋𝑘,𝑛𝑘+1 in fact is a 𝑘-tree. By the argument from the
paragraph linked to Proposition 2.9 the graph 𝑋𝑘,𝑛𝑘+1 is 𝑘-connected and
is not 1

𝑛
-tough, hence by Proposition 3.1 it is not hamiltonian for 𝑛 ≥ 1

and by Theorem 3.2 it has no 𝑟-trestle for 𝑛 ≥ 𝑟
2
. So for chordal graphs

connectivity does not ensure hamiltonicity, on the other hand toughness
does.

As we mentioned above, Chvátal’s Conjecture 3.3 holds for chordal
graphs. In [3] Chen, Jacobson, Kezdy and Lehel showed that an 18-tough
chordal graph has a hamiltonian cycle.

Theorem 3.11 [3] Every 18-tough chordal graph is hamiltonian.

For chordal graphs 18 is the best known value of toughness so far.
In [11] it was shown by Bauer, Katona, Kratsch, Veldman that every 3

2
-

tough chordal graph has a 2-factor. In [7] Chvátal performed (3
2
−𝜖)-tough

chordal graphs with no 2-factor.
Anyway, not every 3

2
-tough chordal graph is hamiltonian. In [5] Bauer,

Broersma and Veldman obtained nontraceable chordal graphs with tough-
ness arbitrary close to 7

4
by the construction already mentioned in the

paragraph linked to Theorem 3.8 using the graph 𝑀 from Figure 3.4 in-
stead of the graph 𝐻.

Theorem 3.12 [5] For every 𝜖 > 0 there exists a (7
4
− 𝜖)-tough chordal

nontraceable graph.

The results in Theorems 3.11 and 3.12 are the best known for chordal
graphs so far, hence it is not known whether the Conjecture 3.7 holds for
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3.3. Chordal graphs

x y

Figure 3.4: building block 𝑀

chordal graphs.
We now perform a similar result to Theorem 3.12 considering chordal

graphs with no r-trestle. By Theorem 3.9 there are graphs with toughness
greater than 1 and no 𝑟-trestle. In Theorem 3.13 we will show there also
are chordal graphs with toughness greater than 1 having no 𝑟-trestle, for
every 𝑟 ≥ 3.

Notice that the graph 𝐿𝑟 in Figure 3.3 is itself a 1-tough graph. In fact,
by altering the graph 𝐿𝑟 graphs with toughness greater than 1 with no 𝑟-
trestle can be obtained, without using the construction from [5]. Moreover
by further altering of the graph, as we will see in Subsection 3.4.2, 1-tough
chordal planar graphs with no r-trestle are obtained. Those obtained
graphs also provide an upper bound on the shortness exponent of the
class of 1-tough chordal planar graphs.

Theorem 3.13 For every integer 𝑟 ≥ 3 there exists a 2𝑟+2
2𝑟+1

-tough chordal
graph having no 𝑟-trestle.

Proof. Let 𝑟 be an integer 𝑟 ≥ 3, we construct a graph 𝐺 (see Figure 3.5)
as follows. |𝑉 (𝐺)| = 2(2𝑟 + 1) + 2 = 4𝑟 + 4, let 𝐾, 𝐿, 𝑀 be subsets of
𝑉 (𝐺) such that 𝐾 ∪ 𝐿 ∪ 𝑀 = 𝑉 (𝐺) and |𝐾| = 2𝑟 + 1, |𝐿| = 2𝑟 + 1,
|𝑀 | = 2. Denote the vertices 𝐾 = {𝑘1, 𝑘2, ..., 𝑘2𝑟+1}, 𝐿 = {𝑙1, 𝑙2, ..., 𝑙2𝑟+1},
𝑀 = {𝑚1,𝑚2}, denote 𝑑𝐺(𝑣) the degree of vertex 𝑣 in the graph 𝐺.
For 𝑖 = 1, 2, ..., 2𝑟 + 1, 𝑑𝐺(𝑘𝑖) = 2𝑟 + 3 and the vertex 𝑘𝑖 is adjacent to
all other vertices of K and to the vertices 𝑙𝑖, 𝑚1, 𝑚2. In other words, the
subgraph induced by 𝐾 is a clique 𝐾2𝑟+1, and 𝑘𝑖𝑙𝑖, 𝑘𝑖𝑚1, 𝑘𝑖𝑚2 ∈ 𝐸(𝐺). For
𝑖 = 1, 2, ..., 2𝑟 + 1, 𝑑𝐺(𝑙𝑖) = 3 and 𝑙𝑖𝑚1, 𝑙𝑖𝑚2 ∈ 𝐸(𝐺). Also 𝑚1𝑚2 ∈ 𝐸(𝐺).
So clearly, 𝑑𝐺(𝑚1) = 𝑑𝐺(𝑚2) = 4𝑟+3 and the vertices 𝑚1, 𝑚2 are universal
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3. Toughness related to hamiltonian properties

vertices of the graph 𝐺.
We show the graph 𝐺 is 2𝑟+2

2𝑟+1
-tough. Let 𝑆 be a subset of 𝑉 (𝐺) such

that 𝜔(𝐺−𝑆) ≥ 2. Denote 𝐾𝑠 = 𝐾 ∩𝑆 and 𝐿𝑠 = 𝐿∩𝑆. The vertices 𝑚1,
𝑚2 are universal vertices of the graph 𝐺 and 𝜔(𝐺−𝑆) ≥ 2 so 𝑚1,𝑚2 ∈ 𝑆.
Denote the graph 𝑅 = (𝐺 − 𝐾𝑠 − 𝑚1 − 𝑚2). Notice that for |𝐾𝑠| ≤
2𝑟 − 1, 𝜔(𝑅) = |𝐾𝑠| and for |𝐾𝑠| ≥ 2𝑟, 𝜔(𝑅) = 2𝑟 + 1. Also notice
that 𝜔(𝑅 − 𝐿𝑠) ≤ 𝜔(𝑅). So 𝜔(𝐺 − 𝑆) ≤ |𝐾𝑠| for |𝐾𝑠| ≤ 2𝑟 − 1 and
𝜔(𝐺− 𝑆) ≤ 2𝑟 + 1 for |𝐾𝑠| ≥ 2𝑟. Clearly |𝑆| = |𝐾𝑠| + |𝐿𝑠| + 2. So all in
all, |𝑆| ≥ 𝜔(𝐺 − 𝑆) + 1, therefore |𝑆|

𝜔(𝐺−𝑆)
≥ 𝜔(𝐺−𝑆)+1

𝜔(𝐺−𝑆)
, hence the graph 𝐺

is 2𝑟+2
2𝑟+1

-tough.
We show the graph 𝐺 is chordal. Notice that for 𝑖 = 1, 2, ..., 2𝑟 + 1,

𝑑𝐺(𝑙𝑖) = 3 and 𝑙𝑖𝑘𝑖, 𝑙𝑖𝑚1, 𝑙𝑖𝑚2 ∈ 𝐸(𝐺). A subgraph induced by ver-
tices {𝑙𝑖, 𝑘𝑖,𝑚1,𝑚2} is a clique 𝐾4. Also a subgraph induced by vertices
{𝑘1, 𝑘2, ..., 𝑘2𝑟+1,𝑚1,𝑚2} is a clique 𝐾2𝑟+3. So the ordering

(𝑙1, 𝑙2, ..., 𝑙2𝑟+1,𝑚1,𝑚2, 𝑘1, 𝑘2, ..., 𝑘2𝑟+1)

is a perfect elimination ordering of the graph 𝐺. Hence by Theorem 3.10
𝐺 is a chordal graph.

We show the graph 𝐺 has no 𝑟-trestle. 𝑑𝐺(𝑙𝑖) = 3 and the vertex 𝑙𝑖 is
adjacent to vertices 𝑘𝑖, 𝑚1, 𝑚2 and |𝐿| = 2𝑟 + 1. In every 2-connected
subgraph 𝑇 of the graph 𝐺 either 𝑑𝑇 (𝑚1) ≥ 𝑟 + 1 or 𝑑𝑇 (𝑚2) ≥ 𝑟 + 1. So
the graph 𝐺 has no 𝑟-trestle.

m1 m2

l2r+1

k2r+1

l1 l2

k1 k2
K2r+1

Figure 3.5: more than 1-tough chordal graph 𝐺 having no 𝑟-trestle
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3.3. Chordal graphs

The graph 𝐺 in Figure 3.5 is also similar to the (3
2
− 𝜖)-tough chordal

graphs with no 2-factor from [7].

In the next subsection we make a mention of a subclass of chordal
graphs called k-trees.

3.3.1 Briefly on k-trees

First of all we remind the definition of a 𝑘-tree. Let 𝑘 ≥ 1 be an integer,
the complete graph 𝐾𝑘 is the smallest 𝑘-tree, and a graph 𝐺 is a 𝑘-tree if
and only if it contains a simplicial vertex 𝑣 with degree 𝑘 such that 𝐺− 𝑣

is a 𝑘-tree. Clearly, 1-trees are just trees.

Notice that in this chapter a k-tree always means a graph as it is defined
in the paragraph above. In Section 1.3 spanning k-trees were mentioned.
Those spanning k-trees in Section 1.3 are entirely different graphs from
the k-trees considered here.

Clearly, by definition every k-tree has a perfect elimination ordering so
by Theorem 3.10 every k-tree is a chordal graph.

Proposition 3.14 Let 𝐺 be a 𝑘-tree, then 𝐺 is chordal graph.

Recall the graph 𝑋𝑘,𝑛𝑘+1 mentioned at the beginning of Section 3.3.
The graph 𝑋𝑘,𝑛𝑘+1 is a 𝑘-tree. So for every integer 𝑘 ≥ 1 and for every
integer 𝑟 ≥ 2 there exists a 𝑘-tree with no 𝑟-trestle.

The following results were obtained by Broersmaa, Xiongc and Yoshi-
moto in [15].

Theorem 3.15 [15] Let 𝐺 be a k-tree. Then 𝐺 is hamiltonian if and
only if 𝐺 contains a spanning subgraph which is a 1-tough 2-tree.

Theorem 3.16 [15] Let 𝑘 ≥ 2 and let 𝐺 be a 𝑘+1
3

-tough k-tree, then 𝐺

is hamiltonian.

By Proposition 3.14 every k-tree is a chordal graph. Notice that for
𝑘 ≥ 53 a better value of toughness ensuring the k-tree is hamiltonian is
obtained by Theorem 3.11.
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3. Toughness related to hamiltonian properties

3.4 Planar graphs

As it was mentioned above every planar graph with toughness greater than
3
2

is hamiltonian, so Conjecture 3.7 holds for planar graphs. Moreover,
unlike general graphs, certain connectivity of planar graphs also ensures
hamiltonian properties.

Let us remind two well-known theorems on planar graphs, Kuratowski’s
theorem and Euler’s formula. The definitions of a minor and a face of plane
graph can be found in [1].

Theorem 3.17 [36] Let 𝐺 be a graph. 𝐺 is planar if and only if 𝐺

contains neither 𝐾5 nor 𝐾3,3 as a minor.

Theorem 3.18 Let 𝐺 be a connected planar graph with 𝑓 faces. Then
|𝑉 (𝐺)| + 𝑓 = |𝐸(𝐺)| + 2.

Let P be the class of planar graphs, by Theorem 3.17 for 𝑛 ≥ 5 the
graph 𝐾𝑛 ̸∈ P. Denote the class of graphs P0 = P − {𝐾1, 𝐾2, 𝐾3, 𝐾4}.
As it was mentioned in the first paragraph of Chapter 3, we consider only
non-complete graphs in Chapter 3. So in this section, when we say planar
graph, we mean a graph from P0.

Let us show that, Euler’s formula implies the planar graphs have
bounded toughness. Notice each face is built by at least 3 edges also
each edge appears in at most 2 faces, hence 𝑓 ≤ 2

3
|𝐸(𝐺)|. Using this

inequality and the following relation
∑︀

𝑣∈𝑉 (𝐺)

𝑑(𝑣) = 2|𝐸(𝐺)| Corollary 3.19

is obtained.

Corollary 3.19 Let G be a connected planar graph. Then
6|𝑉 (𝐺)| − 12 ≥

∑︀
𝑣∈𝑉 (𝐺)

𝑑(𝑣).

Let 𝐺 be a planar graph. For |𝑉 (𝐺)| ≤ 6 the graph is 𝐺 at most 4-
connected. By Corollary 3.19 the graph 𝐺 has 𝛿(𝐺) ≤ 5. For |𝑉 (𝐺)| ≥ 7

let 𝑣 be the vertex of 𝐺 such that 𝑑(𝑣) ≤ 5. Denote 𝑁(𝑣) the vertices
adjacent to 𝑣, |𝑁(𝑣)| ≤ 5. The graph 𝐺−𝑁(𝑣) has at least 2 components.
Therefore the graph 𝐺 is at most 5-connected, hence by Proposition 2.8
at most 5

2
-tough.

Corollary 3.20 Let 𝐺 be a planar graph and let 𝑡 > 5
2
. The graph 𝐺 is
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3.4. Planar graphs

not 𝑡-tough.

Is there a 5
2
-tough planar graph? It is not hard to see the graph of

icosahedron in Figure 3.6 is 5
2
-tough. Notice that every 5

2
-tough planar

graph by Corollary 3.19 has at least 12 vertices. In fact, the graph of
icosahedron has 12 vertices and it is a 5-regular graph, hence the graph of
icosahedron is the smallest 5

2
-tough planar graph.

Figure 3.6: the graph of icosahedron

The graph of icosahedron is also used in [?] for the construction of a
3-connected planar graph with no 5-trestle, it will be mentioned further
on in this section in Theorem 3.22. So unlike general graphs most of
planar graphs have limited connectivity and therefore by Proposition 2.8
also limited toughness. Also unlike general graphs for planar graphs some
connectivity ensures hamiltonian properties of a graph, let’s see this in
more detail.

3.4.1 4-connected, 3-connected, 2-connected

Now we show, that certain connectivity ensures hamiltonian properties of
a planar graph. In fact, 4-connected, 3-connected and 2-connected planar
graphs are 3 classes of graphs with different hamiltonian properties. The
following result was shown by Tutte in [12].

Theorem 3.21 [12] Every 4-connected planar graph is hamiltonian.

Tutte’s graph from Figure 3.7 is a 3-connected planar graph which is
not hamiltonian. Although the Tutte’s is a 3-regular graph, so clearly it
has a 3-trestle.

In [8] Barnette showed a 3-connected planar graph with no 5-trestle.
This graph was obtained from the graph of icosahedron (Figure 3.6) by
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3. Toughness related to hamiltonian properties

Figure 3.7: Tutte’s graph

using the following construction.

For a 3-connected planar graph 𝐺 define a graph 𝐾1(𝐺) as follows,
place a new vertex inside each face of G, join each of these new vertices
to each vertex of the face the new vertex lies in. Define a graph 𝐾𝑛(𝐺) =

𝐾1(𝐾𝑛−1(𝐺)). It is not hard to see 𝐾𝑛(𝐺) is a 3-connected planar graph.

Theorem 3.22 [8] Let I be the graph of icosahedron. The graph 𝐾3(𝐼)

has no 5-trestle.

Notice 𝐾3(𝐼) is a maximal planar graph. Gao in [25] showed every 3-
connected planar graph has a 6-trestle and this result is by Theorem 3.22
the best possible, also for every 𝑟 ≥ 2 there exists a 2-connected planar
graph with no 𝑟-trestle.

Theorem 3.23 [25] Let 𝐺 be a 3-connected planar graph. Then 𝐺 has
a 6-trestle.

In fact in [25] Gao proved every 3-connected graph on the plane, pro-
jective plane, torus and Klein bottle has a 6-trestle. These items are not
mentioned in the thesis, the definitions of projective plane, torus and Klein
bottle can be found in [1].
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3.4. Planar graphs

As it was mentioned at the beginning of Section 3.3 for every 𝑟 ≥ 2 the
graph 𝑋2,𝑟+1 in Figure 3.8 has no 𝑟-trestle. Notice 𝑋2,𝑟+1 is a 2-connected
planar graph.

Proposition 3.24 For every integer 𝑟 ≥ 2 there exists a 2-connected
planar graph with no 𝑟-trestle.

Figure 3.8: the graph 𝑋2,𝑟+1

Finally, notice that just based on what has been mentioned in the thesis
so far it is clear that for planar graphs some connectivity implies toughness
unlike for general graphs. In particular a 4-connected planar graph is by
Theorem 3.21 hamiltonian, hence by Proposition 3.1 it is 1-tough. Similary
a 3-connected planar graph by Theorem 3.23 has a 6-trestle, so by Thorem
3.2 it is 1

3
-tough.

Also notice toughness ensures connectivity by Proposition 2.8. Since
some connectivity of planar graphs ensures hamiltonian properties, clearly
some toughness of planar graph ensures hamiltonian properties. In par-
ticular every planar graph with toughness greater than 3

2
is 4-connected

by Proposition 2.8 and by Theorem 3.21 hamiltonian. So conjecture 3.7
holds for planar graphs. Let’s have a closer look on the toughness and
hamiltonicity of planar graphs.

3.4.2 Toughness, hamiltonicity, shortness exponent

As it was mentioned in Section 3.3, every 18-tough chordal graph is hamil-
tonian. For chordal planar graphs the value of toughness is lower. In [13]
Böhme, Harant and Tkáč showed that every chordal planar graph with
toughness greater than 1 has a hamiltonian cycle.

Theorem 3.25 [13] For every 𝜖 > 0, every (1 + 𝜖)-tough chordal planar
graph is hamiltonian.
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3. Toughness related to hamiltonian properties

Let us remind the definiton of the shortness exponent of a class of
graphs. Let Σ be a class of graphs, denote 𝑐(𝐻) the length of the longest
cycle in the graph 𝐻. The shortness exponent 𝜎(Σ) of the class of graphs
Σ is defined as follows.

𝜎(Σ) = lim inf
𝐻𝑛⊂Σ

log 𝑐(𝐻𝑛)

log |𝑉 (𝐻𝑛)|
,

where the lim inf is taken over all sequences of graphs 𝐻𝑛 ⊂ Σ such that
|𝑉 (𝐻𝑛)| → ∞ as 𝑛 → ∞.

It is also shown in [13] that the shortness exponent of the class of 1-
tough chordal planar graphs is at most log9 8, hence there exists a 1-tough
chordal planar graph which is not hamiltonian. So by Theorem 3.26 the
result in Theorem 3.25 is the best possible.

Theorem 3.26 [13] The shortness exponent of the class of all 1-tough
chordal planar graphs is at most log9 8.

Those 1-tough chordal planar nonhamiltonian graphs in [13] are all
3-connected, so by Theorem 3.23 they have a 6-trestle.

We perform a better upper bound on the shortness exponent of the
class of 1-tough chordal planar graphs. By altering the graph from Theo-
rem 3.13 we show the shortness exponent of the class of 1-tough chordal
planar graphs is at most 1

2
. We also show, which might be more interest-

ing in the context of this thesis, there exist 1-tough chordal planar graphs
with no r-trestle.

Theorem 3.27 For every integer 𝑟 ≥ 2 there exists a 1-tough chordal
planar graph having no 𝑟-trestle. Furthermore the shortness exponent of
the class of 1-tough chordal planar graphs is at most 1

2
.

Proof. Let 𝑟 be an integer 𝑟 ≥ 2, we construct a graph 𝐻 (see Figure 3.9
as follows. |𝑉 (𝐻)| = 𝑟 + (𝑟 + 1) + (𝑟 + 1)2 + 1 = 𝑟2 + 4𝑟 + 3, let 𝐽 , 𝐾,
𝐿, 𝑀 be subsets of 𝑉 (𝐻) such that 𝐽 ∪𝐾 ∪ 𝐿 ∪𝑀 = 𝑉 (𝐺) and |𝐽 | = 𝑟,
|𝐾| = 𝑟+1, |𝐿| = (𝑟+1)2, |𝑀 | = 1. Let 𝐿1, 𝐿2, ..., 𝐿𝑟+1 be subsets of 𝐿 such
that 𝐿1∪𝐿2∪ ...∪𝐿𝑟+1 = 𝐿 and |𝐿1| = |𝐿2| = ... = |𝐿𝑟+1| = 𝑟+1. Denote
the vertices 𝐽 = {𝑗1, 𝑗2, ..., 𝑗𝑟}, 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑟+1}, for 𝑖 = 1, 2, ..., 𝑟 + 1,
𝐿𝑖 = {𝑙𝑖,1, 𝑙𝑖,2, ..., 𝑙𝑖,𝑟+1}, 𝑀 = {𝑚}.

Denote 𝑑𝐻(𝑣) the degree of vertex 𝑣 in the graph 𝐻. 𝑑𝐻(𝑗1) = 𝑑𝐻(𝑗𝑟) =

4, for 𝑖 = 2, 3, ..., 𝑟 − 1, 𝑑𝐻(𝑗𝑖) = 5. A subgraph induced by 𝐽 is a
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3.4. Planar graphs

path 𝑗1𝑗2...𝑗𝑟 and for 𝑖 = 1, 2, ..., 𝑟, 𝑗𝑖𝑘𝑖, 𝑗𝑖𝑘𝑖+1, 𝑗𝑖𝑚 ∈ 𝐸(𝐻). 𝑑𝐻(𝑘1) =

𝑑𝐻(𝑘𝑟+1) = 𝑟 + 4, for 𝑖 = 2, 3, ..., 𝑟, 𝑑𝐻(𝑘𝑖) = 𝑟 + 6. A subgraph induced
by 𝐾 is a path 𝑘1𝑘2...𝑘𝑟+1 and for 𝑖 = 1, 2, ..., 𝑟 + 1 and 𝑗 = 1, 2, ..., 𝑟 + 1,
𝑘𝑖𝑙𝑖,𝑗, 𝑘𝑖𝑚 ∈ 𝐸(𝐻). For 𝑖 = 1, 2, ..., 𝑟 + 1, 𝑑𝐻(𝑙𝑖,1) = 𝑑𝐻(𝑙𝑖,𝑟+1) = 3. For
𝑖 = 1, 2, ..., 𝑟 + 1 and 𝑗 = 2, 3, ..., 𝑟, 𝑑𝐻(𝑙𝑖,𝑗) = 4. For 𝑖 = 1, 2, ..., 𝑟 + 1 a
subgraph induced by 𝐿𝑖 is a path 𝑙𝑖,1𝑙𝑖,2...𝑙𝑖,𝑟+1 and for 𝑖 = 1, 2, ..., 𝑟+1 and
𝑗 = 1, 2, ..., 𝑟 + 1, 𝑙𝑖,𝑗𝑚 ∈ 𝐸(𝐻). So clearly, 𝑑𝐻(𝑚) = 𝑟2 + 4𝑟 + 2 and the
vertex 𝑚 is an universal vertex of the graph 𝐻. The graph 𝐻 is pictured
in Figure 3.9. Clearly, 𝐻 is a planar graph for every 𝑟 ≥ 2.

We show the graph 𝐻 is 1-tough. Let 𝑆 be a subset of 𝑉 (𝐻) such
that 𝜔(𝐻 − 𝑆) ≥ 2. The vertex 𝑚 is an universal vertex of the graph
𝐻 and 𝜔(𝐻 − 𝑆) ≥ 2 so 𝑚 ∈ 𝑆. Denote 𝐽𝑠 = 𝐽 ∩ 𝑆, 𝐾𝑠 = 𝐾 ∩ 𝑆,
𝐿𝑠 = 𝐿∩𝑆. Denote 𝑅 the graph obtained from the graph 𝐻 by leaving the
vertex 𝑚 and all vertices of 𝐾𝑠. For every 𝑘𝑖 ∈ 𝐾𝑠 the path 𝑙𝑖,1𝑙𝑖,2...𝑙𝑖,𝑟+1

is a component of the graph 𝑅. Denote each of these components 𝑃𝑖,
𝑘𝑖 ∈ 𝐾𝑠. The graph 𝑅 consists of |𝐾𝑠| + 1 components. |𝐾𝑠| of these
components are the paths 𝑃𝑖. Denote 𝐷 the 1 remaining component.
Notice 𝜔(𝐷−𝐽𝑠) ≤ |𝐽𝑠|+1. Also notice 𝜔(𝐷−𝐽𝑠−(𝐷∩𝐿𝑠)) = 𝜔(𝐷−𝐽𝑠).
Finally, 𝜔(𝑃𝑖− (𝑃𝑖∩𝐿𝑠)) ≤ |𝑃𝑖∩𝐿𝑠|+ 1 for every path 𝑃𝑖. So 𝜔(𝐻−𝑆) ≤
|𝐾𝑠| + |𝐽𝑠| + |𝐿𝑠| + 1 and |𝑆| = |𝐾𝑠| + |𝐽𝑠| + |𝐿𝑠| + 1. The graph 𝐻 is
1-tough.

We show the graph 𝐻 is chordal. Consider the vertex 𝑙1,1, 𝑑𝐻(𝑙1,1) =

3 and 𝑙1,1𝑘𝑖, 𝑙1,1𝑚, 𝑙1,1𝑙1,2 ∈ 𝐸(𝐻). A subgraph induced by vertices
{𝑘1, 𝑙1,1, 𝑙1,2,𝑚} is a clique 𝐾4. So the vertex 𝑙1,1 is a simplicial ver-
tex of the graph 𝐻, similary the vertex 𝑙1,2 is a simplicial vertex of
the graph (𝐻 − 𝑙1,1), the vertex 𝑙1,3 is a simplicial vertex of the graph
(𝐻 − (𝑙1,1 ∪ 𝑙1,2)) and so on. So the vertex 𝑙𝑖,𝑗 is a simplicial vertex of the
graph (𝐻 − (𝐿1 ∪ 𝐿2 ∪ ... ∪ 𝐿𝑖−1) − (𝑙𝑖,1 ∪ 𝑙𝑖,2 ∪ ... ∪ 𝑙𝑖,𝑗−1)).

Denote 𝐻 − 𝐿 the graph obtained from the graph 𝐻 by leaving all
vertices of 𝐿. 𝑑𝐻−𝐿(𝑘1) = 3 and 𝑘1𝑗1, 𝑘1𝑘2, 𝑘1𝑚 ∈ 𝐸(𝐻 − 𝐿). A subgraph
induced by vertices {𝑘1, 𝑗1, 𝑘2,𝑚} is a clique 𝐾4. So the vertex 𝑘1 is a
simplicial vertex of the graph 𝐻−𝐿. 𝑑𝐻−𝐿−𝑘1(𝑗1) = 3 and 𝑗1𝑘2, 𝑗1𝑗2, 𝑘1𝑚 ∈
𝐸(𝐻 − 𝐿− 𝑘1). A subgraph induced by vertices {𝑗1, 𝑘2, 𝑗2,𝑚} is a clique
𝐾4. With the same argument continue considering graphs (𝐻 − 𝐿− 𝑘1 −
𝑗1), (𝐻 −𝐿− 𝑘1− 𝑗1− 𝑘2), ..., (𝐻 −𝐿− 𝑘1− 𝑗1− ...− 𝑘𝑟−1− 𝑗𝑟−1). Finally,
a graph (𝐻 − 𝐿 − 𝑘1 − 𝑗1 − ... − 𝑘𝑟−1 − 𝑗𝑟−1 − 𝑘𝑟) is nothing else but a
subgraph induced by vertices {𝑗𝑟, 𝑘𝑟+1,𝑚} which is a clique 𝐾3. So the
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3. Toughness related to hamiltonian properties

ordering

(𝑙1,1, 𝑙1,2, ..., 𝑙1,𝑟+1, 𝑙2,1, 𝑙2,2, ..., 𝑙2,𝑟+1, ..., 𝑙𝑟+1,1, 𝑙𝑟+1,2, ..., 𝑙𝑟+1,𝑟+1,

𝑘1, 𝑗1, 𝑘2, 𝑗2, ..., 𝑘𝑟, 𝑗𝑟, 𝑘𝑟+1,𝑚)

is a perfect elimination ordering of the graph 𝐻. Hence by Theorem 3.10
𝐻 is a chordal graph.

We show the graph 𝐻 has no 𝑟-trestle. For 𝑖 = 1, 2, ..., 𝑟 + 1 and
𝑗 = 1, 2, ..., 𝑟 + 1, every vertex 𝑙𝑖,𝑗 ∈ 𝐿𝑖 is adjacent to some other vertices
of 𝐿𝑖 and to the vertices 𝑘𝑖, 𝑚 and no other vertices. So in every 2-
connected subgraph 𝑇 of the graph 𝐻 𝑑𝑇 (𝑚) ≥ 𝑟 + 1, hence the graph 𝐻

has no 𝑟-trestle.
We show the shortness exponent of the class of 1-tough chordal planar

graphs is at most 1
2
. Denote 𝑐(𝐻) the length of the longest cycle in the

graph 𝐻. For 𝑖 = 1, 2, ..., 𝑟 + 1 and 𝑗 = 1, 2, ..., 𝑟 + 1, every vertex 𝑙𝑖,𝑗 ∈ 𝐿𝑖

is adjacent to some other vertices of 𝐿𝑖 and to the vertices 𝑘𝑖, 𝑚 and no
other vertices. So any cycle 𝐶 subgraph of 𝐻 does not contain more than
2|𝐿1| vertices from 𝐿.

𝑐(𝐻) ≤ 2|𝐿1| + |𝐽 | + |𝐾| + |𝑀 | = 2(𝑟 + 1) + (𝑟 + 1) + 𝑟 + 1 = 4𝑟 + 4

Let (𝐻𝑛)∞𝑛=1 be a sequence of graphs such that for 𝑛 = 1, 2, ... the
graph 𝐻𝑛 is the graph 𝐻 constructed according to 𝑟 = 𝑛 + 1. As it was
shown above in this proof 𝐻𝑛 is a 1-tough chordal planar graph, notice
|𝑉 (𝐻𝑛)| → ∞ as 𝑛 → ∞. Denote Λ the class of 1-tough chordal planar
graphs.

log 𝑐(𝐻𝑛)

log |𝑉 (𝐻𝑛)|
≤ log(4𝑟 + 4)

log(𝑟2 + 4𝑟 + 3)
=

log 4𝑛

log(𝑛2 + 2𝑛)

𝜎(Λ) = lim inf
𝐻𝑛⊂Λ

log 𝑐(𝐻𝑛)

log |𝑉 (𝐻𝑛)|
≤ lim

𝑛→∞

log 4𝑛

log(𝑛2 + 2𝑛)
≤ lim

𝑛→∞

log 4𝑛

log 𝑛2
=

= lim
𝑛→∞

log 4 + log 𝑛

2 log 𝑛
=

1

2

So the shortness exponent of the class of 1-tough chordal planar graphs is
at most 1

2
.

32



3.4. Planar graphs

l2,r+1l2,1 l3,r+1l3,1 lr+1,r+1
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j1 j2 jr
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k1 k2 k3 kr+1

l1,1 l1,r+1

Figure 3.9: 1-tough chordal planar graph 𝐻 having no 𝑟-trestle

Before we say more about the toughness and hamiltonicity of planar
graphs that are not chordal, let us mention two more results dealing with
shortness exponent of certain classes of planar graphs. It was shown by
Chen and Yu in [29] that the shortness exponent of the class of 3-connected
planar graphs is log3 2.

Theorem 3.28 [29] The shortness exponent of the class of 3-connected
planar graphs is log3 2.

The best known upper bound on the shortness exponent of the class
1-tough maximal planar graphs was obtained by Tkáč in [27].

Theorem 3.29 [27] The shortness exponent of the class of 1-tough max-
imal planar graphs is at most log6 5.

Hence there are 1-tough maximal planar graphs with no hamiltonian
cycle. In fact, we will see that by Theorem 3.33 there are maximal planar
graphs with toughness arbitrary close to 3

2
which are not hamiltonian.

As it was mentioned above in Theorem 3.25 every chordal planar graph
with toughness greater than 1 is hamiltonian. In fact, a planar graph
which is not chordal and has toughness greater than 1 still has hamiltonian
properties. Due to Proposition 2.8 a graph with toughness greater than 1

is 3-connected and by Theorem 3.23 every 3-connected planar graph has
a 6-trestle.
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3. Toughness related to hamiltonian properties

Corollary 3.30 For every 𝜖 > 0, every (1 + 𝜖)-tough planar graph has a
6-trestle.

By Theorem 3.27 there exists a 1-tough chordal planar graph with no
𝑟-trestle, for every 𝑟 ≥ 2. Although Theorem 3.23 originally considers not
only planar graphs and although by Propositions 2.8 and 2.9 toughness is
a stronger property then connectivity, interestingly the result in Corollary
3.30 is the best possible.

We show a similar corollary for planar graphs with toughness greater
than 3

2
. By Proposition 2.8 every graph with toughness greater than 3

2

is 4-connected and by Theorem 3.21 every 4-connected planar graph is
hamiltonian.

Corollary 3.31 For every 𝜖 > 0, every (3
2

+ 𝜖)-tough planar graph is
hamiltonian.

So by Corollary 3.31 the Conjecture 3.7 holds for planar graphs. In [28]
Harant performed 3

2
-tough planar graph with no hamiltonian cycle. Notice

that by Theorem 3.32 the result in Corollary 3.31 is the best possible.

Theorem 3.32 [28] There exists a 3
2
-tough planar graph which is not

hamiltonian.

The nonhamiltonian 3
2
-tough planar graphs in [28] are regular graphs

of degree 3, 4, and 5. However, those graphs are not maximal planar
graphs. By Theorem 3.29 there are 1-tough maximal planar graphs with
no hamiltonian cycle. In [17] Owens showed there are maximal planar
graphs with toughness arbitrary close to 3

2
which are not hamiltonian. In

fact, those graphs do not even have a 2-factor.

Theorem 3.33 [17] For every 𝜖 > 0, there is a (3
2
− 𝜖)-tough maximal

planar graph which is not hamiltonian.

Notice again the results in Corollaries 3.30 and 3.31 are the best possi-
ble. This means speaking of planar graphs and their hamiltonian proper-
ties toughness and connectivity are somehow similar. However not all of
the results shown in this section are necessarily the best possible. In the
next Subsection we mention some questions that remain open.
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3.4. Planar graphs

3.4.3 Summary of open questions

First of all, remind that it is not known whether Chvátal Conjecture 3.3
is true for general graphs, anyway it holds for planar graphs. In general
a lot remains unknown on the topic of hamiltonicity related to toughness.
Considering planar graphs in Section 3.4 we saw several results. Moreover
we saw the results in some theorems and corollaries are the best possible.
Let us just briefly sum up what is unknown in the context of what was
said about hamiltonicity of planar graphs.

By Corollary 3.31 every planar graph with toughness greater than 3
2

is hamiltonian. By Theorem 3.32 there exists a 3
2
-tough planar graph

which is not hamiltonian and by Theorem 3.33 there are maximal planar
nonhamiltonian graphs with toughness arbitrary close to 3

2
. Do all 3

2
-tough

maximal planar graphs have a 2-factor? Does every 3
2
-tough planar graph

have a 2-factor? Is every 3
2
-tough maximal planar graph hamiltonian?

By Theorem 3.23 every 3-connected planar graph has a 6-trestle. By
Proposition 3.24 there are 2-connected planar graphs with no 𝑟-trestle for
every 𝑟 ≥ 2. By Theorem 3.22 there exists a 3-connected planar graph
with no 5-trestle, this graph also is a maximal planar graph. Do all 3-
connected chordal planar graphs have a 5-trestle, 4-trestle, 3-trestle?

By Corollary 3.30 every planar graph with toughness greater than 1

has a 6-trestle. By Theorem 3.27 there exists a 1-tough chordal planar
graph with no 𝑟-trestle for every 𝑟 ≥ 2. Is there 1 < 𝑡 ≤ 3

2
such that every

𝑡-tough planar graph has a 5-trestle, 4-trestle, 3-trestle?
By Theorem 3.28 the shortness exponent of the class of 3-connected

planar graphs is log3 2. Every graph with toughness greater than 1 is
3-connected by Proposition 2.8. Also every maximal planar graph is 3-
connected (the proof can be found in [1]). So by Theorem 3.28 we have
lower bounds on the shortness exponent of the class of planar graphs with
toughness greater than 1 and the class of maximal planar graphs. The
upper bound on the shortness exponent of the class of 1-tough maximal
planar graphs was mentioned in Theorem 3.29. So all in all, the short-
ness exponent of the class of 1-tough maximal planar graphs is somewhere
between log3 2 and log6 5. In Theorem 3.27 we showed the shortness ex-
ponent of the class of 1-tough chordal planar graphs is not greater than 1

2
.
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Chapter 4
Forbidden subgraphs and
hamiltonicity

This chapter continues on the topic of forbidden subgraphs and hamil-
tonicity, which is the topic of author’s Bachelor Thesis. In the Bachelor
Thesis results considering the square of 𝑆(𝐾1,4)-free trees and 3-trestle and
the square of 𝑆(𝐾1,𝑟)-free trees and 𝑟-trestle were obtained. In this chap-
ter we mention several sufficient conditions on the forbidden subgraphs for
a graph to be hamiltonian or to have an 𝑟-trestle.

Let us recall the definition of an F-free graph. Let F be a class of graphs
F = {𝐻1, 𝐻2, ..., 𝐻𝑘}. We say a graph G is F-free or (𝐻1, 𝐻2, ..., 𝐻𝑘)-free
if the graph 𝐺 contains no induced subgraph isomorphic to any of the
graphs 𝐻1, 𝐻2, ..., 𝐻𝑘. In particular, for F = {𝐻} we say the graph 𝐺 is
𝐻-free. The graphs 𝐻1, 𝐻2, ..., 𝐻𝑘 are called forbidden subgraphs.

First of all, consider F = {𝐻}. The following result was performed by
Oberly and Sumner in [31]

Theorem 4.1 [31] Let 𝐺 be a connected, locally connected, 𝐾1,3-free
graph, |𝑉 (𝐺)| ≥ 3, then 𝐺 is hamiltonian.

Balakrishnan and Paulraja in [19] showed that every 2-connected chordal
graph is locally connected. By putting together this fact with Theorem
4.1 the following result was obtained.

Theorem 4.2 [19] Let 𝐺 be a 2-connected, 𝐾1,3-free chordal graph,
then 𝐺 is hamiltonian.
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4. Forbidden subgraphs and hamiltonicity

Notice that a 2-connected 𝐾1,2-free graph (𝐾1,2 = 𝑃3) is a complete
graph 𝐾𝑛. Clearly, for 𝑛 ≥ 3 the graph 𝐾𝑛 is hamiltonian. In [22] Kužel
and Teska showed a 2-connected 𝐾1,𝑟-free graph has an 𝑟-trestle.

Theorem 4.3 [22] Every 2-connected 𝐾1,𝑟-free graph has an 𝑟-trestle.

In the next Section we mention results dealing with F = {𝐻1, 𝐻2}.

4.1 Forbidden pairs

We say F = {𝐻1, 𝐻2} is a forbidden pair of graphs. All the results men-
tioned in this chapter so far were considering graphs 𝐾1,3 and 𝐾1,𝑟. Also
each forbidden pair consists of one of the graphs 𝐾1,3 or 𝐾1,𝑟 and some
other graph.

For example, every 2-connected (𝐾1,3, 𝑍1)-free graph is hamiltonian.
This was shown by Goodman and Hedetniemi in [30].

Theorem 4.4 [30] Let 𝐺 be a 2-connected (𝐾1,3, 𝑍1)-free graph. Then
𝐺 is hamiltonian.

More research on the topic of forbidden pairs and hamiltonicity led to
the result performed by Faudree and Gould in [20]. The graphs 𝑍1, 𝑍2,
𝑍3, 𝐵, 𝑁 and 𝑊 are shown in Figure 4.1.

Theorem 4.5 [20] Let 𝑅 and 𝑆 be connected graphs (𝑅, 𝑆 ̸= 𝑃3) and
𝐺 a 2-connected graph |𝑉 (𝐺)| ≥ 10. Then 𝐺 is (𝑅, 𝑆)-free implies 𝐺 is
hamiltonian if and only if 𝑅 = 𝐾1,3 and 𝑆 is one of the graphs 𝐶3, 𝑃4, 𝑃5,
𝑃6, 𝑍1, 𝑍2, 𝑍3, 𝐵, 𝑁 or 𝑊 .

We show an extension of Theorem 4.4 considering a (𝐾1,𝑟, 𝑍1)-free
graph and an (𝑟 − 1)-trestle.

Theorem 4.6 Let 𝑟 be an integer, 𝑟 ≥ 3. Let 𝐺 be a 2-connected
(𝐾1,𝑟, 𝑍1)-free graph. Then 𝐺 has an (𝑟 − 1)-trestle.

Proof. Assume to the contrary the graph 𝐺 has no (𝑟 − 1)-trestle. The
graph 𝐺 is 2-connected so for any two of vertices 𝐺 contains a cycle, hence
𝐺 contains an induced subgraph which has an (𝑟−1)-trestle. Let 𝐻 be the
induced subgraph of 𝐺 such that 𝐻 has an (𝑟−1)-trestle 𝑇 and suppose to
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Figure 4.1: the graphs 𝑍1, 𝑍2, 𝑍3, 𝐵, 𝑁 and 𝑊

the contrary 𝐻 is the largest subgraph with this property. In other words,
for every induced subgraph 𝑆 of the graph 𝐺 such that |𝑉 (𝑆)| > |𝑉 (𝐻)|
the graph 𝑆 has no (𝑟 − 1)-trestle.

We supposed 𝐺 has no (𝑟 − 1)-trestle, so there exists a vertex of 𝐺

which is not in 𝑇 . Let 𝑥 be a vertex such that 𝑥 ∈ (𝑉 (𝐺) − 𝑉 (𝑇 )) and
such that there exists a vertex 𝑎 ∈ 𝑇 such that 𝑥𝑎 ∈ 𝐸(𝐺). The graph
𝐺 is 2-connected so in the graph 𝐺 − 𝑎𝑥 there exists a path from the
vertex 𝑥 to some vertex of 𝑇 which is not the vertex 𝑎. Let 𝑃 be the path
from the vetex 𝑥 to a vertex 𝑏 ∈ (𝑉 (𝑇 ) − 𝑎) such that, for every vertex
𝑦 ∈ (𝑉 (𝑃 ) − 𝑏), 𝑦 ̸∈ 𝑉 (𝑇 ).

Denote 𝑑𝑇 (𝑎) the degree of vertex 𝑎 in the graph 𝑇 . If 𝑑𝑇 (𝑎) ≤ 𝑟 − 2

and 𝑑𝑇 (𝑏) ≤ 𝑟 − 2, then the graph (𝑇 ∪ 𝑃 ∪ 𝑎𝑥) is an (𝑟 − 1)-trestle of a
graph induced by vertices (𝑉 (𝐻) ∪ 𝑉 (𝑃 )). This graph is larger than the
graph 𝐻 which is a contradiction.

Hence 𝑑𝑇 (𝑎) = 𝑟− 1 or 𝑑𝑇 (𝑏) = 𝑟− 1. Suppose 𝑑𝑇 (𝑎) = 𝑟− 1. Denote
𝑁𝑇 (𝑎) vertices adjacent to the vertex 𝑎 in the graph 𝑇 . We show the graph
𝐺 contains an edge 𝑢𝑥, 𝑢 ∈ 𝑁𝑇 (𝑎). Let 𝐹 be a subgraph of the graph 𝐺

induced by vertices (𝑁𝑇 (𝑎) ∪ 𝑎 ∪ 𝑥). 𝐺 is a 𝐾1,𝑟-free graph so 𝐹 ̸= 𝐾1,𝑟.
So the graph 𝐺 contains either an edge 𝑢𝑥, 𝑢 ∈ 𝑁𝑇 (𝑎) or an edge 𝑢𝑣,
𝑢, 𝑣 ∈ 𝑁𝑇 (𝑎). Suppose 𝑢𝑣 ∈ 𝐸(𝐺). Let 𝐷 be a subgraph of the graph 𝐺

induced by vertices {𝑢, 𝑣, 𝑎, 𝑥}. The graph 𝐺 is 𝑍1-free, hence 𝐷 ̸= 𝑍1.
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4. Forbidden subgraphs and hamiltonicity

So either 𝑢𝑥 ∈ 𝐸(𝐺) or 𝑣𝑥 ∈ 𝐸(𝐺). We showed the graph 𝐺 contains an
edge 𝑢𝑥, 𝑢 ∈ 𝑁𝑇 (𝑎). So the graph ((𝑇 −𝑎𝑢)∪𝑎𝑥∪𝑢𝑥) is an (𝑟−1)-trestle
of a graph induced by vertices (𝑉 (𝐻) ∪ 𝑥). This graph is larger than the
graph 𝐻 which is a contradiction. The graph 𝐺 has an (𝑟 − 1)-trestle.

(If 𝑑𝑇 (𝑎) ≤ 𝑟 − 2 and 𝑑𝑇 (𝑏) = 𝑟 − 1, then the argument holds just
consider the vertex 𝑏 instead of the vertex 𝑎 and a vertex 𝑦 instead of the
vertex 𝑥. 𝑦 is the vertex adjacent to the vertex 𝑏 in the graph 𝑃 .)

40



Chapter 5
Conclusion

The thesis deals with with hamiltonian properties of a graph, mainly a
hamiltonian cycle and an 𝑟-trestle. Primarily, in Chapter 3 the relation-
ship among the hamiltonian cycle, the 𝑟-trestle and the toughness of a
graph is disscussed. It is shown how these relations change when chordal
graphs or planar graphs are considered. However at first, the context of
the issue is sketched in Chapters 1 and 2. In Chapters 1 various gener-
alizations of hamiltonicity and the relations among them are mentioned.
Chapter 2 shows some results dealing with hamiltonian graphs and graphs
with an 𝑟-trestle. Also results considering the toughness and connectiv-
ity are mentioned. At last, Chapter 4 shows some relations among the
hamiltonian cycle, the 𝑟-trestle and forbidden subgraphs.

Original results are presented in Theorems 3.13, 3.27 and 4.6. Follow-
ing the results from [5] and [18], which show graphs with high toughness
and no hamiltonian cycle or no 𝑟-trestle, in Theorem 3.13 we showed
chordal graphs with toughness greater than 1 and no 𝑟-trestle. By [13]
every chordal planar graph with toughness greater than 1 is hamiltonian.
Also by [13] the shortness exponent of the class of 1-tough chordal pla-
nar graphs is at most log9 8, so there are nonhamiltonian 1-tough chordal
planar graphs. In Theorem 3.27 we showed there exist 1-tough chordal
planar graphs with no 𝑟-trestle and the shortness exponent of the class of
1-tough chordal planar graphs is at most 1

2
. By a corollary of [25] every

planar graph with toughness greater than 1 has a 6-trestle. By Theorem
3.27 the result of this corollary is the best possible. In Theorem 4.6 we
showed every 2-connected (𝐾1,𝑟, 𝑍1)-free graph has an (𝑟 − 1)-trestle. It
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5. Conclusion

is an extension of the result from [30].
Speaking of hamiltonian properties of planar graphs, we have already

mentioned some questions that remain open in Subsection 3.4.3. Besides
that, there are unanswered questions considering hamiltonicity of general
graphs and chordal graphs. For example, is there a finite constant 𝑡 such
that every 𝑡-tough graph is hamiltonian, or such that every 𝑡-tough graph
has some 𝑟-trestle? By [3] every 18-tough chordal graph is hamiltonian.
Is there a finite constant 𝑡 < 18 that ensures every 𝑡-tough chordal graph
is hamiltonian, or every 𝑡-tough chordal graph has some 𝑟-trestle?
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